1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2006 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_GRAPH_UTILS_H |
---|
20 | #define LEMON_GRAPH_UTILS_H |
---|
21 | |
---|
22 | #include <iterator> |
---|
23 | #include <vector> |
---|
24 | #include <map> |
---|
25 | #include <cmath> |
---|
26 | |
---|
27 | #include <lemon/bits/invalid.h> |
---|
28 | #include <lemon/bits/utility.h> |
---|
29 | #include <lemon/maps.h> |
---|
30 | #include <lemon/bits/traits.h> |
---|
31 | |
---|
32 | #include <lemon/bits/alteration_notifier.h> |
---|
33 | #include <lemon/bits/default_map.h> |
---|
34 | |
---|
35 | ///\ingroup gutils |
---|
36 | ///\file |
---|
37 | ///\brief Graph utilities. |
---|
38 | /// |
---|
39 | /// |
---|
40 | |
---|
41 | |
---|
42 | namespace lemon { |
---|
43 | |
---|
44 | /// \addtogroup gutils |
---|
45 | /// @{ |
---|
46 | |
---|
47 | ///Creates convenience typedefs for the graph types and iterators |
---|
48 | |
---|
49 | ///This \c \#define creates convenience typedefs for the following types |
---|
50 | ///of \c Graph: \c Node, \c NodeIt, \c Edge, \c EdgeIt, \c InEdgeIt, |
---|
51 | ///\c OutEdgeIt |
---|
52 | ///\note If \c G it a template parameter, it should be used in this way. |
---|
53 | ///\code |
---|
54 | /// GRAPH_TYPEDEFS(typename G) |
---|
55 | ///\endcode |
---|
56 | /// |
---|
57 | ///\warning There are no typedefs for the graph maps because of the lack of |
---|
58 | ///template typedefs in C++. |
---|
59 | #define GRAPH_TYPEDEFS(Graph) \ |
---|
60 | typedef Graph:: Node Node; \ |
---|
61 | typedef Graph:: NodeIt NodeIt; \ |
---|
62 | typedef Graph:: Edge Edge; \ |
---|
63 | typedef Graph:: EdgeIt EdgeIt; \ |
---|
64 | typedef Graph:: InEdgeIt InEdgeIt; \ |
---|
65 | typedef Graph::OutEdgeIt OutEdgeIt; |
---|
66 | |
---|
67 | ///Creates convenience typedefs for the undirected graph types and iterators |
---|
68 | |
---|
69 | ///This \c \#define creates the same convenience typedefs as defined by |
---|
70 | ///\ref GRAPH_TYPEDEFS(Graph) and three more, namely it creates |
---|
71 | ///\c UEdge, \c UEdgeIt, \c IncEdgeIt, |
---|
72 | /// |
---|
73 | ///\note If \c G it a template parameter, it should be used in this way. |
---|
74 | ///\code |
---|
75 | /// UGRAPH_TYPEDEFS(typename G) |
---|
76 | ///\endcode |
---|
77 | /// |
---|
78 | ///\warning There are no typedefs for the graph maps because of the lack of |
---|
79 | ///template typedefs in C++. |
---|
80 | #define UGRAPH_TYPEDEFS(Graph) \ |
---|
81 | GRAPH_TYPEDEFS(Graph) \ |
---|
82 | typedef Graph:: UEdge UEdge; \ |
---|
83 | typedef Graph:: UEdgeIt UEdgeIt; \ |
---|
84 | typedef Graph:: IncEdgeIt IncEdgeIt; |
---|
85 | // typedef Graph::template UEdgeMap<bool> BoolUEdgeMap; |
---|
86 | // typedef Graph::template UEdgeMap<int> IntUEdgeMap; |
---|
87 | // typedef Graph::template UEdgeMap<double> DoubleUEdgeMap; |
---|
88 | |
---|
89 | ///\brief Creates convenience typedefs for the bipartite undirected graph |
---|
90 | ///types and iterators |
---|
91 | |
---|
92 | ///This \c \#define creates the same convenience typedefs as defined by |
---|
93 | ///\ref UGRAPH_TYPEDEFS(Graph) and two more, namely it creates |
---|
94 | ///\c ANodeIt, \c BNodeIt, |
---|
95 | /// |
---|
96 | ///\note If \c G it a template parameter, it should be used in this way. |
---|
97 | ///\code |
---|
98 | /// BPUGRAPH_TYPEDEFS(typename G) |
---|
99 | ///\endcode |
---|
100 | /// |
---|
101 | ///\warning There are no typedefs for the graph maps because of the lack of |
---|
102 | ///template typedefs in C++. |
---|
103 | #define BPUGRAPH_TYPEDEFS(Graph) \ |
---|
104 | UGRAPH_TYPEDEFS(Graph) \ |
---|
105 | typedef Graph::ANodeIt ANodeIt; \ |
---|
106 | typedef Graph::BNodeIt BNodeIt; |
---|
107 | |
---|
108 | /// \brief Function to count the items in the graph. |
---|
109 | /// |
---|
110 | /// This function counts the items (nodes, edges etc) in the graph. |
---|
111 | /// The complexity of the function is O(n) because |
---|
112 | /// it iterates on all of the items. |
---|
113 | |
---|
114 | template <typename Graph, typename Item> |
---|
115 | inline int countItems(const Graph& g) { |
---|
116 | typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt; |
---|
117 | int num = 0; |
---|
118 | for (ItemIt it(g); it != INVALID; ++it) { |
---|
119 | ++num; |
---|
120 | } |
---|
121 | return num; |
---|
122 | } |
---|
123 | |
---|
124 | // Node counting: |
---|
125 | |
---|
126 | namespace _graph_utils_bits { |
---|
127 | |
---|
128 | template <typename Graph, typename Enable = void> |
---|
129 | struct CountNodesSelector { |
---|
130 | static int count(const Graph &g) { |
---|
131 | return countItems<Graph, typename Graph::Node>(g); |
---|
132 | } |
---|
133 | }; |
---|
134 | |
---|
135 | template <typename Graph> |
---|
136 | struct CountNodesSelector< |
---|
137 | Graph, typename |
---|
138 | enable_if<typename Graph::NodeNumTag, void>::type> |
---|
139 | { |
---|
140 | static int count(const Graph &g) { |
---|
141 | return g.nodeNum(); |
---|
142 | } |
---|
143 | }; |
---|
144 | } |
---|
145 | |
---|
146 | /// \brief Function to count the nodes in the graph. |
---|
147 | /// |
---|
148 | /// This function counts the nodes in the graph. |
---|
149 | /// The complexity of the function is O(n) but for some |
---|
150 | /// graph structures it is specialized to run in O(1). |
---|
151 | /// |
---|
152 | /// \todo refer how to specialize it |
---|
153 | |
---|
154 | template <typename Graph> |
---|
155 | inline int countNodes(const Graph& g) { |
---|
156 | return _graph_utils_bits::CountNodesSelector<Graph>::count(g); |
---|
157 | } |
---|
158 | |
---|
159 | namespace _graph_utils_bits { |
---|
160 | |
---|
161 | template <typename Graph, typename Enable = void> |
---|
162 | struct CountANodesSelector { |
---|
163 | static int count(const Graph &g) { |
---|
164 | return countItems<Graph, typename Graph::ANode>(g); |
---|
165 | } |
---|
166 | }; |
---|
167 | |
---|
168 | template <typename Graph> |
---|
169 | struct CountANodesSelector< |
---|
170 | Graph, typename |
---|
171 | enable_if<typename Graph::NodeNumTag, void>::type> |
---|
172 | { |
---|
173 | static int count(const Graph &g) { |
---|
174 | return g.nodeNum(); |
---|
175 | } |
---|
176 | }; |
---|
177 | } |
---|
178 | |
---|
179 | /// \brief Function to count the anodes in the graph. |
---|
180 | /// |
---|
181 | /// This function counts the anodes in the graph. |
---|
182 | /// The complexity of the function is O(an) but for some |
---|
183 | /// graph structures it is specialized to run in O(1). |
---|
184 | /// |
---|
185 | /// \todo refer how to specialize it |
---|
186 | |
---|
187 | template <typename Graph> |
---|
188 | inline int countANodes(const Graph& g) { |
---|
189 | return _graph_utils_bits::CountANodesSelector<Graph>::count(g); |
---|
190 | } |
---|
191 | |
---|
192 | namespace _graph_utils_bits { |
---|
193 | |
---|
194 | template <typename Graph, typename Enable = void> |
---|
195 | struct CountBNodesSelector { |
---|
196 | static int count(const Graph &g) { |
---|
197 | return countItems<Graph, typename Graph::BNode>(g); |
---|
198 | } |
---|
199 | }; |
---|
200 | |
---|
201 | template <typename Graph> |
---|
202 | struct CountBNodesSelector< |
---|
203 | Graph, typename |
---|
204 | enable_if<typename Graph::NodeNumTag, void>::type> |
---|
205 | { |
---|
206 | static int count(const Graph &g) { |
---|
207 | return g.nodeNum(); |
---|
208 | } |
---|
209 | }; |
---|
210 | } |
---|
211 | |
---|
212 | /// \brief Function to count the bnodes in the graph. |
---|
213 | /// |
---|
214 | /// This function counts the bnodes in the graph. |
---|
215 | /// The complexity of the function is O(bn) but for some |
---|
216 | /// graph structures it is specialized to run in O(1). |
---|
217 | /// |
---|
218 | /// \todo refer how to specialize it |
---|
219 | |
---|
220 | template <typename Graph> |
---|
221 | inline int countBNodes(const Graph& g) { |
---|
222 | return _graph_utils_bits::CountBNodesSelector<Graph>::count(g); |
---|
223 | } |
---|
224 | |
---|
225 | |
---|
226 | // Edge counting: |
---|
227 | |
---|
228 | namespace _graph_utils_bits { |
---|
229 | |
---|
230 | template <typename Graph, typename Enable = void> |
---|
231 | struct CountEdgesSelector { |
---|
232 | static int count(const Graph &g) { |
---|
233 | return countItems<Graph, typename Graph::Edge>(g); |
---|
234 | } |
---|
235 | }; |
---|
236 | |
---|
237 | template <typename Graph> |
---|
238 | struct CountEdgesSelector< |
---|
239 | Graph, |
---|
240 | typename enable_if<typename Graph::EdgeNumTag, void>::type> |
---|
241 | { |
---|
242 | static int count(const Graph &g) { |
---|
243 | return g.edgeNum(); |
---|
244 | } |
---|
245 | }; |
---|
246 | } |
---|
247 | |
---|
248 | /// \brief Function to count the edges in the graph. |
---|
249 | /// |
---|
250 | /// This function counts the edges in the graph. |
---|
251 | /// The complexity of the function is O(e) but for some |
---|
252 | /// graph structures it is specialized to run in O(1). |
---|
253 | |
---|
254 | template <typename Graph> |
---|
255 | inline int countEdges(const Graph& g) { |
---|
256 | return _graph_utils_bits::CountEdgesSelector<Graph>::count(g); |
---|
257 | } |
---|
258 | |
---|
259 | // Undirected edge counting: |
---|
260 | namespace _graph_utils_bits { |
---|
261 | |
---|
262 | template <typename Graph, typename Enable = void> |
---|
263 | struct CountUEdgesSelector { |
---|
264 | static int count(const Graph &g) { |
---|
265 | return countItems<Graph, typename Graph::UEdge>(g); |
---|
266 | } |
---|
267 | }; |
---|
268 | |
---|
269 | template <typename Graph> |
---|
270 | struct CountUEdgesSelector< |
---|
271 | Graph, |
---|
272 | typename enable_if<typename Graph::EdgeNumTag, void>::type> |
---|
273 | { |
---|
274 | static int count(const Graph &g) { |
---|
275 | return g.uEdgeNum(); |
---|
276 | } |
---|
277 | }; |
---|
278 | } |
---|
279 | |
---|
280 | /// \brief Function to count the undirected edges in the graph. |
---|
281 | /// |
---|
282 | /// This function counts the undirected edges in the graph. |
---|
283 | /// The complexity of the function is O(e) but for some |
---|
284 | /// graph structures it is specialized to run in O(1). |
---|
285 | |
---|
286 | template <typename Graph> |
---|
287 | inline int countUEdges(const Graph& g) { |
---|
288 | return _graph_utils_bits::CountUEdgesSelector<Graph>::count(g); |
---|
289 | |
---|
290 | } |
---|
291 | |
---|
292 | |
---|
293 | template <typename Graph, typename DegIt> |
---|
294 | inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) { |
---|
295 | int num = 0; |
---|
296 | for (DegIt it(_g, _n); it != INVALID; ++it) { |
---|
297 | ++num; |
---|
298 | } |
---|
299 | return num; |
---|
300 | } |
---|
301 | |
---|
302 | /// \brief Function to count the number of the out-edges from node \c n. |
---|
303 | /// |
---|
304 | /// This function counts the number of the out-edges from node \c n |
---|
305 | /// in the graph. |
---|
306 | template <typename Graph> |
---|
307 | inline int countOutEdges(const Graph& _g, const typename Graph::Node& _n) { |
---|
308 | return countNodeDegree<Graph, typename Graph::OutEdgeIt>(_g, _n); |
---|
309 | } |
---|
310 | |
---|
311 | /// \brief Function to count the number of the in-edges to node \c n. |
---|
312 | /// |
---|
313 | /// This function counts the number of the in-edges to node \c n |
---|
314 | /// in the graph. |
---|
315 | template <typename Graph> |
---|
316 | inline int countInEdges(const Graph& _g, const typename Graph::Node& _n) { |
---|
317 | return countNodeDegree<Graph, typename Graph::InEdgeIt>(_g, _n); |
---|
318 | } |
---|
319 | |
---|
320 | /// \brief Function to count the number of the inc-edges to node \c n. |
---|
321 | /// |
---|
322 | /// This function counts the number of the inc-edges to node \c n |
---|
323 | /// in the graph. |
---|
324 | template <typename Graph> |
---|
325 | inline int countIncEdges(const Graph& _g, const typename Graph::Node& _n) { |
---|
326 | return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n); |
---|
327 | } |
---|
328 | |
---|
329 | namespace _graph_utils_bits { |
---|
330 | |
---|
331 | template <typename Graph, typename Enable = void> |
---|
332 | struct FindEdgeSelector { |
---|
333 | typedef typename Graph::Node Node; |
---|
334 | typedef typename Graph::Edge Edge; |
---|
335 | static Edge find(const Graph &g, Node u, Node v, Edge e) { |
---|
336 | if (e == INVALID) { |
---|
337 | g.firstOut(e, u); |
---|
338 | } else { |
---|
339 | g.nextOut(e); |
---|
340 | } |
---|
341 | while (e != INVALID && g.target(e) != v) { |
---|
342 | g.nextOut(e); |
---|
343 | } |
---|
344 | return e; |
---|
345 | } |
---|
346 | }; |
---|
347 | |
---|
348 | template <typename Graph> |
---|
349 | struct FindEdgeSelector< |
---|
350 | Graph, |
---|
351 | typename enable_if<typename Graph::FindEdgeTag, void>::type> |
---|
352 | { |
---|
353 | typedef typename Graph::Node Node; |
---|
354 | typedef typename Graph::Edge Edge; |
---|
355 | static Edge find(const Graph &g, Node u, Node v, Edge prev) { |
---|
356 | return g.findEdge(u, v, prev); |
---|
357 | } |
---|
358 | }; |
---|
359 | } |
---|
360 | |
---|
361 | /// \brief Finds an edge between two nodes of a graph. |
---|
362 | /// |
---|
363 | /// Finds an edge from node \c u to node \c v in graph \c g. |
---|
364 | /// |
---|
365 | /// If \c prev is \ref INVALID (this is the default value), then |
---|
366 | /// it finds the first edge from \c u to \c v. Otherwise it looks for |
---|
367 | /// the next edge from \c u to \c v after \c prev. |
---|
368 | /// \return The found edge or \ref INVALID if there is no such an edge. |
---|
369 | /// |
---|
370 | /// Thus you can iterate through each edge from \c u to \c v as it follows. |
---|
371 | ///\code |
---|
372 | /// for(Edge e=findEdge(g,u,v);e!=INVALID;e=findEdge(g,u,v,e)) { |
---|
373 | /// ... |
---|
374 | /// } |
---|
375 | ///\endcode |
---|
376 | template <typename Graph> |
---|
377 | inline typename Graph::Edge findEdge(const Graph &g, |
---|
378 | typename Graph::Node u, |
---|
379 | typename Graph::Node v, |
---|
380 | typename Graph::Edge prev = INVALID) { |
---|
381 | return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, prev); |
---|
382 | } |
---|
383 | |
---|
384 | /// \brief Iterator for iterating on edges connected the same nodes. |
---|
385 | /// |
---|
386 | /// Iterator for iterating on edges connected the same nodes. It is |
---|
387 | /// higher level interface for the findEdge() function. You can |
---|
388 | /// use it the following way: |
---|
389 | ///\code |
---|
390 | /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
---|
391 | /// ... |
---|
392 | /// } |
---|
393 | ///\endcode |
---|
394 | /// |
---|
395 | /// \author Balazs Dezso |
---|
396 | template <typename _Graph> |
---|
397 | class ConEdgeIt : public _Graph::Edge { |
---|
398 | public: |
---|
399 | |
---|
400 | typedef _Graph Graph; |
---|
401 | typedef typename Graph::Edge Parent; |
---|
402 | |
---|
403 | typedef typename Graph::Edge Edge; |
---|
404 | typedef typename Graph::Node Node; |
---|
405 | |
---|
406 | /// \brief Constructor. |
---|
407 | /// |
---|
408 | /// Construct a new ConEdgeIt iterating on the edges which |
---|
409 | /// connects the \c u and \c v node. |
---|
410 | ConEdgeIt(const Graph& g, Node u, Node v) : graph(g) { |
---|
411 | Parent::operator=(findEdge(graph, u, v)); |
---|
412 | } |
---|
413 | |
---|
414 | /// \brief Constructor. |
---|
415 | /// |
---|
416 | /// Construct a new ConEdgeIt which continues the iterating from |
---|
417 | /// the \c e edge. |
---|
418 | ConEdgeIt(const Graph& g, Edge e) : Parent(e), graph(g) {} |
---|
419 | |
---|
420 | /// \brief Increment operator. |
---|
421 | /// |
---|
422 | /// It increments the iterator and gives back the next edge. |
---|
423 | ConEdgeIt& operator++() { |
---|
424 | Parent::operator=(findEdge(graph, graph.source(*this), |
---|
425 | graph.target(*this), *this)); |
---|
426 | return *this; |
---|
427 | } |
---|
428 | private: |
---|
429 | const Graph& graph; |
---|
430 | }; |
---|
431 | |
---|
432 | namespace _graph_utils_bits { |
---|
433 | |
---|
434 | template <typename Graph, typename Enable = void> |
---|
435 | struct FindUEdgeSelector { |
---|
436 | typedef typename Graph::Node Node; |
---|
437 | typedef typename Graph::UEdge UEdge; |
---|
438 | static UEdge find(const Graph &g, Node u, Node v, UEdge e) { |
---|
439 | bool b; |
---|
440 | if (u != v) { |
---|
441 | if (e == INVALID) { |
---|
442 | g.firstInc(e, b, u); |
---|
443 | } else { |
---|
444 | b = g.source(e) == u; |
---|
445 | g.nextInc(e, b); |
---|
446 | } |
---|
447 | while (e != INVALID && g.target(e) != v) { |
---|
448 | g.nextInc(e, b); |
---|
449 | } |
---|
450 | } else { |
---|
451 | if (e == INVALID) { |
---|
452 | g.firstInc(e, b, u); |
---|
453 | } else { |
---|
454 | b = true; |
---|
455 | g.nextInc(e, b); |
---|
456 | } |
---|
457 | while (e != INVALID && (!b || g.target(e) != v)) { |
---|
458 | g.nextInc(e, b); |
---|
459 | } |
---|
460 | } |
---|
461 | return e; |
---|
462 | } |
---|
463 | }; |
---|
464 | |
---|
465 | template <typename Graph> |
---|
466 | struct FindUEdgeSelector< |
---|
467 | Graph, |
---|
468 | typename enable_if<typename Graph::FindEdgeTag, void>::type> |
---|
469 | { |
---|
470 | typedef typename Graph::Node Node; |
---|
471 | typedef typename Graph::UEdge UEdge; |
---|
472 | static UEdge find(const Graph &g, Node u, Node v, UEdge prev) { |
---|
473 | return g.findUEdge(u, v, prev); |
---|
474 | } |
---|
475 | }; |
---|
476 | } |
---|
477 | |
---|
478 | /// \brief Finds an uedge between two nodes of a graph. |
---|
479 | /// |
---|
480 | /// Finds an uedge from node \c u to node \c v in graph \c g. |
---|
481 | /// If the node \c u and node \c v is equal then each loop edge |
---|
482 | /// will be enumerated. |
---|
483 | /// |
---|
484 | /// If \c prev is \ref INVALID (this is the default value), then |
---|
485 | /// it finds the first edge from \c u to \c v. Otherwise it looks for |
---|
486 | /// the next edge from \c u to \c v after \c prev. |
---|
487 | /// \return The found edge or \ref INVALID if there is no such an edge. |
---|
488 | /// |
---|
489 | /// Thus you can iterate through each edge from \c u to \c v as it follows. |
---|
490 | ///\code |
---|
491 | /// for(UEdge e = findUEdge(g,u,v); e != INVALID; |
---|
492 | /// e = findUEdge(g,u,v,e)) { |
---|
493 | /// ... |
---|
494 | /// } |
---|
495 | ///\endcode |
---|
496 | template <typename Graph> |
---|
497 | inline typename Graph::UEdge findUEdge(const Graph &g, |
---|
498 | typename Graph::Node u, |
---|
499 | typename Graph::Node v, |
---|
500 | typename Graph::UEdge p = INVALID) { |
---|
501 | return _graph_utils_bits::FindUEdgeSelector<Graph>::find(g, u, v, p); |
---|
502 | } |
---|
503 | |
---|
504 | /// \brief Iterator for iterating on uedges connected the same nodes. |
---|
505 | /// |
---|
506 | /// Iterator for iterating on uedges connected the same nodes. It is |
---|
507 | /// higher level interface for the findUEdge() function. You can |
---|
508 | /// use it the following way: |
---|
509 | ///\code |
---|
510 | /// for (ConUEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
---|
511 | /// ... |
---|
512 | /// } |
---|
513 | ///\endcode |
---|
514 | /// |
---|
515 | /// \author Balazs Dezso |
---|
516 | template <typename _Graph> |
---|
517 | class ConUEdgeIt : public _Graph::UEdge { |
---|
518 | public: |
---|
519 | |
---|
520 | typedef _Graph Graph; |
---|
521 | typedef typename Graph::UEdge Parent; |
---|
522 | |
---|
523 | typedef typename Graph::UEdge UEdge; |
---|
524 | typedef typename Graph::Node Node; |
---|
525 | |
---|
526 | /// \brief Constructor. |
---|
527 | /// |
---|
528 | /// Construct a new ConUEdgeIt iterating on the edges which |
---|
529 | /// connects the \c u and \c v node. |
---|
530 | ConUEdgeIt(const Graph& g, Node u, Node v) : graph(g) { |
---|
531 | Parent::operator=(findUEdge(graph, u, v)); |
---|
532 | } |
---|
533 | |
---|
534 | /// \brief Constructor. |
---|
535 | /// |
---|
536 | /// Construct a new ConUEdgeIt which continues the iterating from |
---|
537 | /// the \c e edge. |
---|
538 | ConUEdgeIt(const Graph& g, UEdge e) : Parent(e), graph(g) {} |
---|
539 | |
---|
540 | /// \brief Increment operator. |
---|
541 | /// |
---|
542 | /// It increments the iterator and gives back the next edge. |
---|
543 | ConUEdgeIt& operator++() { |
---|
544 | Parent::operator=(findUEdge(graph, graph.source(*this), |
---|
545 | graph.target(*this), *this)); |
---|
546 | return *this; |
---|
547 | } |
---|
548 | private: |
---|
549 | const Graph& graph; |
---|
550 | }; |
---|
551 | |
---|
552 | /// \brief Copy a map. |
---|
553 | /// |
---|
554 | /// This function copies the \c source map to the \c target map. It uses the |
---|
555 | /// given iterator to iterate on the data structure and it uses the \c ref |
---|
556 | /// mapping to convert the source's keys to the target's keys. |
---|
557 | template <typename Target, typename Source, |
---|
558 | typename ItemIt, typename Ref> |
---|
559 | void copyMap(Target& target, const Source& source, |
---|
560 | ItemIt it, const Ref& ref) { |
---|
561 | for (; it != INVALID; ++it) { |
---|
562 | target[ref[it]] = source[it]; |
---|
563 | } |
---|
564 | } |
---|
565 | |
---|
566 | /// \brief Copy the source map to the target map. |
---|
567 | /// |
---|
568 | /// Copy the \c source map to the \c target map. It uses the given iterator |
---|
569 | /// to iterate on the data structure. |
---|
570 | template <typename Target, typename Source, typename ItemIt> |
---|
571 | void copyMap(Target& target, const Source& source, ItemIt it) { |
---|
572 | for (; it != INVALID; ++it) { |
---|
573 | target[it] = source[it]; |
---|
574 | } |
---|
575 | } |
---|
576 | |
---|
577 | /// \brief Class to copy a graph. |
---|
578 | /// |
---|
579 | /// Class to copy a graph to another graph (duplicate a graph). The |
---|
580 | /// simplest way of using it is through the \c copyGraph() function. |
---|
581 | template <typename Target, typename Source> |
---|
582 | class GraphCopy { |
---|
583 | public: |
---|
584 | typedef typename Source::Node Node; |
---|
585 | typedef typename Source::NodeIt NodeIt; |
---|
586 | typedef typename Source::Edge Edge; |
---|
587 | typedef typename Source::EdgeIt EdgeIt; |
---|
588 | |
---|
589 | typedef typename Source::template NodeMap<typename Target::Node>NodeRefMap; |
---|
590 | typedef typename Source::template EdgeMap<typename Target::Edge>EdgeRefMap; |
---|
591 | |
---|
592 | /// \brief Constructor for the GraphCopy. |
---|
593 | /// |
---|
594 | /// It copies the content of the \c _source graph into the |
---|
595 | /// \c _target graph. It creates also two references, one beetween |
---|
596 | /// the two nodeset and one beetween the two edgesets. |
---|
597 | GraphCopy(Target& _target, const Source& _source) |
---|
598 | : source(_source), target(_target), |
---|
599 | nodeRefMap(_source), edgeRefMap(_source) { |
---|
600 | for (NodeIt it(source); it != INVALID; ++it) { |
---|
601 | nodeRefMap[it] = target.addNode(); |
---|
602 | } |
---|
603 | for (EdgeIt it(source); it != INVALID; ++it) { |
---|
604 | edgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], |
---|
605 | nodeRefMap[source.target(it)]); |
---|
606 | } |
---|
607 | } |
---|
608 | |
---|
609 | /// \brief Copies the node references into the given map. |
---|
610 | /// |
---|
611 | /// Copies the node references into the given map. |
---|
612 | template <typename NodeRef> |
---|
613 | const GraphCopy& nodeRef(NodeRef& map) const { |
---|
614 | for (NodeIt it(source); it != INVALID; ++it) { |
---|
615 | map.set(it, nodeRefMap[it]); |
---|
616 | } |
---|
617 | return *this; |
---|
618 | } |
---|
619 | |
---|
620 | /// \brief Reverse and copies the node references into the given map. |
---|
621 | /// |
---|
622 | /// Reverse and copies the node references into the given map. |
---|
623 | template <typename NodeRef> |
---|
624 | const GraphCopy& nodeCrossRef(NodeRef& map) const { |
---|
625 | for (NodeIt it(source); it != INVALID; ++it) { |
---|
626 | map.set(nodeRefMap[it], it); |
---|
627 | } |
---|
628 | return *this; |
---|
629 | } |
---|
630 | |
---|
631 | /// \brief Copies the edge references into the given map. |
---|
632 | /// |
---|
633 | /// Copies the edge references into the given map. |
---|
634 | template <typename EdgeRef> |
---|
635 | const GraphCopy& edgeRef(EdgeRef& map) const { |
---|
636 | for (EdgeIt it(source); it != INVALID; ++it) { |
---|
637 | map.set(it, edgeRefMap[it]); |
---|
638 | } |
---|
639 | return *this; |
---|
640 | } |
---|
641 | |
---|
642 | /// \brief Reverse and copies the edge references into the given map. |
---|
643 | /// |
---|
644 | /// Reverse and copies the edge references into the given map. |
---|
645 | template <typename EdgeRef> |
---|
646 | const GraphCopy& edgeCrossRef(EdgeRef& map) const { |
---|
647 | for (EdgeIt it(source); it != INVALID; ++it) { |
---|
648 | map.set(edgeRefMap[it], it); |
---|
649 | } |
---|
650 | return *this; |
---|
651 | } |
---|
652 | |
---|
653 | /// \brief Make copy of the given map. |
---|
654 | /// |
---|
655 | /// Makes copy of the given map for the newly created graph. |
---|
656 | /// The new map's key type is the target graph's node type, |
---|
657 | /// and the copied map's key type is the source graph's node |
---|
658 | /// type. |
---|
659 | template <typename TargetMap, typename SourceMap> |
---|
660 | const GraphCopy& nodeMap(TargetMap& tMap, const SourceMap& sMap) const { |
---|
661 | copyMap(tMap, sMap, NodeIt(source), nodeRefMap); |
---|
662 | return *this; |
---|
663 | } |
---|
664 | |
---|
665 | /// \brief Make copy of the given map. |
---|
666 | /// |
---|
667 | /// Makes copy of the given map for the newly created graph. |
---|
668 | /// The new map's key type is the target graph's edge type, |
---|
669 | /// and the copied map's key type is the source graph's edge |
---|
670 | /// type. |
---|
671 | template <typename TargetMap, typename SourceMap> |
---|
672 | const GraphCopy& edgeMap(TargetMap& tMap, const SourceMap& sMap) const { |
---|
673 | copyMap(tMap, sMap, EdgeIt(source), edgeRefMap); |
---|
674 | return *this; |
---|
675 | } |
---|
676 | |
---|
677 | /// \brief Gives back the stored node references. |
---|
678 | /// |
---|
679 | /// Gives back the stored node references. |
---|
680 | const NodeRefMap& nodeRef() const { |
---|
681 | return nodeRefMap; |
---|
682 | } |
---|
683 | |
---|
684 | /// \brief Gives back the stored edge references. |
---|
685 | /// |
---|
686 | /// Gives back the stored edge references. |
---|
687 | const EdgeRefMap& edgeRef() const { |
---|
688 | return edgeRefMap; |
---|
689 | } |
---|
690 | |
---|
691 | void run() const {} |
---|
692 | |
---|
693 | private: |
---|
694 | |
---|
695 | const Source& source; |
---|
696 | Target& target; |
---|
697 | |
---|
698 | NodeRefMap nodeRefMap; |
---|
699 | EdgeRefMap edgeRefMap; |
---|
700 | }; |
---|
701 | |
---|
702 | /// \brief Copy a graph to another graph. |
---|
703 | /// |
---|
704 | /// Copy a graph to another graph. |
---|
705 | /// The usage of the function: |
---|
706 | /// |
---|
707 | ///\code |
---|
708 | /// copyGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr); |
---|
709 | ///\endcode |
---|
710 | /// |
---|
711 | /// After the copy the \c nr map will contain the mapping from the |
---|
712 | /// source graph's nodes to the target graph's nodes and the \c ecr will |
---|
713 | /// contain the mapping from the target graph's edges to the source's |
---|
714 | /// edges. |
---|
715 | template <typename Target, typename Source> |
---|
716 | GraphCopy<Target, Source> copyGraph(Target& target, const Source& source) { |
---|
717 | return GraphCopy<Target, Source>(target, source); |
---|
718 | } |
---|
719 | |
---|
720 | /// \brief Class to copy an undirected graph. |
---|
721 | /// |
---|
722 | /// Class to copy an undirected graph to another graph (duplicate a graph). |
---|
723 | /// The simplest way of using it is through the \c copyUGraph() function. |
---|
724 | template <typename Target, typename Source> |
---|
725 | class UGraphCopy { |
---|
726 | public: |
---|
727 | typedef typename Source::Node Node; |
---|
728 | typedef typename Source::NodeIt NodeIt; |
---|
729 | typedef typename Source::Edge Edge; |
---|
730 | typedef typename Source::EdgeIt EdgeIt; |
---|
731 | typedef typename Source::UEdge UEdge; |
---|
732 | typedef typename Source::UEdgeIt UEdgeIt; |
---|
733 | |
---|
734 | typedef typename Source:: |
---|
735 | template NodeMap<typename Target::Node> NodeRefMap; |
---|
736 | |
---|
737 | typedef typename Source:: |
---|
738 | template UEdgeMap<typename Target::UEdge> UEdgeRefMap; |
---|
739 | |
---|
740 | private: |
---|
741 | |
---|
742 | struct EdgeRefMap { |
---|
743 | EdgeRefMap(UGraphCopy& _gc) : gc(_gc) {} |
---|
744 | typedef typename Source::Edge Key; |
---|
745 | typedef typename Target::Edge Value; |
---|
746 | |
---|
747 | Value operator[](const Key& key) { |
---|
748 | return gc.target.direct(gc.uEdgeRef[key], |
---|
749 | gc.target.direction(key)); |
---|
750 | } |
---|
751 | |
---|
752 | UGraphCopy& gc; |
---|
753 | }; |
---|
754 | |
---|
755 | public: |
---|
756 | |
---|
757 | /// \brief Constructor for the UGraphCopy. |
---|
758 | /// |
---|
759 | /// It copies the content of the \c _source graph into the |
---|
760 | /// \c _target graph. It creates also two references, one beetween |
---|
761 | /// the two nodeset and one beetween the two edgesets. |
---|
762 | UGraphCopy(Target& _target, const Source& _source) |
---|
763 | : source(_source), target(_target), |
---|
764 | nodeRefMap(_source), edgeRefMap(*this), uEdgeRefMap(_source) { |
---|
765 | for (NodeIt it(source); it != INVALID; ++it) { |
---|
766 | nodeRefMap[it] = target.addNode(); |
---|
767 | } |
---|
768 | for (UEdgeIt it(source); it != INVALID; ++it) { |
---|
769 | uEdgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], |
---|
770 | nodeRefMap[source.target(it)]); |
---|
771 | } |
---|
772 | } |
---|
773 | |
---|
774 | /// \brief Copies the node references into the given map. |
---|
775 | /// |
---|
776 | /// Copies the node references into the given map. |
---|
777 | template <typename NodeRef> |
---|
778 | const UGraphCopy& nodeRef(NodeRef& map) const { |
---|
779 | for (NodeIt it(source); it != INVALID; ++it) { |
---|
780 | map.set(it, nodeRefMap[it]); |
---|
781 | } |
---|
782 | return *this; |
---|
783 | } |
---|
784 | |
---|
785 | /// \brief Reverse and copies the node references into the given map. |
---|
786 | /// |
---|
787 | /// Reverse and copies the node references into the given map. |
---|
788 | template <typename NodeRef> |
---|
789 | const UGraphCopy& nodeCrossRef(NodeRef& map) const { |
---|
790 | for (NodeIt it(source); it != INVALID; ++it) { |
---|
791 | map.set(nodeRefMap[it], it); |
---|
792 | } |
---|
793 | return *this; |
---|
794 | } |
---|
795 | |
---|
796 | /// \brief Copies the edge references into the given map. |
---|
797 | /// |
---|
798 | /// Copies the edge references into the given map. |
---|
799 | template <typename EdgeRef> |
---|
800 | const UGraphCopy& edgeRef(EdgeRef& map) const { |
---|
801 | for (EdgeIt it(source); it != INVALID; ++it) { |
---|
802 | map.set(edgeRefMap[it], it); |
---|
803 | } |
---|
804 | return *this; |
---|
805 | } |
---|
806 | |
---|
807 | /// \brief Reverse and copies the undirected edge references into the |
---|
808 | /// given map. |
---|
809 | /// |
---|
810 | /// Reverse and copies the undirected edge references into the given map. |
---|
811 | template <typename EdgeRef> |
---|
812 | const UGraphCopy& edgeCrossRef(EdgeRef& map) const { |
---|
813 | for (EdgeIt it(source); it != INVALID; ++it) { |
---|
814 | map.set(it, edgeRefMap[it]); |
---|
815 | } |
---|
816 | return *this; |
---|
817 | } |
---|
818 | |
---|
819 | /// \brief Copies the undirected edge references into the given map. |
---|
820 | /// |
---|
821 | /// Copies the undirected edge references into the given map. |
---|
822 | template <typename EdgeRef> |
---|
823 | const UGraphCopy& uEdgeRef(EdgeRef& map) const { |
---|
824 | for (UEdgeIt it(source); it != INVALID; ++it) { |
---|
825 | map.set(it, uEdgeRefMap[it]); |
---|
826 | } |
---|
827 | return *this; |
---|
828 | } |
---|
829 | |
---|
830 | /// \brief Reverse and copies the undirected edge references into the |
---|
831 | /// given map. |
---|
832 | /// |
---|
833 | /// Reverse and copies the undirected edge references into the given map. |
---|
834 | template <typename EdgeRef> |
---|
835 | const UGraphCopy& uEdgeCrossRef(EdgeRef& map) const { |
---|
836 | for (UEdgeIt it(source); it != INVALID; ++it) { |
---|
837 | map.set(uEdgeRefMap[it], it); |
---|
838 | } |
---|
839 | return *this; |
---|
840 | } |
---|
841 | |
---|
842 | /// \brief Make copy of the given map. |
---|
843 | /// |
---|
844 | /// Makes copy of the given map for the newly created graph. |
---|
845 | /// The new map's key type is the target graph's node type, |
---|
846 | /// and the copied map's key type is the source graph's node |
---|
847 | /// type. |
---|
848 | template <typename TargetMap, typename SourceMap> |
---|
849 | const UGraphCopy& nodeMap(TargetMap& tMap, |
---|
850 | const SourceMap& sMap) const { |
---|
851 | copyMap(tMap, sMap, NodeIt(source), nodeRefMap); |
---|
852 | return *this; |
---|
853 | } |
---|
854 | |
---|
855 | /// \brief Make copy of the given map. |
---|
856 | /// |
---|
857 | /// Makes copy of the given map for the newly created graph. |
---|
858 | /// The new map's key type is the target graph's edge type, |
---|
859 | /// and the copied map's key type is the source graph's edge |
---|
860 | /// type. |
---|
861 | template <typename TargetMap, typename SourceMap> |
---|
862 | const UGraphCopy& edgeMap(TargetMap& tMap, |
---|
863 | const SourceMap& sMap) const { |
---|
864 | copyMap(tMap, sMap, EdgeIt(source), edgeRefMap); |
---|
865 | return *this; |
---|
866 | } |
---|
867 | |
---|
868 | /// \brief Make copy of the given map. |
---|
869 | /// |
---|
870 | /// Makes copy of the given map for the newly created graph. |
---|
871 | /// The new map's key type is the target graph's edge type, |
---|
872 | /// and the copied map's key type is the source graph's edge |
---|
873 | /// type. |
---|
874 | template <typename TargetMap, typename SourceMap> |
---|
875 | const UGraphCopy& uEdgeMap(TargetMap& tMap, |
---|
876 | const SourceMap& sMap) const { |
---|
877 | copyMap(tMap, sMap, UEdgeIt(source), uEdgeRefMap); |
---|
878 | return *this; |
---|
879 | } |
---|
880 | |
---|
881 | /// \brief Gives back the stored node references. |
---|
882 | /// |
---|
883 | /// Gives back the stored node references. |
---|
884 | const NodeRefMap& nodeRef() const { |
---|
885 | return nodeRefMap; |
---|
886 | } |
---|
887 | |
---|
888 | /// \brief Gives back the stored edge references. |
---|
889 | /// |
---|
890 | /// Gives back the stored edge references. |
---|
891 | const EdgeRefMap& edgeRef() const { |
---|
892 | return edgeRefMap; |
---|
893 | } |
---|
894 | |
---|
895 | /// \brief Gives back the stored uedge references. |
---|
896 | /// |
---|
897 | /// Gives back the stored uedge references. |
---|
898 | const UEdgeRefMap& uEdgeRef() const { |
---|
899 | return uEdgeRefMap; |
---|
900 | } |
---|
901 | |
---|
902 | void run() const {} |
---|
903 | |
---|
904 | private: |
---|
905 | |
---|
906 | const Source& source; |
---|
907 | Target& target; |
---|
908 | |
---|
909 | NodeRefMap nodeRefMap; |
---|
910 | EdgeRefMap edgeRefMap; |
---|
911 | UEdgeRefMap uEdgeRefMap; |
---|
912 | }; |
---|
913 | |
---|
914 | /// \brief Copy a graph to another graph. |
---|
915 | /// |
---|
916 | /// Copy a graph to another graph. |
---|
917 | /// The usage of the function: |
---|
918 | /// |
---|
919 | ///\code |
---|
920 | /// copyUGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr); |
---|
921 | ///\endcode |
---|
922 | /// |
---|
923 | /// After the copy the \c nr map will contain the mapping from the |
---|
924 | /// source graph's nodes to the target graph's nodes and the \c ecr will |
---|
925 | /// contain the mapping from the target graph's edges to the source's |
---|
926 | /// edges. |
---|
927 | template <typename Target, typename Source> |
---|
928 | UGraphCopy<Target, Source> |
---|
929 | copyUGraph(Target& target, const Source& source) { |
---|
930 | return UGraphCopy<Target, Source>(target, source); |
---|
931 | } |
---|
932 | |
---|
933 | |
---|
934 | /// @} |
---|
935 | |
---|
936 | /// \addtogroup graph_maps |
---|
937 | /// @{ |
---|
938 | |
---|
939 | /// Provides an immutable and unique id for each item in the graph. |
---|
940 | |
---|
941 | /// The IdMap class provides a unique and immutable id for each item of the |
---|
942 | /// same type (e.g. node) in the graph. This id is <ul><li>\b unique: |
---|
943 | /// different items (nodes) get different ids <li>\b immutable: the id of an |
---|
944 | /// item (node) does not change (even if you delete other nodes). </ul> |
---|
945 | /// Through this map you get access (i.e. can read) the inner id values of |
---|
946 | /// the items stored in the graph. This map can be inverted with its member |
---|
947 | /// class \c InverseMap. |
---|
948 | /// |
---|
949 | template <typename _Graph, typename _Item> |
---|
950 | class IdMap { |
---|
951 | public: |
---|
952 | typedef _Graph Graph; |
---|
953 | typedef int Value; |
---|
954 | typedef _Item Item; |
---|
955 | typedef _Item Key; |
---|
956 | |
---|
957 | /// \brief Constructor. |
---|
958 | /// |
---|
959 | /// Constructor for creating id map. |
---|
960 | IdMap(const Graph& _graph) : graph(&_graph) {} |
---|
961 | |
---|
962 | /// \brief Gives back the \e id of the item. |
---|
963 | /// |
---|
964 | /// Gives back the immutable and unique \e id of the map. |
---|
965 | int operator[](const Item& item) const { return graph->id(item);} |
---|
966 | |
---|
967 | |
---|
968 | private: |
---|
969 | const Graph* graph; |
---|
970 | |
---|
971 | public: |
---|
972 | |
---|
973 | /// \brief The class represents the inverse of its owner (IdMap). |
---|
974 | /// |
---|
975 | /// The class represents the inverse of its owner (IdMap). |
---|
976 | /// \see inverse() |
---|
977 | class InverseMap { |
---|
978 | public: |
---|
979 | |
---|
980 | /// \brief Constructor. |
---|
981 | /// |
---|
982 | /// Constructor for creating an id-to-item map. |
---|
983 | InverseMap(const Graph& _graph) : graph(&_graph) {} |
---|
984 | |
---|
985 | /// \brief Constructor. |
---|
986 | /// |
---|
987 | /// Constructor for creating an id-to-item map. |
---|
988 | InverseMap(const IdMap& idMap) : graph(idMap.graph) {} |
---|
989 | |
---|
990 | /// \brief Gives back the given item from its id. |
---|
991 | /// |
---|
992 | /// Gives back the given item from its id. |
---|
993 | /// |
---|
994 | Item operator[](int id) const { return graph->fromId(id, Item());} |
---|
995 | private: |
---|
996 | const Graph* graph; |
---|
997 | }; |
---|
998 | |
---|
999 | /// \brief Gives back the inverse of the map. |
---|
1000 | /// |
---|
1001 | /// Gives back the inverse of the IdMap. |
---|
1002 | InverseMap inverse() const { return InverseMap(*graph);} |
---|
1003 | |
---|
1004 | }; |
---|
1005 | |
---|
1006 | |
---|
1007 | /// \brief General invertable graph-map type. |
---|
1008 | |
---|
1009 | /// This type provides simple invertable graph-maps. |
---|
1010 | /// The InvertableMap wraps an arbitrary ReadWriteMap |
---|
1011 | /// and if a key is set to a new value then store it |
---|
1012 | /// in the inverse map. |
---|
1013 | /// |
---|
1014 | /// The values of the map can be accessed |
---|
1015 | /// with stl compatible forward iterator. |
---|
1016 | /// |
---|
1017 | /// \param _Graph The graph type. |
---|
1018 | /// \param _Item The item type of the graph. |
---|
1019 | /// \param _Value The value type of the map. |
---|
1020 | /// |
---|
1021 | /// \see IterableValueMap |
---|
1022 | #ifndef DOXYGEN |
---|
1023 | /// \param _Map A ReadWriteMap mapping from the item type to integer. |
---|
1024 | template < |
---|
1025 | typename _Graph, typename _Item, typename _Value, |
---|
1026 | typename _Map = DefaultMap<_Graph, _Item, _Value> |
---|
1027 | > |
---|
1028 | #else |
---|
1029 | template <typename _Graph, typename _Item, typename _Value> |
---|
1030 | #endif |
---|
1031 | class InvertableMap : protected _Map { |
---|
1032 | public: |
---|
1033 | |
---|
1034 | /// The key type of InvertableMap (Node, Edge, UEdge). |
---|
1035 | typedef typename _Map::Key Key; |
---|
1036 | /// The value type of the InvertableMap. |
---|
1037 | typedef typename _Map::Value Value; |
---|
1038 | |
---|
1039 | private: |
---|
1040 | |
---|
1041 | typedef _Map Map; |
---|
1042 | typedef _Graph Graph; |
---|
1043 | |
---|
1044 | typedef std::map<Value, Key> Container; |
---|
1045 | Container invMap; |
---|
1046 | |
---|
1047 | public: |
---|
1048 | |
---|
1049 | |
---|
1050 | |
---|
1051 | /// \brief Constructor. |
---|
1052 | /// |
---|
1053 | /// Construct a new InvertableMap for the graph. |
---|
1054 | /// |
---|
1055 | InvertableMap(const Graph& graph) : Map(graph) {} |
---|
1056 | |
---|
1057 | /// \brief Forward iterator for values. |
---|
1058 | /// |
---|
1059 | /// This iterator is an stl compatible forward |
---|
1060 | /// iterator on the values of the map. The values can |
---|
1061 | /// be accessed in the [beginValue, endValue) range. |
---|
1062 | /// |
---|
1063 | class ValueIterator |
---|
1064 | : public std::iterator<std::forward_iterator_tag, Value> { |
---|
1065 | friend class InvertableMap; |
---|
1066 | private: |
---|
1067 | ValueIterator(typename Container::const_iterator _it) |
---|
1068 | : it(_it) {} |
---|
1069 | public: |
---|
1070 | |
---|
1071 | ValueIterator() {} |
---|
1072 | |
---|
1073 | ValueIterator& operator++() { ++it; return *this; } |
---|
1074 | ValueIterator operator++(int) { |
---|
1075 | ValueIterator tmp(*this); |
---|
1076 | operator++(); |
---|
1077 | return tmp; |
---|
1078 | } |
---|
1079 | |
---|
1080 | const Value& operator*() const { return it->first; } |
---|
1081 | const Value* operator->() const { return &(it->first); } |
---|
1082 | |
---|
1083 | bool operator==(ValueIterator jt) const { return it == jt.it; } |
---|
1084 | bool operator!=(ValueIterator jt) const { return it != jt.it; } |
---|
1085 | |
---|
1086 | private: |
---|
1087 | typename Container::const_iterator it; |
---|
1088 | }; |
---|
1089 | |
---|
1090 | /// \brief Returns an iterator to the first value. |
---|
1091 | /// |
---|
1092 | /// Returns an stl compatible iterator to the |
---|
1093 | /// first value of the map. The values of the |
---|
1094 | /// map can be accessed in the [beginValue, endValue) |
---|
1095 | /// range. |
---|
1096 | ValueIterator beginValue() const { |
---|
1097 | return ValueIterator(invMap.begin()); |
---|
1098 | } |
---|
1099 | |
---|
1100 | /// \brief Returns an iterator after the last value. |
---|
1101 | /// |
---|
1102 | /// Returns an stl compatible iterator after the |
---|
1103 | /// last value of the map. The values of the |
---|
1104 | /// map can be accessed in the [beginValue, endValue) |
---|
1105 | /// range. |
---|
1106 | ValueIterator endValue() const { |
---|
1107 | return ValueIterator(invMap.end()); |
---|
1108 | } |
---|
1109 | |
---|
1110 | /// \brief The setter function of the map. |
---|
1111 | /// |
---|
1112 | /// Sets the mapped value. |
---|
1113 | void set(const Key& key, const Value& val) { |
---|
1114 | Value oldval = Map::operator[](key); |
---|
1115 | typename Container::iterator it = invMap.find(oldval); |
---|
1116 | if (it != invMap.end() && it->second == key) { |
---|
1117 | invMap.erase(it); |
---|
1118 | } |
---|
1119 | invMap.insert(make_pair(val, key)); |
---|
1120 | Map::set(key, val); |
---|
1121 | } |
---|
1122 | |
---|
1123 | /// \brief The getter function of the map. |
---|
1124 | /// |
---|
1125 | /// It gives back the value associated with the key. |
---|
1126 | typename MapTraits<Map>::ConstReturnValue |
---|
1127 | operator[](const Key& key) const { |
---|
1128 | return Map::operator[](key); |
---|
1129 | } |
---|
1130 | |
---|
1131 | protected: |
---|
1132 | |
---|
1133 | /// \brief Erase the key from the map. |
---|
1134 | /// |
---|
1135 | /// Erase the key to the map. It is called by the |
---|
1136 | /// \c AlterationNotifier. |
---|
1137 | virtual void erase(const Key& key) { |
---|
1138 | Value val = Map::operator[](key); |
---|
1139 | typename Container::iterator it = invMap.find(val); |
---|
1140 | if (it != invMap.end() && it->second == key) { |
---|
1141 | invMap.erase(it); |
---|
1142 | } |
---|
1143 | Map::erase(key); |
---|
1144 | } |
---|
1145 | |
---|
1146 | /// \brief Erase more keys from the map. |
---|
1147 | /// |
---|
1148 | /// Erase more keys from the map. It is called by the |
---|
1149 | /// \c AlterationNotifier. |
---|
1150 | virtual void erase(const std::vector<Key>& keys) { |
---|
1151 | for (int i = 0; i < (int)keys.size(); ++i) { |
---|
1152 | Value val = Map::operator[](keys[i]); |
---|
1153 | typename Container::iterator it = invMap.find(val); |
---|
1154 | if (it != invMap.end() && it->second == keys[i]) { |
---|
1155 | invMap.erase(it); |
---|
1156 | } |
---|
1157 | } |
---|
1158 | Map::erase(keys); |
---|
1159 | } |
---|
1160 | |
---|
1161 | /// \brief Clear the keys from the map and inverse map. |
---|
1162 | /// |
---|
1163 | /// Clear the keys from the map and inverse map. It is called by the |
---|
1164 | /// \c AlterationNotifier. |
---|
1165 | virtual void clear() { |
---|
1166 | invMap.clear(); |
---|
1167 | Map::clear(); |
---|
1168 | } |
---|
1169 | |
---|
1170 | public: |
---|
1171 | |
---|
1172 | /// \brief The inverse map type. |
---|
1173 | /// |
---|
1174 | /// The inverse of this map. The subscript operator of the map |
---|
1175 | /// gives back always the item what was last assigned to the value. |
---|
1176 | class InverseMap { |
---|
1177 | public: |
---|
1178 | /// \brief Constructor of the InverseMap. |
---|
1179 | /// |
---|
1180 | /// Constructor of the InverseMap. |
---|
1181 | InverseMap(const InvertableMap& _inverted) : inverted(_inverted) {} |
---|
1182 | |
---|
1183 | /// The value type of the InverseMap. |
---|
1184 | typedef typename InvertableMap::Key Value; |
---|
1185 | /// The key type of the InverseMap. |
---|
1186 | typedef typename InvertableMap::Value Key; |
---|
1187 | |
---|
1188 | /// \brief Subscript operator. |
---|
1189 | /// |
---|
1190 | /// Subscript operator. It gives back always the item |
---|
1191 | /// what was last assigned to the value. |
---|
1192 | Value operator[](const Key& key) const { |
---|
1193 | typename Container::const_iterator it = inverted.invMap.find(key); |
---|
1194 | return it->second; |
---|
1195 | } |
---|
1196 | |
---|
1197 | private: |
---|
1198 | const InvertableMap& inverted; |
---|
1199 | }; |
---|
1200 | |
---|
1201 | /// \brief It gives back the just readeable inverse map. |
---|
1202 | /// |
---|
1203 | /// It gives back the just readeable inverse map. |
---|
1204 | InverseMap inverse() const { |
---|
1205 | return InverseMap(*this); |
---|
1206 | } |
---|
1207 | |
---|
1208 | |
---|
1209 | |
---|
1210 | }; |
---|
1211 | |
---|
1212 | /// \brief Provides a mutable, continuous and unique descriptor for each |
---|
1213 | /// item in the graph. |
---|
1214 | /// |
---|
1215 | /// The DescriptorMap class provides a unique and continuous (but mutable) |
---|
1216 | /// descriptor (id) for each item of the same type (e.g. node) in the |
---|
1217 | /// graph. This id is <ul><li>\b unique: different items (nodes) get |
---|
1218 | /// different ids <li>\b continuous: the range of the ids is the set of |
---|
1219 | /// integers between 0 and \c n-1, where \c n is the number of the items of |
---|
1220 | /// this type (e.g. nodes) (so the id of a node can change if you delete an |
---|
1221 | /// other node, i.e. this id is mutable). </ul> This map can be inverted |
---|
1222 | /// with its member class \c InverseMap. |
---|
1223 | /// |
---|
1224 | /// \param _Graph The graph class the \c DescriptorMap belongs to. |
---|
1225 | /// \param _Item The Item is the Key of the Map. It may be Node, Edge or |
---|
1226 | /// UEdge. |
---|
1227 | #ifndef DOXYGEN |
---|
1228 | /// \param _Map A ReadWriteMap mapping from the item type to integer. |
---|
1229 | template < |
---|
1230 | typename _Graph, typename _Item, |
---|
1231 | typename _Map = DefaultMap<_Graph, _Item, int> |
---|
1232 | > |
---|
1233 | #else |
---|
1234 | template <typename _Graph, typename _Item> |
---|
1235 | #endif |
---|
1236 | class DescriptorMap : protected _Map { |
---|
1237 | |
---|
1238 | typedef _Item Item; |
---|
1239 | typedef _Map Map; |
---|
1240 | |
---|
1241 | public: |
---|
1242 | /// The graph class of DescriptorMap. |
---|
1243 | typedef _Graph Graph; |
---|
1244 | |
---|
1245 | /// The key type of DescriptorMap (Node, Edge, UEdge). |
---|
1246 | typedef typename _Map::Key Key; |
---|
1247 | /// The value type of DescriptorMap. |
---|
1248 | typedef typename _Map::Value Value; |
---|
1249 | |
---|
1250 | /// \brief Constructor. |
---|
1251 | /// |
---|
1252 | /// Constructor for descriptor map. |
---|
1253 | DescriptorMap(const Graph& _graph) : Map(_graph) { |
---|
1254 | build(); |
---|
1255 | } |
---|
1256 | |
---|
1257 | protected: |
---|
1258 | |
---|
1259 | /// \brief Add a new key to the map. |
---|
1260 | /// |
---|
1261 | /// Add a new key to the map. It is called by the |
---|
1262 | /// \c AlterationNotifier. |
---|
1263 | virtual void add(const Item& item) { |
---|
1264 | Map::add(item); |
---|
1265 | Map::set(item, invMap.size()); |
---|
1266 | invMap.push_back(item); |
---|
1267 | } |
---|
1268 | |
---|
1269 | /// \brief Add more new keys to the map. |
---|
1270 | /// |
---|
1271 | /// Add more new keys to the map. It is called by the |
---|
1272 | /// \c AlterationNotifier. |
---|
1273 | virtual void add(const std::vector<Item>& items) { |
---|
1274 | Map::add(items); |
---|
1275 | for (int i = 0; i < (int)items.size(); ++i) { |
---|
1276 | Map::set(items[i], invMap.size()); |
---|
1277 | invMap.push_back(items[i]); |
---|
1278 | } |
---|
1279 | } |
---|
1280 | |
---|
1281 | /// \brief Erase the key from the map. |
---|
1282 | /// |
---|
1283 | /// Erase the key from the map. It is called by the |
---|
1284 | /// \c AlterationNotifier. |
---|
1285 | virtual void erase(const Item& item) { |
---|
1286 | Map::set(invMap.back(), Map::operator[](item)); |
---|
1287 | invMap[Map::operator[](item)] = invMap.back(); |
---|
1288 | invMap.pop_back(); |
---|
1289 | Map::erase(item); |
---|
1290 | } |
---|
1291 | |
---|
1292 | /// \brief Erase more keys from the map. |
---|
1293 | /// |
---|
1294 | /// Erase more keys from the map. It is called by the |
---|
1295 | /// \c AlterationNotifier. |
---|
1296 | virtual void erase(const std::vector<Item>& items) { |
---|
1297 | for (int i = 0; i < (int)items.size(); ++i) { |
---|
1298 | Map::set(invMap.back(), Map::operator[](items[i])); |
---|
1299 | invMap[Map::operator[](items[i])] = invMap.back(); |
---|
1300 | invMap.pop_back(); |
---|
1301 | } |
---|
1302 | Map::erase(items); |
---|
1303 | } |
---|
1304 | |
---|
1305 | /// \brief Build the unique map. |
---|
1306 | /// |
---|
1307 | /// Build the unique map. It is called by the |
---|
1308 | /// \c AlterationNotifier. |
---|
1309 | virtual void build() { |
---|
1310 | Map::build(); |
---|
1311 | Item it; |
---|
1312 | const typename Map::Notifier* notifier = Map::getNotifier(); |
---|
1313 | for (notifier->first(it); it != INVALID; notifier->next(it)) { |
---|
1314 | Map::set(it, invMap.size()); |
---|
1315 | invMap.push_back(it); |
---|
1316 | } |
---|
1317 | } |
---|
1318 | |
---|
1319 | /// \brief Clear the keys from the map. |
---|
1320 | /// |
---|
1321 | /// Clear the keys from the map. It is called by the |
---|
1322 | /// \c AlterationNotifier. |
---|
1323 | virtual void clear() { |
---|
1324 | invMap.clear(); |
---|
1325 | Map::clear(); |
---|
1326 | } |
---|
1327 | |
---|
1328 | public: |
---|
1329 | |
---|
1330 | /// \brief Returns the maximal value plus one. |
---|
1331 | /// |
---|
1332 | /// Returns the maximal value plus one in the map. |
---|
1333 | unsigned int size() const { |
---|
1334 | return invMap.size(); |
---|
1335 | } |
---|
1336 | |
---|
1337 | /// \brief Swaps the position of the two items in the map. |
---|
1338 | /// |
---|
1339 | /// Swaps the position of the two items in the map. |
---|
1340 | void swap(const Item& p, const Item& q) { |
---|
1341 | int pi = Map::operator[](p); |
---|
1342 | int qi = Map::operator[](q); |
---|
1343 | Map::set(p, qi); |
---|
1344 | invMap[qi] = p; |
---|
1345 | Map::set(q, pi); |
---|
1346 | invMap[pi] = q; |
---|
1347 | } |
---|
1348 | |
---|
1349 | /// \brief Gives back the \e descriptor of the item. |
---|
1350 | /// |
---|
1351 | /// Gives back the mutable and unique \e descriptor of the map. |
---|
1352 | int operator[](const Item& item) const { |
---|
1353 | return Map::operator[](item); |
---|
1354 | } |
---|
1355 | |
---|
1356 | private: |
---|
1357 | |
---|
1358 | typedef std::vector<Item> Container; |
---|
1359 | Container invMap; |
---|
1360 | |
---|
1361 | public: |
---|
1362 | /// \brief The inverse map type of DescriptorMap. |
---|
1363 | /// |
---|
1364 | /// The inverse map type of DescriptorMap. |
---|
1365 | class InverseMap { |
---|
1366 | public: |
---|
1367 | /// \brief Constructor of the InverseMap. |
---|
1368 | /// |
---|
1369 | /// Constructor of the InverseMap. |
---|
1370 | InverseMap(const DescriptorMap& _inverted) |
---|
1371 | : inverted(_inverted) {} |
---|
1372 | |
---|
1373 | |
---|
1374 | /// The value type of the InverseMap. |
---|
1375 | typedef typename DescriptorMap::Key Value; |
---|
1376 | /// The key type of the InverseMap. |
---|
1377 | typedef typename DescriptorMap::Value Key; |
---|
1378 | |
---|
1379 | /// \brief Subscript operator. |
---|
1380 | /// |
---|
1381 | /// Subscript operator. It gives back the item |
---|
1382 | /// that the descriptor belongs to currently. |
---|
1383 | Value operator[](const Key& key) const { |
---|
1384 | return inverted.invMap[key]; |
---|
1385 | } |
---|
1386 | |
---|
1387 | /// \brief Size of the map. |
---|
1388 | /// |
---|
1389 | /// Returns the size of the map. |
---|
1390 | unsigned int size() const { |
---|
1391 | return inverted.invMap.size(); |
---|
1392 | } |
---|
1393 | |
---|
1394 | private: |
---|
1395 | const DescriptorMap& inverted; |
---|
1396 | }; |
---|
1397 | |
---|
1398 | /// \brief Gives back the inverse of the map. |
---|
1399 | /// |
---|
1400 | /// Gives back the inverse of the map. |
---|
1401 | const InverseMap inverse() const { |
---|
1402 | return InverseMap(*this); |
---|
1403 | } |
---|
1404 | }; |
---|
1405 | |
---|
1406 | /// \brief Returns the source of the given edge. |
---|
1407 | /// |
---|
1408 | /// The SourceMap gives back the source Node of the given edge. |
---|
1409 | /// \author Balazs Dezso |
---|
1410 | template <typename Graph> |
---|
1411 | class SourceMap { |
---|
1412 | public: |
---|
1413 | |
---|
1414 | typedef typename Graph::Node Value; |
---|
1415 | typedef typename Graph::Edge Key; |
---|
1416 | |
---|
1417 | /// \brief Constructor |
---|
1418 | /// |
---|
1419 | /// Constructor |
---|
1420 | /// \param _graph The graph that the map belongs to. |
---|
1421 | SourceMap(const Graph& _graph) : graph(_graph) {} |
---|
1422 | |
---|
1423 | /// \brief The subscript operator. |
---|
1424 | /// |
---|
1425 | /// The subscript operator. |
---|
1426 | /// \param edge The edge |
---|
1427 | /// \return The source of the edge |
---|
1428 | Value operator[](const Key& edge) const { |
---|
1429 | return graph.source(edge); |
---|
1430 | } |
---|
1431 | |
---|
1432 | private: |
---|
1433 | const Graph& graph; |
---|
1434 | }; |
---|
1435 | |
---|
1436 | /// \brief Returns a \ref SourceMap class |
---|
1437 | /// |
---|
1438 | /// This function just returns an \ref SourceMap class. |
---|
1439 | /// \relates SourceMap |
---|
1440 | template <typename Graph> |
---|
1441 | inline SourceMap<Graph> sourceMap(const Graph& graph) { |
---|
1442 | return SourceMap<Graph>(graph); |
---|
1443 | } |
---|
1444 | |
---|
1445 | /// \brief Returns the target of the given edge. |
---|
1446 | /// |
---|
1447 | /// The TargetMap gives back the target Node of the given edge. |
---|
1448 | /// \author Balazs Dezso |
---|
1449 | template <typename Graph> |
---|
1450 | class TargetMap { |
---|
1451 | public: |
---|
1452 | |
---|
1453 | typedef typename Graph::Node Value; |
---|
1454 | typedef typename Graph::Edge Key; |
---|
1455 | |
---|
1456 | /// \brief Constructor |
---|
1457 | /// |
---|
1458 | /// Constructor |
---|
1459 | /// \param _graph The graph that the map belongs to. |
---|
1460 | TargetMap(const Graph& _graph) : graph(_graph) {} |
---|
1461 | |
---|
1462 | /// \brief The subscript operator. |
---|
1463 | /// |
---|
1464 | /// The subscript operator. |
---|
1465 | /// \param e The edge |
---|
1466 | /// \return The target of the edge |
---|
1467 | Value operator[](const Key& e) const { |
---|
1468 | return graph.target(e); |
---|
1469 | } |
---|
1470 | |
---|
1471 | private: |
---|
1472 | const Graph& graph; |
---|
1473 | }; |
---|
1474 | |
---|
1475 | /// \brief Returns a \ref TargetMap class |
---|
1476 | /// |
---|
1477 | /// This function just returns a \ref TargetMap class. |
---|
1478 | /// \relates TargetMap |
---|
1479 | template <typename Graph> |
---|
1480 | inline TargetMap<Graph> targetMap(const Graph& graph) { |
---|
1481 | return TargetMap<Graph>(graph); |
---|
1482 | } |
---|
1483 | |
---|
1484 | /// \brief Returns the "forward" directed edge view of an undirected edge. |
---|
1485 | /// |
---|
1486 | /// Returns the "forward" directed edge view of an undirected edge. |
---|
1487 | /// \author Balazs Dezso |
---|
1488 | template <typename Graph> |
---|
1489 | class ForwardMap { |
---|
1490 | public: |
---|
1491 | |
---|
1492 | typedef typename Graph::Edge Value; |
---|
1493 | typedef typename Graph::UEdge Key; |
---|
1494 | |
---|
1495 | /// \brief Constructor |
---|
1496 | /// |
---|
1497 | /// Constructor |
---|
1498 | /// \param _graph The graph that the map belongs to. |
---|
1499 | ForwardMap(const Graph& _graph) : graph(_graph) {} |
---|
1500 | |
---|
1501 | /// \brief The subscript operator. |
---|
1502 | /// |
---|
1503 | /// The subscript operator. |
---|
1504 | /// \param key An undirected edge |
---|
1505 | /// \return The "forward" directed edge view of undirected edge |
---|
1506 | Value operator[](const Key& key) const { |
---|
1507 | return graph.direct(key, true); |
---|
1508 | } |
---|
1509 | |
---|
1510 | private: |
---|
1511 | const Graph& graph; |
---|
1512 | }; |
---|
1513 | |
---|
1514 | /// \brief Returns a \ref ForwardMap class |
---|
1515 | /// |
---|
1516 | /// This function just returns an \ref ForwardMap class. |
---|
1517 | /// \relates ForwardMap |
---|
1518 | template <typename Graph> |
---|
1519 | inline ForwardMap<Graph> forwardMap(const Graph& graph) { |
---|
1520 | return ForwardMap<Graph>(graph); |
---|
1521 | } |
---|
1522 | |
---|
1523 | /// \brief Returns the "backward" directed edge view of an undirected edge. |
---|
1524 | /// |
---|
1525 | /// Returns the "backward" directed edge view of an undirected edge. |
---|
1526 | /// \author Balazs Dezso |
---|
1527 | template <typename Graph> |
---|
1528 | class BackwardMap { |
---|
1529 | public: |
---|
1530 | |
---|
1531 | typedef typename Graph::Edge Value; |
---|
1532 | typedef typename Graph::UEdge Key; |
---|
1533 | |
---|
1534 | /// \brief Constructor |
---|
1535 | /// |
---|
1536 | /// Constructor |
---|
1537 | /// \param _graph The graph that the map belongs to. |
---|
1538 | BackwardMap(const Graph& _graph) : graph(_graph) {} |
---|
1539 | |
---|
1540 | /// \brief The subscript operator. |
---|
1541 | /// |
---|
1542 | /// The subscript operator. |
---|
1543 | /// \param key An undirected edge |
---|
1544 | /// \return The "backward" directed edge view of undirected edge |
---|
1545 | Value operator[](const Key& key) const { |
---|
1546 | return graph.direct(key, false); |
---|
1547 | } |
---|
1548 | |
---|
1549 | private: |
---|
1550 | const Graph& graph; |
---|
1551 | }; |
---|
1552 | |
---|
1553 | /// \brief Returns a \ref BackwardMap class |
---|
1554 | |
---|
1555 | /// This function just returns a \ref BackwardMap class. |
---|
1556 | /// \relates BackwardMap |
---|
1557 | template <typename Graph> |
---|
1558 | inline BackwardMap<Graph> backwardMap(const Graph& graph) { |
---|
1559 | return BackwardMap<Graph>(graph); |
---|
1560 | } |
---|
1561 | |
---|
1562 | /// \brief Potential difference map |
---|
1563 | /// |
---|
1564 | /// If there is an potential map on the nodes then we |
---|
1565 | /// can get an edge map as we get the substraction of the |
---|
1566 | /// values of the target and source. |
---|
1567 | template <typename Graph, typename NodeMap> |
---|
1568 | class PotentialDifferenceMap { |
---|
1569 | public: |
---|
1570 | typedef typename Graph::Edge Key; |
---|
1571 | typedef typename NodeMap::Value Value; |
---|
1572 | |
---|
1573 | /// \brief Constructor |
---|
1574 | /// |
---|
1575 | /// Contructor of the map |
---|
1576 | PotentialDifferenceMap(const Graph& _graph, const NodeMap& _potential) |
---|
1577 | : graph(_graph), potential(_potential) {} |
---|
1578 | |
---|
1579 | /// \brief Const subscription operator |
---|
1580 | /// |
---|
1581 | /// Const subscription operator |
---|
1582 | Value operator[](const Key& edge) const { |
---|
1583 | return potential[graph.target(edge)] - potential[graph.source(edge)]; |
---|
1584 | } |
---|
1585 | |
---|
1586 | private: |
---|
1587 | const Graph& graph; |
---|
1588 | const NodeMap& potential; |
---|
1589 | }; |
---|
1590 | |
---|
1591 | /// \brief Just returns a PotentialDifferenceMap |
---|
1592 | /// |
---|
1593 | /// Just returns a PotentialDifferenceMap |
---|
1594 | /// \relates PotentialDifferenceMap |
---|
1595 | template <typename Graph, typename NodeMap> |
---|
1596 | PotentialDifferenceMap<Graph, NodeMap> |
---|
1597 | potentialDifferenceMap(const Graph& graph, const NodeMap& potential) { |
---|
1598 | return PotentialDifferenceMap<Graph, NodeMap>(graph, potential); |
---|
1599 | } |
---|
1600 | |
---|
1601 | /// \brief Map of the node in-degrees. |
---|
1602 | /// |
---|
1603 | /// This map returns the in-degree of a node. Once it is constructed, |
---|
1604 | /// the degrees are stored in a standard NodeMap, so each query is done |
---|
1605 | /// in constant time. On the other hand, the values are updated automatically |
---|
1606 | /// whenever the graph changes. |
---|
1607 | /// |
---|
1608 | /// \warning Besides addNode() and addEdge(), a graph structure may provide |
---|
1609 | /// alternative ways to modify the graph. The correct behavior of InDegMap |
---|
1610 | /// is not guarantied if these additional features are used. For example |
---|
1611 | /// the functions \ref ListGraph::changeSource() "changeSource()", |
---|
1612 | /// \ref ListGraph::changeTarget() "changeTarget()" and |
---|
1613 | /// \ref ListGraph::reverseEdge() "reverseEdge()" |
---|
1614 | /// of \ref ListGraph will \e not update the degree values correctly. |
---|
1615 | /// |
---|
1616 | /// \sa OutDegMap |
---|
1617 | |
---|
1618 | template <typename _Graph> |
---|
1619 | class InDegMap |
---|
1620 | : protected ItemSetTraits<_Graph, typename _Graph::Edge> |
---|
1621 | ::ItemNotifier::ObserverBase { |
---|
1622 | |
---|
1623 | public: |
---|
1624 | |
---|
1625 | typedef _Graph Graph; |
---|
1626 | typedef int Value; |
---|
1627 | typedef typename Graph::Node Key; |
---|
1628 | |
---|
1629 | typedef typename ItemSetTraits<_Graph, typename _Graph::Edge> |
---|
1630 | ::ItemNotifier::ObserverBase Parent; |
---|
1631 | |
---|
1632 | private: |
---|
1633 | |
---|
1634 | class AutoNodeMap : public DefaultMap<_Graph, Key, int> { |
---|
1635 | public: |
---|
1636 | |
---|
1637 | typedef DefaultMap<_Graph, Key, int> Parent; |
---|
1638 | typedef typename Parent::Graph Graph; |
---|
1639 | |
---|
1640 | AutoNodeMap(const Graph& graph) : Parent(graph, 0) {} |
---|
1641 | |
---|
1642 | virtual void add(const Key& key) { |
---|
1643 | Parent::add(key); |
---|
1644 | Parent::set(key, 0); |
---|
1645 | } |
---|
1646 | |
---|
1647 | virtual void add(const std::vector<Key>& keys) { |
---|
1648 | Parent::add(keys); |
---|
1649 | for (int i = 0; i < (int)keys.size(); ++i) { |
---|
1650 | Parent::set(keys[i], 0); |
---|
1651 | } |
---|
1652 | } |
---|
1653 | }; |
---|
1654 | |
---|
1655 | public: |
---|
1656 | |
---|
1657 | /// \brief Constructor. |
---|
1658 | /// |
---|
1659 | /// Constructor for creating in-degree map. |
---|
1660 | InDegMap(const Graph& _graph) : graph(_graph), deg(_graph) { |
---|
1661 | Parent::attach(graph.getNotifier(typename _Graph::Edge())); |
---|
1662 | |
---|
1663 | for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) { |
---|
1664 | deg[it] = countInEdges(graph, it); |
---|
1665 | } |
---|
1666 | } |
---|
1667 | |
---|
1668 | /// Gives back the in-degree of a Node. |
---|
1669 | int operator[](const Key& key) const { |
---|
1670 | return deg[key]; |
---|
1671 | } |
---|
1672 | |
---|
1673 | protected: |
---|
1674 | |
---|
1675 | typedef typename Graph::Edge Edge; |
---|
1676 | |
---|
1677 | virtual void add(const Edge& edge) { |
---|
1678 | ++deg[graph.target(edge)]; |
---|
1679 | } |
---|
1680 | |
---|
1681 | virtual void add(const std::vector<Edge>& edges) { |
---|
1682 | for (int i = 0; i < (int)edges.size(); ++i) { |
---|
1683 | ++deg[graph.target(edges[i])]; |
---|
1684 | } |
---|
1685 | } |
---|
1686 | |
---|
1687 | virtual void erase(const Edge& edge) { |
---|
1688 | --deg[graph.target(edge)]; |
---|
1689 | } |
---|
1690 | |
---|
1691 | virtual void erase(const std::vector<Edge>& edges) { |
---|
1692 | for (int i = 0; i < (int)edges.size(); ++i) { |
---|
1693 | --deg[graph.target(edges[i])]; |
---|
1694 | } |
---|
1695 | } |
---|
1696 | |
---|
1697 | virtual void build() { |
---|
1698 | for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) { |
---|
1699 | deg[it] = countInEdges(graph, it); |
---|
1700 | } |
---|
1701 | } |
---|
1702 | |
---|
1703 | virtual void clear() { |
---|
1704 | for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) { |
---|
1705 | deg[it] = 0; |
---|
1706 | } |
---|
1707 | } |
---|
1708 | private: |
---|
1709 | |
---|
1710 | const _Graph& graph; |
---|
1711 | AutoNodeMap deg; |
---|
1712 | }; |
---|
1713 | |
---|
1714 | /// \brief Map of the node out-degrees. |
---|
1715 | /// |
---|
1716 | /// This map returns the out-degree of a node. Once it is constructed, |
---|
1717 | /// the degrees are stored in a standard NodeMap, so each query is done |
---|
1718 | /// in constant time. On the other hand, the values are updated automatically |
---|
1719 | /// whenever the graph changes. |
---|
1720 | /// |
---|
1721 | /// \warning Besides addNode() and addEdge(), a graph structure may provide |
---|
1722 | /// alternative ways to modify the graph. The correct behavior of OutDegMap |
---|
1723 | /// is not guarantied if these additional features are used. For example |
---|
1724 | /// the functions \ref ListGraph::changeSource() "changeSource()", |
---|
1725 | /// \ref ListGraph::changeTarget() "changeTarget()" and |
---|
1726 | /// \ref ListGraph::reverseEdge() "reverseEdge()" |
---|
1727 | /// of \ref ListGraph will \e not update the degree values correctly. |
---|
1728 | /// |
---|
1729 | /// \sa InDegMap |
---|
1730 | |
---|
1731 | template <typename _Graph> |
---|
1732 | class OutDegMap |
---|
1733 | : protected ItemSetTraits<_Graph, typename _Graph::Edge> |
---|
1734 | ::ItemNotifier::ObserverBase { |
---|
1735 | |
---|
1736 | public: |
---|
1737 | |
---|
1738 | typedef typename ItemSetTraits<_Graph, typename _Graph::Edge> |
---|
1739 | ::ItemNotifier::ObserverBase Parent; |
---|
1740 | |
---|
1741 | typedef _Graph Graph; |
---|
1742 | typedef int Value; |
---|
1743 | typedef typename Graph::Node Key; |
---|
1744 | |
---|
1745 | private: |
---|
1746 | |
---|
1747 | class AutoNodeMap : public DefaultMap<_Graph, Key, int> { |
---|
1748 | public: |
---|
1749 | |
---|
1750 | typedef DefaultMap<_Graph, Key, int> Parent; |
---|
1751 | typedef typename Parent::Graph Graph; |
---|
1752 | |
---|
1753 | AutoNodeMap(const Graph& graph) : Parent(graph, 0) {} |
---|
1754 | |
---|
1755 | virtual void add(const Key& key) { |
---|
1756 | Parent::add(key); |
---|
1757 | Parent::set(key, 0); |
---|
1758 | } |
---|
1759 | virtual void add(const std::vector<Key>& keys) { |
---|
1760 | Parent::add(keys); |
---|
1761 | for (int i = 0; i < (int)keys.size(); ++i) { |
---|
1762 | Parent::set(keys[i], 0); |
---|
1763 | } |
---|
1764 | } |
---|
1765 | }; |
---|
1766 | |
---|
1767 | public: |
---|
1768 | |
---|
1769 | /// \brief Constructor. |
---|
1770 | /// |
---|
1771 | /// Constructor for creating out-degree map. |
---|
1772 | OutDegMap(const Graph& _graph) : graph(_graph), deg(_graph) { |
---|
1773 | Parent::attach(graph.getNotifier(typename _Graph::Edge())); |
---|
1774 | |
---|
1775 | for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) { |
---|
1776 | deg[it] = countOutEdges(graph, it); |
---|
1777 | } |
---|
1778 | } |
---|
1779 | |
---|
1780 | /// Gives back the out-degree of a Node. |
---|
1781 | int operator[](const Key& key) const { |
---|
1782 | return deg[key]; |
---|
1783 | } |
---|
1784 | |
---|
1785 | protected: |
---|
1786 | |
---|
1787 | typedef typename Graph::Edge Edge; |
---|
1788 | |
---|
1789 | virtual void add(const Edge& edge) { |
---|
1790 | ++deg[graph.source(edge)]; |
---|
1791 | } |
---|
1792 | |
---|
1793 | virtual void add(const std::vector<Edge>& edges) { |
---|
1794 | for (int i = 0; i < (int)edges.size(); ++i) { |
---|
1795 | ++deg[graph.source(edges[i])]; |
---|
1796 | } |
---|
1797 | } |
---|
1798 | |
---|
1799 | virtual void erase(const Edge& edge) { |
---|
1800 | --deg[graph.source(edge)]; |
---|
1801 | } |
---|
1802 | |
---|
1803 | virtual void erase(const std::vector<Edge>& edges) { |
---|
1804 | for (int i = 0; i < (int)edges.size(); ++i) { |
---|
1805 | --deg[graph.source(edges[i])]; |
---|
1806 | } |
---|
1807 | } |
---|
1808 | |
---|
1809 | virtual void build() { |
---|
1810 | for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) { |
---|
1811 | deg[it] = countOutEdges(graph, it); |
---|
1812 | } |
---|
1813 | } |
---|
1814 | |
---|
1815 | virtual void clear() { |
---|
1816 | for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) { |
---|
1817 | deg[it] = 0; |
---|
1818 | } |
---|
1819 | } |
---|
1820 | private: |
---|
1821 | |
---|
1822 | const _Graph& graph; |
---|
1823 | AutoNodeMap deg; |
---|
1824 | }; |
---|
1825 | |
---|
1826 | |
---|
1827 | /// @} |
---|
1828 | |
---|
1829 | } //END OF NAMESPACE LEMON |
---|
1830 | |
---|
1831 | #endif |
---|