[46] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
| 2 | * |
---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
| 4 | * |
---|
| 5 | * Copyright (C) 2003-2010 |
---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | namespace lemon { |
---|
| 20 | /** |
---|
| 21 | [PAGE]sec_maps[PAGE] Maps |
---|
| 22 | |
---|
| 23 | \todo This page is under construction. |
---|
| 24 | |
---|
[49] | 25 | \todo The following contents are ported from the LEMON 0.x tutorial, |
---|
| 26 | thus they have to thouroughly revised, reorganized and reworked. |
---|
| 27 | |
---|
| 28 | The LEMON maps are not only just storage classes, but also |
---|
| 29 | they are %concepts of any key--value based data access. |
---|
| 30 | Beside the standard digraph maps, LEMON contains several "lightweight" |
---|
| 31 | \e map \e adaptor \e classes, which perform various operations on the |
---|
| 32 | data of the adapted maps when their access operations are called, |
---|
| 33 | but without actually copying or modifying the original storage. |
---|
| 34 | These classes also conform to the map %concepts, thus they can be used |
---|
| 35 | like standard LEMON maps. |
---|
| 36 | |
---|
| 37 | Let us suppose that we have a traffic network stored in a LEMON digraph |
---|
| 38 | structure with two arc maps \c length and \c speed, which |
---|
| 39 | denote the physical length of each arc and the maximum (or average) |
---|
| 40 | speed that can be achieved on the corresponding road-section, |
---|
| 41 | respectively. If we are interested in the best traveling times, |
---|
| 42 | the following code can be used. |
---|
| 43 | |
---|
| 44 | \code |
---|
| 45 | dijkstra(g, divMap(length, speed)).distMap(dist).run(s); |
---|
| 46 | \endcode |
---|
| 47 | |
---|
| 48 | |
---|
| 49 | Maps play a central role in LEMON. As their name suggests, they map a |
---|
| 50 | certain range of \e keys to certain \e values. Each map has two |
---|
| 51 | <tt>typedef</tt>'s to determine the types of keys and values, like this: |
---|
| 52 | |
---|
| 53 | \code |
---|
| 54 | typedef Arc Key; |
---|
| 55 | typedef double Value; |
---|
| 56 | \endcode |
---|
| 57 | |
---|
| 58 | A map can be |
---|
| 59 | \e readable (\ref lemon::concepts::ReadMap "ReadMap", for short), |
---|
| 60 | \e writable (\ref lemon::concepts::WriteMap "WriteMap") or both |
---|
| 61 | (\ref lemon::concepts::ReadWriteMap "ReadWriteMap"). |
---|
| 62 | There also exists a special type of |
---|
| 63 | ReadWrite map called \ref lemon::concepts::ReferenceMap "reference map". |
---|
| 64 | In addition that you can |
---|
| 65 | read and write the values of a key, a reference map |
---|
| 66 | can also give you a reference to the |
---|
| 67 | value belonging to a key, so you have a direct access to the memory address |
---|
| 68 | where it is stored. |
---|
| 69 | |
---|
| 70 | Each digraph structure in LEMON provides two standard map templates called |
---|
| 71 | \c ArcMap and \c NodeMap. Both are reference maps and you can easily |
---|
| 72 | assign data to the nodes and to the arcs of the digraph. For example if you |
---|
| 73 | have a digraph \c g defined as |
---|
| 74 | \code |
---|
| 75 | ListDigraph g; |
---|
| 76 | \endcode |
---|
| 77 | and you want to assign a floating point value to each arc, you can do |
---|
| 78 | it like this. |
---|
| 79 | \code |
---|
| 80 | ListDigraph::ArcMap<double> length(g); |
---|
| 81 | \endcode |
---|
| 82 | Note that you must give the underlying digraph to the constructor. |
---|
| 83 | |
---|
| 84 | The value of a readable map can be obtained by <tt>operator[]</tt>. |
---|
| 85 | \code |
---|
| 86 | d=length[e]; |
---|
| 87 | \endcode |
---|
| 88 | where \c e is an instance of \c ListDigraph::Arc. |
---|
| 89 | (Or anything else |
---|
| 90 | that converts to \c ListDigraph::Arc, like \c ListDigraph::ArcIt or |
---|
| 91 | \c ListDigraph::OutArcIt etc.) |
---|
| 92 | |
---|
| 93 | There are two ways to assign a new value to a key |
---|
| 94 | |
---|
| 95 | - In case of a <em>reference map</em> <tt>operator[]</tt> |
---|
| 96 | gives you a reference to the |
---|
| 97 | value, thus you can use this. |
---|
| 98 | \code |
---|
| 99 | length[e]=3.5; |
---|
| 100 | \endcode |
---|
| 101 | - <em>Writable maps</em> have |
---|
| 102 | a member function \c set(Key,const Value &) |
---|
| 103 | for this purpose. |
---|
| 104 | \code |
---|
| 105 | length.set(e,3.5); |
---|
| 106 | \endcode |
---|
| 107 | |
---|
| 108 | The first case is more comfortable and if you store complex structures in your |
---|
| 109 | map, it might be more efficient. However, there are writable but |
---|
| 110 | not reference maps, so if you want to write a generic algorithm, you should |
---|
| 111 | insist on the second way. |
---|
| 112 | |
---|
| 113 | \section how-to-write-your-own-map How to Write Your Own Maps |
---|
| 114 | |
---|
| 115 | \subsection read-maps Readable Maps |
---|
| 116 | |
---|
| 117 | Readable maps are very frequently used as the input of an |
---|
| 118 | algorithm. For this purpose the most straightforward way is the use of the |
---|
| 119 | default maps provided by LEMON's digraph structures. |
---|
| 120 | Very often however, it is more |
---|
| 121 | convenient and/or more efficient to write your own readable map. |
---|
| 122 | |
---|
| 123 | You can find some examples below. In these examples \c Digraph is the |
---|
| 124 | type of the particular digraph structure you use. |
---|
| 125 | |
---|
| 126 | |
---|
| 127 | This simple map assigns \f$\pi\f$ to each arc. |
---|
| 128 | |
---|
| 129 | \code |
---|
| 130 | struct MyMap |
---|
| 131 | { |
---|
| 132 | typedef double Value; |
---|
| 133 | typedef Digraph::Arc Key; |
---|
| 134 | double operator[](Key e) const { return PI;} |
---|
| 135 | }; |
---|
| 136 | \endcode |
---|
| 137 | |
---|
| 138 | An alternative way to define maps is to use \c MapBase |
---|
| 139 | |
---|
| 140 | \code |
---|
| 141 | struct MyMap : public MapBase<Digraph::Arc,double> |
---|
| 142 | { |
---|
| 143 | Value operator[](Key e) const { return PI;} |
---|
| 144 | }; |
---|
| 145 | \endcode |
---|
| 146 | |
---|
| 147 | Here is a bit more complex example. |
---|
| 148 | It provides a length function obtained |
---|
| 149 | from a base length function shifted by a potential difference. |
---|
| 150 | |
---|
| 151 | \code |
---|
| 152 | class ReducedLengthMap : public MapBase<Digraph::Arc,double> |
---|
| 153 | { |
---|
| 154 | const Digraph &g; |
---|
| 155 | const Digraph::ArcMap<double> &orig_len; |
---|
| 156 | const Digraph::NodeMap<double> &pot; |
---|
| 157 | |
---|
| 158 | public: |
---|
| 159 | Value operator[](Key e) const { |
---|
| 160 | return orig_len[e]-(pot[g.target(e)]-pot[g.source(e)]); |
---|
| 161 | } |
---|
| 162 | |
---|
| 163 | ReducedLengthMap(const Digraph &_g, |
---|
| 164 | const Digraph::ArcMap &_o, |
---|
| 165 | const Digraph::NodeMap &_p) |
---|
| 166 | : g(_g), orig_len(_o), pot(_p) {}; |
---|
| 167 | }; |
---|
| 168 | \endcode |
---|
| 169 | |
---|
| 170 | Then, you can call e.g. Dijkstra algoritm on this map like this: |
---|
| 171 | \code |
---|
| 172 | ... |
---|
| 173 | ReducedLengthMap rm(g,len,pot); |
---|
| 174 | Dijkstra<Digraph,ReducedLengthMap> dij(g,rm); |
---|
| 175 | dij.run(s); |
---|
| 176 | ... |
---|
| 177 | \endcode |
---|
| 178 | |
---|
| 179 | |
---|
| 180 | In the previous section we discussed digraph topology. That is the skeleton a complex |
---|
| 181 | digraph represented data-set needs. But how to assign the data itself to that skeleton?<br> |
---|
| 182 | Here come the \b maps in. |
---|
| 183 | |
---|
| 184 | \section maps_intro Introduction to maps |
---|
| 185 | Maps play a central role in LEMON. As their name suggests, they map a certain range of <i>keys</i> to certain <i>values</i>. |
---|
| 186 | In LEMON there is many types of maps. Each map has two typedef's to determine the types of keys and values, like this: |
---|
| 187 | \code |
---|
| 188 | typedef Arc Key; |
---|
| 189 | typedef double Value; |
---|
| 190 | \endcode |
---|
| 191 | (Except matrix maps, they have two key types.) |
---|
| 192 | |
---|
| 193 | To make easy to use them - especially as template parameters - there are <i>map concepts</i> like by digraph classes. |
---|
| 194 | <ul> |
---|
| 195 | <li>\ref concepts::ReadMap "ReadMap" - values can be read out with the \c operator[]. |
---|
| 196 | \code value_typed_variable = map_instance[key_value]; \endcode |
---|
| 197 | </li> |
---|
| 198 | <li>\ref concepts::WriteMap "WriteMap" - values can be set with the \c set() member function. |
---|
| 199 | \code map_instance.set(key_value, value_typed_expression); \endcode |
---|
| 200 | </li> |
---|
| 201 | <li>\ref concepts::ReadWriteMap "ReadWriteMap" - it's just a shortcut to indicate that the map is both |
---|
| 202 | readable and writable. It is delivered from them. |
---|
| 203 | </li> |
---|
| 204 | <li>\ref concepts::ReferenceMap "ReferenceMap" - a subclass of ReadWriteMap. It has two additional typedefs |
---|
| 205 | <i>Reference</i> and <i>ConstReference</i> and two overloads of \c operator[] to |
---|
| 206 | providing you constant or non-constant reference to the value belonging to a key, |
---|
| 207 | so you have a direct access to the memory address where it is stored. |
---|
| 208 | </li> |
---|
| 209 | <li>And there are the Matrix version of these maps, where the values are assigned to a pair of keys. |
---|
| 210 | The keys can be different types. (\ref concepts::ReadMatrixMap "ReadMatrixMap", |
---|
| 211 | \ref concepts::WriteMatrixMap "WriteMatrixMap", \ref concepts::ReadWriteMatrixMap "ReadWriteMatrixMap", |
---|
| 212 | \ref concepts::ReferenceMatrixMap "ReferenceMatrixMap") |
---|
| 213 | </li> |
---|
| 214 | </ul> |
---|
| 215 | |
---|
| 216 | \section maps_graph Digraphs' maps |
---|
| 217 | Every \ref MappableDigraphComponent "mappable" digraph class has two public templates: NodeMap<VALUE> and ArcMap<VALUE> |
---|
| 218 | satisfying the \ref DigraphMap concept. |
---|
| 219 | If you want to assign data to nodes, just declare a NodeMap with the corresponding |
---|
| 220 | type. As an example, think of a arc-weighted digraph. |
---|
| 221 | \code ListDigraph::ArcMap<int> weight(digraph); \endcode |
---|
| 222 | You can see that the map needs the digraph whose arcs will mapped, but nothing more. |
---|
| 223 | |
---|
| 224 | If the digraph class is extendable or erasable the map will automatically follow |
---|
| 225 | the changes you make. If a new node is added a default value is mapped to it. |
---|
| 226 | You can define the default value by passing a second argument to the map's constructor. |
---|
| 227 | \code ListDigraph::ArcMap<int> weight(digraph, 13); \endcode |
---|
| 228 | But keep in mind that \c VALUE has to have copy constructor. |
---|
| 229 | |
---|
| 230 | Of course \c VALUE can be a rather complex type. |
---|
| 231 | |
---|
| 232 | For practice let's see the following template function (from \ref maps_summary "maps-summary.cc" in the \ref demo directory)! |
---|
| 233 | \dontinclude maps_summary.cc |
---|
| 234 | \skip template |
---|
| 235 | \until } |
---|
| 236 | The task is simple. We need the summary of some kind of data assigned to a digraph's nodes. |
---|
| 237 | (Whit a little trick the summary can be calculated only to a sub-digraph without changing |
---|
| 238 | this code. See \ref SubDigraph techniques - that's LEMON's true potential.) |
---|
| 239 | |
---|
| 240 | And the usage is simpler than the declaration suggests. The compiler deduces the |
---|
| 241 | template specialization, so the usage is like a simple function call. |
---|
| 242 | \skip std |
---|
| 243 | \until ; |
---|
| 244 | |
---|
| 245 | Most of the time you will probably use digraph maps, but keep in mind, that in LEMON maps are more general and can be used widely. |
---|
| 246 | |
---|
| 247 | If you want some 'real-life' examples see the next page, where we discuss \ref algorithms |
---|
| 248 | (coming soon) and will use maps hardly. |
---|
| 249 | Or if you want to know more about maps read these \ref maps2 "advanced map techniques". |
---|
| 250 | |
---|
| 251 | Here we discuss some advanced map techniques. Like writing your own maps or how to |
---|
| 252 | extend/modify a maps functionality with adaptors. |
---|
| 253 | |
---|
| 254 | \section custom_maps Writing Custom ReadMap |
---|
| 255 | \subsection custom_read_maps Readable Maps |
---|
| 256 | |
---|
| 257 | Readable maps are very frequently used as the input of an |
---|
| 258 | algorithm. For this purpose the most straightforward way is the use of the |
---|
| 259 | default maps provided by LEMON's digraph structures. |
---|
| 260 | Very often however, it is more |
---|
| 261 | convenient and/or more efficient to write your own readable map. |
---|
| 262 | |
---|
| 263 | You can find some examples below. In these examples \c Digraph is the |
---|
| 264 | type of the particular digraph structure you use. |
---|
| 265 | |
---|
| 266 | |
---|
| 267 | This simple map assigns \f$\pi\f$ to each arc. |
---|
| 268 | |
---|
| 269 | \code |
---|
| 270 | struct MyMap |
---|
| 271 | { |
---|
| 272 | typedef double Value; |
---|
| 273 | typedef Digraph::Arc Key; |
---|
| 274 | double operator[](const Key &e) const { return PI;} |
---|
| 275 | }; |
---|
| 276 | \endcode |
---|
| 277 | |
---|
| 278 | An alternative way to define maps is to use MapBase |
---|
| 279 | |
---|
| 280 | \code |
---|
| 281 | struct MyMap : public MapBase<Digraph::Arc,double> |
---|
| 282 | { |
---|
| 283 | Value operator[](const Key& e) const { return PI;} |
---|
| 284 | }; |
---|
| 285 | \endcode |
---|
| 286 | |
---|
| 287 | Here is a bit more complex example. |
---|
| 288 | It provides a length function obtained |
---|
| 289 | from a base length function shifted by a potential difference. |
---|
| 290 | |
---|
| 291 | \code |
---|
| 292 | class ReducedLengthMap : public MapBase<Digraph::Arc,double> |
---|
| 293 | { |
---|
| 294 | const Digraph &g; |
---|
| 295 | const Digraph::ArcMap<double> &orig_len; |
---|
| 296 | const Digraph::NodeMap<double> &pot; |
---|
| 297 | |
---|
| 298 | public: |
---|
| 299 | Value operator[](Key e) const { |
---|
| 300 | return orig_len[e]-(pot[g.target(e)]-pot[g.source(e)]); |
---|
| 301 | } |
---|
| 302 | |
---|
| 303 | ReducedLengthMap(const Digraph &_g, |
---|
| 304 | const Digraph::ArcMap &_o, |
---|
| 305 | const Digraph::NodeMap &_p) |
---|
| 306 | : g(_g), orig_len(_o), pot(_p) {}; |
---|
| 307 | }; |
---|
| 308 | \endcode |
---|
| 309 | |
---|
| 310 | Then, you can call e.g. Dijkstra algoritm on this map like this: |
---|
| 311 | \code |
---|
| 312 | ... |
---|
| 313 | ReducedLengthMap rm(g,len,pot); |
---|
| 314 | Dijkstra<Digraph,ReducedLengthMap> dij(g,rm); |
---|
| 315 | dij.run(s); |
---|
| 316 | ... |
---|
| 317 | \endcode |
---|
| 318 | |
---|
| 319 | |
---|
[46] | 320 | [SEC]sec_map_concepts[SEC] Map Concepts |
---|
| 321 | |
---|
| 322 | ... |
---|
| 323 | |
---|
| 324 | |
---|
| 325 | [SEC]sec_own_maps[SEC] Creating Own Maps |
---|
| 326 | |
---|
| 327 | ... |
---|
| 328 | |
---|
| 329 | [SEC]sec_map_adaptors[SEC] Map Adaptors |
---|
| 330 | |
---|
| 331 | See \ref map_adaptors in the reference manual. |
---|
| 332 | |
---|
| 333 | |
---|
| 334 | [SEC]sec_algs_with_maps[SEC] Using Algorithms with Special Maps |
---|
| 335 | |
---|
[49] | 336 | The basic functionality of the algorithms can be highly extended using |
---|
| 337 | special purpose map types for their internal data structures. |
---|
| 338 | For example, the \ref Dijkstra class stores a |
---|
| 339 | ef ProcessedMap, |
---|
| 340 | which has to be a writable node map of \ref bool value type. |
---|
| 341 | The assigned value of each node is set to \ref true when the node is |
---|
| 342 | processed, i.e., its actual distance is found. |
---|
| 343 | Applying a special map, \ref LoggerBoolMap, the processed order of |
---|
| 344 | the nodes can easily be stored in a standard container. |
---|
| 345 | |
---|
| 346 | Such specific map types can be passed to the algorithms using the technique of |
---|
| 347 | named template parameters. Similarly to the named function parameters, |
---|
| 348 | they allow specifying any subset of the parameters and in arbitrary order. |
---|
| 349 | |
---|
| 350 | \code |
---|
| 351 | typedef vector<ListDigraph::Node> Container; |
---|
| 352 | typedef back_insert_iterator<Container> InsertIterator; |
---|
| 353 | typedef LoggerBoolMap<InsertIterator> ProcessedMap; |
---|
| 354 | Dijkstra<ListDigraph> |
---|
| 355 | ::SetProcessedMap<ProcessedMap> |
---|
| 356 | ::Create dijktra(g, length); |
---|
| 357 | |
---|
| 358 | Container container; |
---|
| 359 | InsertIterator iterator(container); |
---|
| 360 | ProcessedMap processed(iterator); |
---|
| 361 | |
---|
| 362 | dijkstra.processedMap(processed).run(s); |
---|
| 363 | \endcode |
---|
| 364 | |
---|
| 365 | The function-type interfaces are considerably simpler, but they can be |
---|
| 366 | used in almost all practical cases. Surprisingly, even the above example |
---|
| 367 | can also be implemented using the \ref dijkstra() function and |
---|
| 368 | named parameters, as follows. |
---|
| 369 | Note that the function-type interface has the major advantage |
---|
| 370 | that temporary objects can be passed as parameters. |
---|
| 371 | |
---|
| 372 | \code |
---|
| 373 | vector<ListDigraph::Node> process_order; |
---|
| 374 | dijkstra(g, length) |
---|
| 375 | .processedMap(loggerBoolMap(back_inserter(process_order))) |
---|
| 376 | .run(s); |
---|
| 377 | \endcode |
---|
| 378 | |
---|
| 379 | LEMON also contains visitor based algorithm classes for |
---|
| 380 | BFS and DFS. |
---|
| 381 | |
---|
| 382 | Skeleton visitor classes are defined for both BFS and DFS, the concrete |
---|
| 383 | implementations can be inherited from them. |
---|
| 384 | \code |
---|
| 385 | template <typename GR> |
---|
| 386 | struct DfsVisitor { |
---|
| 387 | void start(const typename GR::Node& node) {} |
---|
| 388 | void stop(const typename GR::Node& node) {} |
---|
| 389 | void reach(const typename GR::Node& node) {} |
---|
| 390 | void leave(const typename GR::Node& node) {} |
---|
| 391 | void discover(const typename GR::Arc& arc) {} |
---|
| 392 | void examine(const typename GR::Arc& arc) {} |
---|
| 393 | void backtrack(const typename GR::Arc& arc) {} |
---|
| 394 | }; |
---|
| 395 | \endcode |
---|
| 396 | |
---|
| 397 | In the following example, the \ref discover()} and \code{examine() |
---|
| 398 | events are processed and the DFS tree is stored in an arc map. |
---|
| 399 | The values of this map indicate whether the corresponding arc |
---|
| 400 | reaches a new node or its target node is already reached. |
---|
| 401 | \code |
---|
| 402 | template <typename GR> |
---|
| 403 | struct TreeVisitor : public DfsVisitor<GR> { |
---|
| 404 | TreeVisitor(typename GR::ArcMap<bool>& tree) |
---|
| 405 | : _tree(tree) {} |
---|
| 406 | void discover(const typename GR::Arc& arc) |
---|
| 407 | { _tree[arc] = true; } |
---|
| 408 | void examine(const typename GR::Arc& arc) |
---|
| 409 | { _tree[arc] = false; } |
---|
| 410 | typename GR::ArcMap<bool>& _tree; |
---|
| 411 | }; |
---|
| 412 | \endcode |
---|
| 413 | |
---|
[46] | 414 | |
---|
| 415 | [TRAILER] |
---|
| 416 | */ |
---|
| 417 | } |
---|