Location: LEMON/LEMON-official/test/euler_test.cc

Load file history
gravatar
kpeter (Peter Kovacs)
Entirely rework CapacityScaling (#180) - Use the new interface similarly to NetworkSimplex. - Rework the implementation using an efficient internal structure for handling the residual network. This improvement made the code much faster (up to 2-5 times faster on large graphs). - Handle GEQ supply type (LEQ is not supported). - Handle negative costs for arcs of finite capacity. (Note that this algorithm cannot handle arcs of negative cost and infinite upper bound, thus it returns UNBOUNDED if such an arc exists.) - Extend the documentation.
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <lemon/euler.h>
#include <lemon/list_graph.h>
#include <lemon/adaptors.h>
#include "test_tools.h"
using namespace lemon;
template <typename Digraph>
void checkDiEulerIt(const Digraph& g,
const typename Digraph::Node& start = INVALID)
{
typename Digraph::template ArcMap<int> visitationNumber(g, 0);
DiEulerIt<Digraph> e(g, start);
if (e == INVALID) return;
typename Digraph::Node firstNode = g.source(e);
typename Digraph::Node lastNode = g.target(e);
if (start != INVALID) {
check(firstNode == start, "checkDiEulerIt: Wrong first node");
}
for (; e != INVALID; ++e) {
if (e != INVALID) lastNode = g.target(e);
++visitationNumber[e];
}
check(firstNode == lastNode,
"checkDiEulerIt: First and last nodes are not the same");
for (typename Digraph::ArcIt a(g); a != INVALID; ++a)
{
check(visitationNumber[a] == 1,
"checkDiEulerIt: Not visited or multiple times visited arc found");
}
}
template <typename Graph>
void checkEulerIt(const Graph& g,
const typename Graph::Node& start = INVALID)
{
typename Graph::template EdgeMap<int> visitationNumber(g, 0);
EulerIt<Graph> e(g, start);
if (e == INVALID) return;
typename Graph::Node firstNode = g.source(typename Graph::Arc(e));
typename Graph::Node lastNode = g.target(typename Graph::Arc(e));
if (start != INVALID) {
check(firstNode == start, "checkEulerIt: Wrong first node");
}
for (; e != INVALID; ++e) {
if (e != INVALID) lastNode = g.target(typename Graph::Arc(e));
++visitationNumber[e];
}
check(firstNode == lastNode,
"checkEulerIt: First and last nodes are not the same");
for (typename Graph::EdgeIt e(g); e != INVALID; ++e)
{
check(visitationNumber[e] == 1,
"checkEulerIt: Not visited or multiple times visited edge found");
}
}
int main()
{
typedef ListDigraph Digraph;
typedef Undirector<Digraph> Graph;
{
Digraph d;
Graph g(d);
checkDiEulerIt(d);
checkDiEulerIt(g);
checkEulerIt(g);
check(eulerian(d), "This graph is Eulerian");
check(eulerian(g), "This graph is Eulerian");
}
{
Digraph d;
Graph g(d);
Digraph::Node n = d.addNode();
checkDiEulerIt(d);
checkDiEulerIt(g);
checkEulerIt(g);
check(eulerian(d), "This graph is Eulerian");
check(eulerian(g), "This graph is Eulerian");
}
{
Digraph d;
Graph g(d);
Digraph::Node n = d.addNode();
d.addArc(n, n);
checkDiEulerIt(d);
checkDiEulerIt(g);
checkEulerIt(g);
check(eulerian(d), "This graph is Eulerian");
check(eulerian(g), "This graph is Eulerian");
}
{
Digraph d;
Graph g(d);
Digraph::Node n1 = d.addNode();
Digraph::Node n2 = d.addNode();
Digraph::Node n3 = d.addNode();
d.addArc(n1, n2);
d.addArc(n2, n1);
d.addArc(n2, n3);
d.addArc(n3, n2);
checkDiEulerIt(d);
checkDiEulerIt(d, n2);
checkDiEulerIt(g);
checkDiEulerIt(g, n2);
checkEulerIt(g);
checkEulerIt(g, n2);
check(eulerian(d), "This graph is Eulerian");
check(eulerian(g), "This graph is Eulerian");
}
{
Digraph d;
Graph g(d);
Digraph::Node n1 = d.addNode();
Digraph::Node n2 = d.addNode();
Digraph::Node n3 = d.addNode();
Digraph::Node n4 = d.addNode();
Digraph::Node n5 = d.addNode();
Digraph::Node n6 = d.addNode();
d.addArc(n1, n2);
d.addArc(n2, n4);
d.addArc(n1, n3);
d.addArc(n3, n4);
d.addArc(n4, n1);
d.addArc(n3, n5);
d.addArc(n5, n2);
d.addArc(n4, n6);
d.addArc(n2, n6);
d.addArc(n6, n1);
d.addArc(n6, n3);
checkDiEulerIt(d);
checkDiEulerIt(d, n1);
checkDiEulerIt(d, n5);
checkDiEulerIt(g);
checkDiEulerIt(g, n1);
checkDiEulerIt(g, n5);
checkEulerIt(g);
checkEulerIt(g, n1);
checkEulerIt(g, n5);
check(eulerian(d), "This graph is Eulerian");
check(eulerian(g), "This graph is Eulerian");
}
{
Digraph d;
Graph g(d);
Digraph::Node n0 = d.addNode();
Digraph::Node n1 = d.addNode();
Digraph::Node n2 = d.addNode();
Digraph::Node n3 = d.addNode();
Digraph::Node n4 = d.addNode();
Digraph::Node n5 = d.addNode();
d.addArc(n1, n2);
d.addArc(n2, n3);
d.addArc(n3, n1);
checkDiEulerIt(d);
checkDiEulerIt(d, n2);
checkDiEulerIt(g);
checkDiEulerIt(g, n2);
checkEulerIt(g);
checkEulerIt(g, n2);
check(!eulerian(d), "This graph is not Eulerian");
check(!eulerian(g), "This graph is not Eulerian");
}
{
Digraph d;
Graph g(d);
Digraph::Node n1 = d.addNode();
Digraph::Node n2 = d.addNode();
Digraph::Node n3 = d.addNode();
d.addArc(n1, n2);
d.addArc(n2, n3);
check(!eulerian(d), "This graph is not Eulerian");
check(!eulerian(g), "This graph is not Eulerian");
}
return 0;
}