Location: LEMON/LEMON-official/test/dijkstra_test.cc

Load file history
gravatar
kpeter (Peter Kovacs)
Support >= and <= constraints in NetworkSimplex (#219, #234) By default the same inequality constraints are supported as by Circulation (the GEQ form), but the LEQ form can also be selected using the problemType() function. The documentation of the min. cost flow module is reworked and extended with important notes and explanations about the different variants of the problem and about the dual solution and optimality conditions.
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <lemon/concepts/digraph.h>
#include <lemon/smart_graph.h>
#include <lemon/list_graph.h>
#include <lemon/lgf_reader.h>
#include <lemon/dijkstra.h>
#include <lemon/path.h>
#include <lemon/bin_heap.h>
#include "graph_test.h"
#include "test_tools.h"
using namespace lemon;
char test_lgf[] =
"@nodes\n"
"label\n"
"0\n"
"1\n"
"2\n"
"3\n"
"4\n"
"@arcs\n"
" label length\n"
"0 1 0 1\n"
"1 2 1 1\n"
"2 3 2 1\n"
"0 3 4 5\n"
"0 3 5 10\n"
"0 3 6 7\n"
"4 2 7 1\n"
"@attributes\n"
"source 0\n"
"target 3\n";
void checkDijkstraCompile()
{
typedef int VType;
typedef concepts::Digraph Digraph;
typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap;
typedef Dijkstra<Digraph, LengthMap> DType;
typedef Digraph::Node Node;
typedef Digraph::Arc Arc;
Digraph G;
Node s, t;
Arc e;
VType l;
bool b;
DType::DistMap d(G);
DType::PredMap p(G);
LengthMap length;
Path<Digraph> pp;
{
DType dijkstra_test(G,length);
dijkstra_test.run(s);
dijkstra_test.run(s,t);
l = dijkstra_test.dist(t);
e = dijkstra_test.predArc(t);
s = dijkstra_test.predNode(t);
b = dijkstra_test.reached(t);
d = dijkstra_test.distMap();
p = dijkstra_test.predMap();
pp = dijkstra_test.path(t);
}
{
DType
::SetPredMap<concepts::ReadWriteMap<Node,Arc> >
::SetDistMap<concepts::ReadWriteMap<Node,VType> >
::SetProcessedMap<concepts::WriteMap<Node,bool> >
::SetStandardProcessedMap
::SetOperationTraits<DijkstraDefaultOperationTraits<VType> >
::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > >
::SetStandardHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > >
::Create dijkstra_test(G,length);
dijkstra_test.run(s);
dijkstra_test.run(s,t);
l = dijkstra_test.dist(t);
e = dijkstra_test.predArc(t);
s = dijkstra_test.predNode(t);
b = dijkstra_test.reached(t);
pp = dijkstra_test.path(t);
}
}
void checkDijkstraFunctionCompile()
{
typedef int VType;
typedef concepts::Digraph Digraph;
typedef Digraph::Arc Arc;
typedef Digraph::Node Node;
typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap;
Digraph g;
bool b;
dijkstra(g,LengthMap()).run(Node());
b=dijkstra(g,LengthMap()).run(Node(),Node());
dijkstra(g,LengthMap())
.predMap(concepts::ReadWriteMap<Node,Arc>())
.distMap(concepts::ReadWriteMap<Node,VType>())
.processedMap(concepts::WriteMap<Node,bool>())
.run(Node());
b=dijkstra(g,LengthMap())
.predMap(concepts::ReadWriteMap<Node,Arc>())
.distMap(concepts::ReadWriteMap<Node,VType>())
.processedMap(concepts::WriteMap<Node,bool>())
.path(concepts::Path<Digraph>())
.dist(VType())
.run(Node(),Node());
}
template <class Digraph>
void checkDijkstra() {
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
typedef typename Digraph::template ArcMap<int> LengthMap;
Digraph G;
Node s, t;
LengthMap length(G);
std::istringstream input(test_lgf);
digraphReader(G, input).
arcMap("length", length).
node("source", s).
node("target", t).
run();
Dijkstra<Digraph, LengthMap>
dijkstra_test(G, length);
dijkstra_test.run(s);
check(dijkstra_test.dist(t)==3,"Dijkstra found a wrong path.");
Path<Digraph> p = dijkstra_test.path(t);
check(p.length()==3,"path() found a wrong path.");
check(checkPath(G, p),"path() found a wrong path.");
check(pathSource(G, p) == s,"path() found a wrong path.");
check(pathTarget(G, p) == t,"path() found a wrong path.");
for(ArcIt e(G); e!=INVALID; ++e) {
Node u=G.source(e);
Node v=G.target(e);
check( !dijkstra_test.reached(u) ||
(dijkstra_test.dist(v) - dijkstra_test.dist(u) <= length[e]),
"Wrong output. dist(target)-dist(source)-arc_length=" <<
dijkstra_test.dist(v) - dijkstra_test.dist(u) - length[e]);
}
for(NodeIt v(G); v!=INVALID; ++v) {
if (dijkstra_test.reached(v)) {
check(v==s || dijkstra_test.predArc(v)!=INVALID, "Wrong tree.");
if (dijkstra_test.predArc(v)!=INVALID ) {
Arc e=dijkstra_test.predArc(v);
Node u=G.source(e);
check(u==dijkstra_test.predNode(v),"Wrong tree.");
check(dijkstra_test.dist(v) - dijkstra_test.dist(u) == length[e],
"Wrong distance! Difference: " <<
std::abs(dijkstra_test.dist(v)-dijkstra_test.dist(u)-length[e]));
}
}
}
{
NullMap<Node,Arc> myPredMap;
dijkstra(G,length).predMap(myPredMap).run(s);
}
}
int main() {
checkDijkstra<ListDigraph>();
checkDijkstra<SmartDigraph>();
return 0;
}