Location: LEMON/LEMON-official/test/min_mean_cycle_test.cc

Load file history
gravatar
kpeter (Peter Kovacs)
Entirely rework CapacityScaling (#180) - Use the new interface similarly to NetworkSimplex. - Rework the implementation using an efficient internal structure for handling the residual network. This improvement made the code much faster (up to 2-5 times faster on large graphs). - Handle GEQ supply type (LEQ is not supported). - Handle negative costs for arcs of finite capacity. (Note that this algorithm cannot handle arcs of negative cost and infinite upper bound, thus it returns UNBOUNDED if such an arc exists.) - Extend the documentation.
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <iostream>
#include <sstream>
#include <lemon/smart_graph.h>
#include <lemon/lgf_reader.h>
#include <lemon/path.h>
#include <lemon/concepts/digraph.h>
#include <lemon/concept_check.h>
#include <lemon/karp.h>
#include <lemon/hartmann_orlin.h>
#include <lemon/howard.h>
#include "test_tools.h"
using namespace lemon;
char test_lgf[] =
"@nodes\n"
"label\n"
"1\n"
"2\n"
"3\n"
"4\n"
"5\n"
"6\n"
"7\n"
"@arcs\n"
" len1 len2 len3 len4 c1 c2 c3 c4\n"
"1 2 1 1 1 1 0 0 0 0\n"
"2 4 5 5 5 5 1 0 0 0\n"
"2 3 8 8 8 8 0 0 0 0\n"
"3 2 -2 0 0 0 1 0 0 0\n"
"3 4 4 4 4 4 0 0 0 0\n"
"3 7 -4 -4 -4 -4 0 0 0 0\n"
"4 1 2 2 2 2 0 0 0 0\n"
"4 3 3 3 3 3 1 0 0 0\n"
"4 4 3 3 0 0 0 0 1 0\n"
"5 2 4 4 4 4 0 0 0 0\n"
"5 6 3 3 3 3 0 1 0 0\n"
"6 5 2 2 2 2 0 1 0 0\n"
"6 4 -1 -1 -1 -1 0 0 0 0\n"
"6 7 1 1 1 1 0 0 0 0\n"
"7 7 4 4 4 -1 0 0 0 1\n";
// Check the interface of an MMC algorithm
template <typename GR, typename Value>
struct MmcClassConcept
{
template <typename MMC>
struct Constraints {
void constraints() {
const Constraints& me = *this;
typedef typename MMC
::template SetPath<ListPath<GR> >
::template SetLargeValue<Value>
::Create MmcAlg;
MmcAlg mmc(me.g, me.length);
const MmcAlg& const_mmc = mmc;
typename MmcAlg::Tolerance tol = const_mmc.tolerance();
mmc.tolerance(tol);
b = mmc.cycle(p).run();
b = mmc.findMinMean();
b = mmc.findCycle();
v = const_mmc.cycleLength();
i = const_mmc.cycleArcNum();
d = const_mmc.cycleMean();
p = const_mmc.cycle();
}
typedef concepts::ReadMap<typename GR::Arc, Value> LM;
GR g;
LM length;
ListPath<GR> p;
Value v;
int i;
double d;
bool b;
};
};
// Perform a test with the given parameters
template <typename MMC>
void checkMmcAlg(const SmartDigraph& gr,
const SmartDigraph::ArcMap<int>& lm,
const SmartDigraph::ArcMap<int>& cm,
int length, int size) {
MMC alg(gr, lm);
alg.findMinMean();
check(alg.cycleMean() == static_cast<double>(length) / size,
"Wrong cycle mean");
alg.findCycle();
check(alg.cycleLength() == length && alg.cycleArcNum() == size,
"Wrong path");
SmartDigraph::ArcMap<int> cycle(gr, 0);
for (typename MMC::Path::ArcIt a(alg.cycle()); a != INVALID; ++a) {
++cycle[a];
}
for (SmartDigraph::ArcIt a(gr); a != INVALID; ++a) {
check(cm[a] == cycle[a], "Wrong path");
}
}
// Class for comparing types
template <typename T1, typename T2>
struct IsSameType {
static const int result = 0;
};
template <typename T>
struct IsSameType<T,T> {
static const int result = 1;
};
int main() {
#ifdef LEMON_HAVE_LONG_LONG
typedef long long long_int;
#else
typedef long long_int;
#endif
// Check the interface
{
typedef concepts::Digraph GR;
// Karp
checkConcept< MmcClassConcept<GR, int>,
Karp<GR, concepts::ReadMap<GR::Arc, int> > >();
checkConcept< MmcClassConcept<GR, float>,
Karp<GR, concepts::ReadMap<GR::Arc, float> > >();
// HartmannOrlin
checkConcept< MmcClassConcept<GR, int>,
HartmannOrlin<GR, concepts::ReadMap<GR::Arc, int> > >();
checkConcept< MmcClassConcept<GR, float>,
HartmannOrlin<GR, concepts::ReadMap<GR::Arc, float> > >();
// Howard
checkConcept< MmcClassConcept<GR, int>,
Howard<GR, concepts::ReadMap<GR::Arc, int> > >();
checkConcept< MmcClassConcept<GR, float>,
Howard<GR, concepts::ReadMap<GR::Arc, float> > >();
if (IsSameType<Howard<GR, concepts::ReadMap<GR::Arc, int> >::LargeValue,
long_int>::result == 0) check(false, "Wrong LargeValue type");
if (IsSameType<Howard<GR, concepts::ReadMap<GR::Arc, float> >::LargeValue,
double>::result == 0) check(false, "Wrong LargeValue type");
}
// Run various tests
{
typedef SmartDigraph GR;
DIGRAPH_TYPEDEFS(GR);
GR gr;
IntArcMap l1(gr), l2(gr), l3(gr), l4(gr);
IntArcMap c1(gr), c2(gr), c3(gr), c4(gr);
std::istringstream input(test_lgf);
digraphReader(gr, input).
arcMap("len1", l1).
arcMap("len2", l2).
arcMap("len3", l3).
arcMap("len4", l4).
arcMap("c1", c1).
arcMap("c2", c2).
arcMap("c3", c3).
arcMap("c4", c4).
run();
// Karp
checkMmcAlg<Karp<GR, IntArcMap> >(gr, l1, c1, 6, 3);
checkMmcAlg<Karp<GR, IntArcMap> >(gr, l2, c2, 5, 2);
checkMmcAlg<Karp<GR, IntArcMap> >(gr, l3, c3, 0, 1);
checkMmcAlg<Karp<GR, IntArcMap> >(gr, l4, c4, -1, 1);
// HartmannOrlin
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l1, c1, 6, 3);
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l2, c2, 5, 2);
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l3, c3, 0, 1);
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l4, c4, -1, 1);
// Howard
checkMmcAlg<Howard<GR, IntArcMap> >(gr, l1, c1, 6, 3);
checkMmcAlg<Howard<GR, IntArcMap> >(gr, l2, c2, 5, 2);
checkMmcAlg<Howard<GR, IntArcMap> >(gr, l3, c3, 0, 1);
checkMmcAlg<Howard<GR, IntArcMap> >(gr, l4, c4, -1, 1);
}
return 0;
}