Location: LEMON/LEMON-official/test/bfs_test.cc

Load file history
gravatar
kpeter (Peter Kovacs)
Entirely rework CapacityScaling (#180) - Use the new interface similarly to NetworkSimplex. - Rework the implementation using an efficient internal structure for handling the residual network. This improvement made the code much faster (up to 2-5 times faster on large graphs). - Handle GEQ supply type (LEQ is not supported). - Handle negative costs for arcs of finite capacity. (Note that this algorithm cannot handle arcs of negative cost and infinite upper bound, thus it returns UNBOUNDED if such an arc exists.) - Extend the documentation.
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <lemon/concepts/digraph.h>
#include <lemon/smart_graph.h>
#include <lemon/list_graph.h>
#include <lemon/lgf_reader.h>
#include <lemon/bfs.h>
#include <lemon/path.h>
#include "graph_test.h"
#include "test_tools.h"
using namespace lemon;
char test_lgf[] =
"@nodes\n"
"label\n"
"0\n"
"1\n"
"2\n"
"3\n"
"4\n"
"5\n"
"@arcs\n"
" label\n"
"0 1 0\n"
"1 2 1\n"
"2 3 2\n"
"3 4 3\n"
"0 3 4\n"
"0 3 5\n"
"5 2 6\n"
"@attributes\n"
"source 0\n"
"target 4\n";
void checkBfsCompile()
{
typedef concepts::Digraph Digraph;
typedef Bfs<Digraph> BType;
typedef Digraph::Node Node;
typedef Digraph::Arc Arc;
Digraph G;
Node s, t, n;
Arc e;
int l, i;
bool b;
BType::DistMap d(G);
BType::PredMap p(G);
Path<Digraph> pp;
concepts::ReadMap<Node,bool> nm;
{
BType bfs_test(G);
const BType& const_bfs_test = bfs_test;
bfs_test.run(s);
bfs_test.run(s,t);
bfs_test.run();
bfs_test.init();
bfs_test.addSource(s);
n = bfs_test.processNextNode();
n = bfs_test.processNextNode(t, b);
n = bfs_test.processNextNode(nm, n);
n = const_bfs_test.nextNode();
b = const_bfs_test.emptyQueue();
i = const_bfs_test.queueSize();
bfs_test.start();
bfs_test.start(t);
bfs_test.start(nm);
l = const_bfs_test.dist(t);
e = const_bfs_test.predArc(t);
s = const_bfs_test.predNode(t);
b = const_bfs_test.reached(t);
d = const_bfs_test.distMap();
p = const_bfs_test.predMap();
pp = const_bfs_test.path(t);
}
{
BType
::SetPredMap<concepts::ReadWriteMap<Node,Arc> >
::SetDistMap<concepts::ReadWriteMap<Node,int> >
::SetReachedMap<concepts::ReadWriteMap<Node,bool> >
::SetStandardProcessedMap
::SetProcessedMap<concepts::WriteMap<Node,bool> >
::Create bfs_test(G);
concepts::ReadWriteMap<Node,Arc> pred_map;
concepts::ReadWriteMap<Node,int> dist_map;
concepts::ReadWriteMap<Node,bool> reached_map;
concepts::WriteMap<Node,bool> processed_map;
bfs_test
.predMap(pred_map)
.distMap(dist_map)
.reachedMap(reached_map)
.processedMap(processed_map);
bfs_test.run(s);
bfs_test.run(s,t);
bfs_test.run();
bfs_test.init();
bfs_test.addSource(s);
n = bfs_test.processNextNode();
n = bfs_test.processNextNode(t, b);
n = bfs_test.processNextNode(nm, n);
n = bfs_test.nextNode();
b = bfs_test.emptyQueue();
i = bfs_test.queueSize();
bfs_test.start();
bfs_test.start(t);
bfs_test.start(nm);
l = bfs_test.dist(t);
e = bfs_test.predArc(t);
s = bfs_test.predNode(t);
b = bfs_test.reached(t);
pp = bfs_test.path(t);
}
}
void checkBfsFunctionCompile()
{
typedef int VType;
typedef concepts::Digraph Digraph;
typedef Digraph::Arc Arc;
typedef Digraph::Node Node;
Digraph g;
bool b;
bfs(g).run(Node());
b=bfs(g).run(Node(),Node());
bfs(g).run();
bfs(g)
.predMap(concepts::ReadWriteMap<Node,Arc>())
.distMap(concepts::ReadWriteMap<Node,VType>())
.reachedMap(concepts::ReadWriteMap<Node,bool>())
.processedMap(concepts::WriteMap<Node,bool>())
.run(Node());
b=bfs(g)
.predMap(concepts::ReadWriteMap<Node,Arc>())
.distMap(concepts::ReadWriteMap<Node,VType>())
.reachedMap(concepts::ReadWriteMap<Node,bool>())
.processedMap(concepts::WriteMap<Node,bool>())
.path(concepts::Path<Digraph>())
.dist(VType())
.run(Node(),Node());
bfs(g)
.predMap(concepts::ReadWriteMap<Node,Arc>())
.distMap(concepts::ReadWriteMap<Node,VType>())
.reachedMap(concepts::ReadWriteMap<Node,bool>())
.processedMap(concepts::WriteMap<Node,bool>())
.run();
}
template <class Digraph>
void checkBfs() {
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
Digraph G;
Node s, t;
std::istringstream input(test_lgf);
digraphReader(G, input).
node("source", s).
node("target", t).
run();
Bfs<Digraph> bfs_test(G);
bfs_test.run(s);
check(bfs_test.dist(t)==2,"Bfs found a wrong path.");
Path<Digraph> p = bfs_test.path(t);
check(p.length()==2,"path() found a wrong path.");
check(checkPath(G, p),"path() found a wrong path.");
check(pathSource(G, p) == s,"path() found a wrong path.");
check(pathTarget(G, p) == t,"path() found a wrong path.");
for(ArcIt a(G); a!=INVALID; ++a) {
Node u=G.source(a);
Node v=G.target(a);
check( !bfs_test.reached(u) ||
(bfs_test.dist(v) <= bfs_test.dist(u)+1),
"Wrong output. " << G.id(u) << "->" << G.id(v));
}
for(NodeIt v(G); v!=INVALID; ++v) {
if (bfs_test.reached(v)) {
check(v==s || bfs_test.predArc(v)!=INVALID, "Wrong tree.");
if (bfs_test.predArc(v)!=INVALID ) {
Arc a=bfs_test.predArc(v);
Node u=G.source(a);
check(u==bfs_test.predNode(v),"Wrong tree.");
check(bfs_test.dist(v) - bfs_test.dist(u) == 1,
"Wrong distance. Difference: "
<< std::abs(bfs_test.dist(v) - bfs_test.dist(u) - 1));
}
}
}
{
NullMap<Node,Arc> myPredMap;
bfs(G).predMap(myPredMap).run(s);
}
}
int main()
{
checkBfs<ListDigraph>();
checkBfs<SmartDigraph>();
return 0;
}