Changeset 1365:1e87c18cf65e in lemon
- Timestamp:
- 10/07/15 18:56:56 (9 years ago)
- Branch:
- 1.2
- Parents:
- 1364:4124fe8ef8de (diff), 1362:43647f48e971 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - Phase:
- public
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
lemon/capacity_scaling.h
r1362 r1365 1 /* -*- C++-*-1 /* -*- mode: C++; indent-tabs-mode: nil; -*- 2 2 * 3 * This file is a part of LEMON, a generic C++ optimization library 3 * This file is a part of LEMON, a generic C++ optimization library. 4 4 * 5 * Copyright (C) 2003-20 085 * Copyright (C) 2003-2010 6 6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport 7 7 * (Egervary Research Group on Combinatorial Optimization, EGRES). … … 79 79 /// \tparam GR The digraph type the algorithm runs on. 80 80 /// \tparam V The number type used for flow amounts, capacity bounds 81 /// and supply values in the algorithm. By default it is \c int.81 /// and supply values in the algorithm. By default, it is \c int. 82 82 /// \tparam C The number type used for costs and potentials in the 83 /// algorithm. By default it is the same as \c V. 83 /// algorithm. By default, it is the same as \c V. 84 /// \tparam TR The traits class that defines various types used by the 85 /// algorithm. By default, it is \ref CapacityScalingDefaultTraits 86 /// "CapacityScalingDefaultTraits<GR, V, C>". 87 /// In most cases, this parameter should not be set directly, 88 /// consider to use the named template parameters instead. 84 89 /// 85 90 /// \warning Both number types must be signed and all input data must … … 130 135 UNBOUNDED 131 136 }; 132 137 133 138 private: 134 139 … … 136 141 137 142 typedef std::vector<int> IntVector; 138 typedef std::vector<char> BoolVector;139 143 typedef std::vector<Value> ValueVector; 140 144 typedef std::vector<Cost> CostVector; 145 typedef std::vector<char> BoolVector; 146 // Note: vector<char> is used instead of vector<bool> for efficiency reasons 141 147 142 148 private: … … 180 186 181 187 public: 182 188 183 189 /// \brief Constant for infinite upper bounds (capacities). 184 190 /// … … 207 213 CostVector &_pi; 208 214 IntVector &_pred; 209 215 210 216 IntVector _proc_nodes; 211 217 CostVector _dist; 212 218 213 219 public: 214 220 … … 297 303 /// @} 298 304 305 protected: 306 307 CapacityScaling() {} 308 299 309 public: 300 310 … … 316 326 "The cost type of CapacityScaling must be signed"); 317 327 328 // Reset data structures 329 reset(); 330 } 331 332 /// \name Parameters 333 /// The parameters of the algorithm can be specified using these 334 /// functions. 335 336 /// @{ 337 338 /// \brief Set the lower bounds on the arcs. 339 /// 340 /// This function sets the lower bounds on the arcs. 341 /// If it is not used before calling \ref run(), the lower bounds 342 /// will be set to zero on all arcs. 343 /// 344 /// \param map An arc map storing the lower bounds. 345 /// Its \c Value type must be convertible to the \c Value type 346 /// of the algorithm. 347 /// 348 /// \return <tt>(*this)</tt> 349 template <typename LowerMap> 350 CapacityScaling& lowerMap(const LowerMap& map) { 351 _have_lower = true; 352 for (ArcIt a(_graph); a != INVALID; ++a) { 353 _lower[_arc_idf[a]] = map[a]; 354 _lower[_arc_idb[a]] = map[a]; 355 } 356 return *this; 357 } 358 359 /// \brief Set the upper bounds (capacities) on the arcs. 360 /// 361 /// This function sets the upper bounds (capacities) on the arcs. 362 /// If it is not used before calling \ref run(), the upper bounds 363 /// will be set to \ref INF on all arcs (i.e. the flow value will be 364 /// unbounded from above). 365 /// 366 /// \param map An arc map storing the upper bounds. 367 /// Its \c Value type must be convertible to the \c Value type 368 /// of the algorithm. 369 /// 370 /// \return <tt>(*this)</tt> 371 template<typename UpperMap> 372 CapacityScaling& upperMap(const UpperMap& map) { 373 for (ArcIt a(_graph); a != INVALID; ++a) { 374 _upper[_arc_idf[a]] = map[a]; 375 } 376 return *this; 377 } 378 379 /// \brief Set the costs of the arcs. 380 /// 381 /// This function sets the costs of the arcs. 382 /// If it is not used before calling \ref run(), the costs 383 /// will be set to \c 1 on all arcs. 384 /// 385 /// \param map An arc map storing the costs. 386 /// Its \c Value type must be convertible to the \c Cost type 387 /// of the algorithm. 388 /// 389 /// \return <tt>(*this)</tt> 390 template<typename CostMap> 391 CapacityScaling& costMap(const CostMap& map) { 392 for (ArcIt a(_graph); a != INVALID; ++a) { 393 _cost[_arc_idf[a]] = map[a]; 394 _cost[_arc_idb[a]] = -map[a]; 395 } 396 return *this; 397 } 398 399 /// \brief Set the supply values of the nodes. 400 /// 401 /// This function sets the supply values of the nodes. 402 /// If neither this function nor \ref stSupply() is used before 403 /// calling \ref run(), the supply of each node will be set to zero. 404 /// 405 /// \param map A node map storing the supply values. 406 /// Its \c Value type must be convertible to the \c Value type 407 /// of the algorithm. 408 /// 409 /// \return <tt>(*this)</tt> 410 template<typename SupplyMap> 411 CapacityScaling& supplyMap(const SupplyMap& map) { 412 for (NodeIt n(_graph); n != INVALID; ++n) { 413 _supply[_node_id[n]] = map[n]; 414 } 415 return *this; 416 } 417 418 /// \brief Set single source and target nodes and a supply value. 419 /// 420 /// This function sets a single source node and a single target node 421 /// and the required flow value. 422 /// If neither this function nor \ref supplyMap() is used before 423 /// calling \ref run(), the supply of each node will be set to zero. 424 /// 425 /// Using this function has the same effect as using \ref supplyMap() 426 /// with such a map in which \c k is assigned to \c s, \c -k is 427 /// assigned to \c t and all other nodes have zero supply value. 428 /// 429 /// \param s The source node. 430 /// \param t The target node. 431 /// \param k The required amount of flow from node \c s to node \c t 432 /// (i.e. the supply of \c s and the demand of \c t). 433 /// 434 /// \return <tt>(*this)</tt> 435 CapacityScaling& stSupply(const Node& s, const Node& t, Value k) { 436 for (int i = 0; i != _node_num; ++i) { 437 _supply[i] = 0; 438 } 439 _supply[_node_id[s]] = k; 440 _supply[_node_id[t]] = -k; 441 return *this; 442 } 443 444 /// @} 445 446 /// \name Execution control 447 /// The algorithm can be executed using \ref run(). 448 449 /// @{ 450 451 /// \brief Run the algorithm. 452 /// 453 /// This function runs the algorithm. 454 /// The paramters can be specified using functions \ref lowerMap(), 455 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 456 /// For example, 457 /// \code 458 /// CapacityScaling<ListDigraph> cs(graph); 459 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 460 /// .supplyMap(sup).run(); 461 /// \endcode 462 /// 463 /// This function can be called more than once. All the given parameters 464 /// are kept for the next call, unless \ref resetParams() or \ref reset() 465 /// is used, thus only the modified parameters have to be set again. 466 /// If the underlying digraph was also modified after the construction 467 /// of the class (or the last \ref reset() call), then the \ref reset() 468 /// function must be called. 469 /// 470 /// \param factor The capacity scaling factor. It must be larger than 471 /// one to use scaling. If it is less or equal to one, then scaling 472 /// will be disabled. 473 /// 474 /// \return \c INFEASIBLE if no feasible flow exists, 475 /// \n \c OPTIMAL if the problem has optimal solution 476 /// (i.e. it is feasible and bounded), and the algorithm has found 477 /// optimal flow and node potentials (primal and dual solutions), 478 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost 479 /// and infinite upper bound. It means that the objective function 480 /// is unbounded on that arc, however, note that it could actually be 481 /// bounded over the feasible flows, but this algroithm cannot handle 482 /// these cases. 483 /// 484 /// \see ProblemType 485 /// \see resetParams(), reset() 486 ProblemType run(int factor = 4) { 487 _factor = factor; 488 ProblemType pt = init(); 489 if (pt != OPTIMAL) return pt; 490 return start(); 491 } 492 493 /// \brief Reset all the parameters that have been given before. 494 /// 495 /// This function resets all the paramaters that have been given 496 /// before using functions \ref lowerMap(), \ref upperMap(), 497 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 498 /// 499 /// It is useful for multiple \ref run() calls. Basically, all the given 500 /// parameters are kept for the next \ref run() call, unless 501 /// \ref resetParams() or \ref reset() is used. 502 /// If the underlying digraph was also modified after the construction 503 /// of the class or the last \ref reset() call, then the \ref reset() 504 /// function must be used, otherwise \ref resetParams() is sufficient. 505 /// 506 /// For example, 507 /// \code 508 /// CapacityScaling<ListDigraph> cs(graph); 509 /// 510 /// // First run 511 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 512 /// .supplyMap(sup).run(); 513 /// 514 /// // Run again with modified cost map (resetParams() is not called, 515 /// // so only the cost map have to be set again) 516 /// cost[e] += 100; 517 /// cs.costMap(cost).run(); 518 /// 519 /// // Run again from scratch using resetParams() 520 /// // (the lower bounds will be set to zero on all arcs) 521 /// cs.resetParams(); 522 /// cs.upperMap(capacity).costMap(cost) 523 /// .supplyMap(sup).run(); 524 /// \endcode 525 /// 526 /// \return <tt>(*this)</tt> 527 /// 528 /// \see reset(), run() 529 CapacityScaling& resetParams() { 530 for (int i = 0; i != _node_num; ++i) { 531 _supply[i] = 0; 532 } 533 for (int j = 0; j != _res_arc_num; ++j) { 534 _lower[j] = 0; 535 _upper[j] = INF; 536 _cost[j] = _forward[j] ? 1 : -1; 537 } 538 _have_lower = false; 539 return *this; 540 } 541 542 /// \brief Reset the internal data structures and all the parameters 543 /// that have been given before. 544 /// 545 /// This function resets the internal data structures and all the 546 /// paramaters that have been given before using functions \ref lowerMap(), 547 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 548 /// 549 /// It is useful for multiple \ref run() calls. Basically, all the given 550 /// parameters are kept for the next \ref run() call, unless 551 /// \ref resetParams() or \ref reset() is used. 552 /// If the underlying digraph was also modified after the construction 553 /// of the class or the last \ref reset() call, then the \ref reset() 554 /// function must be used, otherwise \ref resetParams() is sufficient. 555 /// 556 /// See \ref resetParams() for examples. 557 /// 558 /// \return <tt>(*this)</tt> 559 /// 560 /// \see resetParams(), run() 561 CapacityScaling& reset() { 318 562 // Resize vectors 319 563 _node_num = countNodes(_graph); … … 333 577 _cost.resize(_res_arc_num); 334 578 _supply.resize(_node_num); 335 579 336 580 _res_cap.resize(_res_arc_num); 337 581 _pi.resize(_node_num); … … 377 621 _reverse[bi] = fi; 378 622 } 379 623 380 624 // Reset parameters 381 reset(); 382 } 383 384 /// \name Parameters 385 /// The parameters of the algorithm can be specified using these 386 /// functions. 387 388 /// @{ 389 390 /// \brief Set the lower bounds on the arcs. 391 /// 392 /// This function sets the lower bounds on the arcs. 393 /// If it is not used before calling \ref run(), the lower bounds 394 /// will be set to zero on all arcs. 395 /// 396 /// \param map An arc map storing the lower bounds. 397 /// Its \c Value type must be convertible to the \c Value type 398 /// of the algorithm. 399 /// 400 /// \return <tt>(*this)</tt> 401 template <typename LowerMap> 402 CapacityScaling& lowerMap(const LowerMap& map) { 403 _have_lower = true; 404 for (ArcIt a(_graph); a != INVALID; ++a) { 405 _lower[_arc_idf[a]] = map[a]; 406 _lower[_arc_idb[a]] = map[a]; 407 } 408 return *this; 409 } 410 411 /// \brief Set the upper bounds (capacities) on the arcs. 412 /// 413 /// This function sets the upper bounds (capacities) on the arcs. 414 /// If it is not used before calling \ref run(), the upper bounds 415 /// will be set to \ref INF on all arcs (i.e. the flow value will be 416 /// unbounded from above). 417 /// 418 /// \param map An arc map storing the upper bounds. 419 /// Its \c Value type must be convertible to the \c Value type 420 /// of the algorithm. 421 /// 422 /// \return <tt>(*this)</tt> 423 template<typename UpperMap> 424 CapacityScaling& upperMap(const UpperMap& map) { 425 for (ArcIt a(_graph); a != INVALID; ++a) { 426 _upper[_arc_idf[a]] = map[a]; 427 } 428 return *this; 429 } 430 431 /// \brief Set the costs of the arcs. 432 /// 433 /// This function sets the costs of the arcs. 434 /// If it is not used before calling \ref run(), the costs 435 /// will be set to \c 1 on all arcs. 436 /// 437 /// \param map An arc map storing the costs. 438 /// Its \c Value type must be convertible to the \c Cost type 439 /// of the algorithm. 440 /// 441 /// \return <tt>(*this)</tt> 442 template<typename CostMap> 443 CapacityScaling& costMap(const CostMap& map) { 444 for (ArcIt a(_graph); a != INVALID; ++a) { 445 _cost[_arc_idf[a]] = map[a]; 446 _cost[_arc_idb[a]] = -map[a]; 447 } 448 return *this; 449 } 450 451 /// \brief Set the supply values of the nodes. 452 /// 453 /// This function sets the supply values of the nodes. 454 /// If neither this function nor \ref stSupply() is used before 455 /// calling \ref run(), the supply of each node will be set to zero. 456 /// 457 /// \param map A node map storing the supply values. 458 /// Its \c Value type must be convertible to the \c Value type 459 /// of the algorithm. 460 /// 461 /// \return <tt>(*this)</tt> 462 template<typename SupplyMap> 463 CapacityScaling& supplyMap(const SupplyMap& map) { 464 for (NodeIt n(_graph); n != INVALID; ++n) { 465 _supply[_node_id[n]] = map[n]; 466 } 467 return *this; 468 } 469 470 /// \brief Set single source and target nodes and a supply value. 471 /// 472 /// This function sets a single source node and a single target node 473 /// and the required flow value. 474 /// If neither this function nor \ref supplyMap() is used before 475 /// calling \ref run(), the supply of each node will be set to zero. 476 /// 477 /// Using this function has the same effect as using \ref supplyMap() 478 /// with such a map in which \c k is assigned to \c s, \c -k is 479 /// assigned to \c t and all other nodes have zero supply value. 480 /// 481 /// \param s The source node. 482 /// \param t The target node. 483 /// \param k The required amount of flow from node \c s to node \c t 484 /// (i.e. the supply of \c s and the demand of \c t). 485 /// 486 /// \return <tt>(*this)</tt> 487 CapacityScaling& stSupply(const Node& s, const Node& t, Value k) { 488 for (int i = 0; i != _node_num; ++i) { 489 _supply[i] = 0; 490 } 491 _supply[_node_id[s]] = k; 492 _supply[_node_id[t]] = -k; 493 return *this; 494 } 495 496 /// @} 497 498 /// \name Execution control 499 /// The algorithm can be executed using \ref run(). 500 501 /// @{ 502 503 /// \brief Run the algorithm. 504 /// 505 /// This function runs the algorithm. 506 /// The paramters can be specified using functions \ref lowerMap(), 507 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 508 /// For example, 509 /// \code 510 /// CapacityScaling<ListDigraph> cs(graph); 511 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 512 /// .supplyMap(sup).run(); 513 /// \endcode 514 /// 515 /// This function can be called more than once. All the parameters 516 /// that have been given are kept for the next call, unless 517 /// \ref reset() is called, thus only the modified parameters 518 /// have to be set again. See \ref reset() for examples. 519 /// However, the underlying digraph must not be modified after this 520 /// class have been constructed, since it copies and extends the graph. 521 /// 522 /// \param factor The capacity scaling factor. It must be larger than 523 /// one to use scaling. If it is less or equal to one, then scaling 524 /// will be disabled. 525 /// 526 /// \return \c INFEASIBLE if no feasible flow exists, 527 /// \n \c OPTIMAL if the problem has optimal solution 528 /// (i.e. it is feasible and bounded), and the algorithm has found 529 /// optimal flow and node potentials (primal and dual solutions), 530 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost 531 /// and infinite upper bound. It means that the objective function 532 /// is unbounded on that arc, however, note that it could actually be 533 /// bounded over the feasible flows, but this algroithm cannot handle 534 /// these cases. 535 /// 536 /// \see ProblemType 537 ProblemType run(int factor = 4) { 538 _factor = factor; 539 ProblemType pt = init(); 540 if (pt != OPTIMAL) return pt; 541 return start(); 542 } 543 544 /// \brief Reset all the parameters that have been given before. 545 /// 546 /// This function resets all the paramaters that have been given 547 /// before using functions \ref lowerMap(), \ref upperMap(), 548 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 549 /// 550 /// It is useful for multiple run() calls. If this function is not 551 /// used, all the parameters given before are kept for the next 552 /// \ref run() call. 553 /// However, the underlying digraph must not be modified after this 554 /// class have been constructed, since it copies and extends the graph. 555 /// 556 /// For example, 557 /// \code 558 /// CapacityScaling<ListDigraph> cs(graph); 559 /// 560 /// // First run 561 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 562 /// .supplyMap(sup).run(); 563 /// 564 /// // Run again with modified cost map (reset() is not called, 565 /// // so only the cost map have to be set again) 566 /// cost[e] += 100; 567 /// cs.costMap(cost).run(); 568 /// 569 /// // Run again from scratch using reset() 570 /// // (the lower bounds will be set to zero on all arcs) 571 /// cs.reset(); 572 /// cs.upperMap(capacity).costMap(cost) 573 /// .supplyMap(sup).run(); 574 /// \endcode 575 /// 576 /// \return <tt>(*this)</tt> 577 CapacityScaling& reset() { 578 for (int i = 0; i != _node_num; ++i) { 579 _supply[i] = 0; 580 } 581 for (int j = 0; j != _res_arc_num; ++j) { 582 _lower[j] = 0; 583 _upper[j] = INF; 584 _cost[j] = _forward[j] ? 1 : -1; 585 } 586 _have_lower = false; 625 resetParams(); 587 626 return *this; 588 627 } … … 691 730 } 692 731 if (_sum_supply > 0) return INFEASIBLE; 693 732 694 733 // Initialize vectors 695 734 for (int i = 0; i != _root; ++i) { … … 739 778 } 740 779 } 741 780 742 781 // Handle GEQ supply type 743 782 if (_sum_supply < 0) { … … 766 805 if (_factor > 1) { 767 806 // With scaling 768 Value max_sup = 0, max_dem = 0 ;769 for (int i = 0; i != _ node_num; ++i) {807 Value max_sup = 0, max_dem = 0, max_cap = 0; 808 for (int i = 0; i != _root; ++i) { 770 809 Value ex = _excess[i]; 771 810 if ( ex > max_sup) max_sup = ex; 772 811 if (-ex > max_dem) max_dem = -ex; 773 }774 Value max_cap = 0;775 for (int j = 0; j != _res_arc_num; ++j) {776 if (_res_cap[j] > max_cap) max_cap = _res_cap[j];812 int last_out = _first_out[i+1] - 1; 813 for (int j = _first_out[i]; j != last_out; ++j) { 814 if (_res_cap[j] > max_cap) max_cap = _res_cap[j]; 815 } 777 816 } 778 817 max_sup = std::min(std::min(max_sup, max_dem), max_cap); … … 807 846 for (int i = 0; i != _node_num; ++i) { 808 847 _pi[i] -= pr; 809 } 810 } 811 848 } 849 } 850 812 851 return pt; 813 852 } -
lemon/capacity_scaling.h
r956 r1365 28 28 #include <limits> 29 29 #include <lemon/core.h> 30 #include <lemon/maps.h> 30 31 #include <lemon/bin_heap.h> 31 32
Note: See TracChangeset
for help on using the changeset viewer.