src/glpini01.c
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
alpar@1
     1
/* glpini01.c */
alpar@1
     2
alpar@1
     3
/***********************************************************************
alpar@1
     4
*  This code is part of GLPK (GNU Linear Programming Kit).
alpar@1
     5
*
alpar@1
     6
*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
alpar@1
     7
*  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
alpar@1
     8
*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
alpar@1
     9
*  E-mail: <mao@gnu.org>.
alpar@1
    10
*
alpar@1
    11
*  GLPK is free software: you can redistribute it and/or modify it
alpar@1
    12
*  under the terms of the GNU General Public License as published by
alpar@1
    13
*  the Free Software Foundation, either version 3 of the License, or
alpar@1
    14
*  (at your option) any later version.
alpar@1
    15
*
alpar@1
    16
*  GLPK is distributed in the hope that it will be useful, but WITHOUT
alpar@1
    17
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
alpar@1
    18
*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
alpar@1
    19
*  License for more details.
alpar@1
    20
*
alpar@1
    21
*  You should have received a copy of the GNU General Public License
alpar@1
    22
*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
alpar@1
    23
***********************************************************************/
alpar@1
    24
alpar@1
    25
#include "glpapi.h"
alpar@1
    26
alpar@1
    27
/*----------------------------------------------------------------------
alpar@1
    28
-- triang - find maximal triangular part of a rectangular matrix.
alpar@1
    29
--
alpar@1
    30
-- *Synopsis*
alpar@1
    31
--
alpar@1
    32
-- int triang(int m, int n,
alpar@1
    33
--    void *info, int (*mat)(void *info, int k, int ndx[]),
alpar@1
    34
--    int rn[], int cn[]);
alpar@1
    35
--
alpar@1
    36
-- *Description*
alpar@1
    37
--
alpar@1
    38
-- For a given rectangular (sparse) matrix A with m rows and n columns
alpar@1
    39
-- the routine triang tries to find such permutation matrices P and Q
alpar@1
    40
-- that the first rows and columns of the matrix B = P*A*Q form a lower
alpar@1
    41
-- triangular submatrix of as greatest size as possible:
alpar@1
    42
--
alpar@1
    43
--                   1                       n
alpar@1
    44
--                1  * . . . . . . x x x x x x
alpar@1
    45
--                   * * . . . . . x x x x x x
alpar@1
    46
--                   * * * . . . . x x x x x x
alpar@1
    47
--                   * * * * . . . x x x x x x
alpar@1
    48
--    B = P*A*Q =    * * * * * . . x x x x x x
alpar@1
    49
--                   * * * * * * . x x x x x x
alpar@1
    50
--                   * * * * * * * x x x x x x
alpar@1
    51
--                   x x x x x x x x x x x x x
alpar@1
    52
--                   x x x x x x x x x x x x x
alpar@1
    53
--                m  x x x x x x x x x x x x x
alpar@1
    54
--
alpar@1
    55
-- where: '*' - elements of the lower triangular part, '.' - structural
alpar@1
    56
-- zeros, 'x' - other (either non-zero or zero) elements.
alpar@1
    57
--
alpar@1
    58
-- The parameter info is a transit pointer passed to the formal routine
alpar@1
    59
-- mat (see below).
alpar@1
    60
--
alpar@1
    61
-- The formal routine mat specifies the given matrix A in both row- and
alpar@1
    62
-- column-wise formats. In order to obtain an i-th row of the matrix A
alpar@1
    63
-- the routine triang calls the routine mat with the parameter k = +i,
alpar@1
    64
-- 1 <= i <= m. In response the routine mat should store column indices
alpar@1
    65
-- of (non-zero) elements of the i-th row to the locations ndx[1], ...,
alpar@1
    66
-- ndx[len], where len is number of non-zeros in the i-th row returned
alpar@1
    67
-- on exit. Analogously, in order to obtain a j-th column of the matrix
alpar@1
    68
-- A, the routine mat is called with the parameter k = -j, 1 <= j <= n,
alpar@1
    69
-- and should return pattern of the j-th column in the same way as for
alpar@1
    70
-- row patterns. Note that the routine mat may be called more than once
alpar@1
    71
-- for the same rows and columns.
alpar@1
    72
--
alpar@1
    73
-- On exit the routine computes two resultant arrays rn and cn, which
alpar@1
    74
-- define the permutation matrices P and Q, respectively. The array rn
alpar@1
    75
-- should have at least 1+m locations, where rn[i] = i' (1 <= i <= m)
alpar@1
    76
-- means that i-th row of the original matrix A corresponds to i'-th row
alpar@1
    77
-- of the matrix B = P*A*Q. Similarly, the array cn should have at least
alpar@1
    78
-- 1+n locations, where cn[j] = j' (1 <= j <= n) means that j-th column
alpar@1
    79
-- of the matrix A corresponds to j'-th column of the matrix B.
alpar@1
    80
--
alpar@1
    81
-- *Returns*
alpar@1
    82
--
alpar@1
    83
-- The routine triang returns the size of the lower tringular part of
alpar@1
    84
-- the matrix B = P*A*Q (see the figure above).
alpar@1
    85
--
alpar@1
    86
-- *Complexity*
alpar@1
    87
--
alpar@1
    88
-- The time complexity of the routine triang is O(nnz), where nnz is
alpar@1
    89
-- number of non-zeros in the given matrix A.
alpar@1
    90
--
alpar@1
    91
-- *Algorithm*
alpar@1
    92
--
alpar@1
    93
-- The routine triang starts from the matrix B = P*Q*A, where P and Q
alpar@1
    94
-- are unity matrices, so initially B = A.
alpar@1
    95
--
alpar@1
    96
-- Before the next iteration B = (B1 | B2 | B3), where B1 is partially
alpar@1
    97
-- built a lower triangular submatrix, B2 is the active submatrix, and
alpar@1
    98
-- B3 is a submatrix that contains rejected columns. Thus, the current
alpar@1
    99
-- matrix B looks like follows (initially k1 = 1 and k2 = n):
alpar@1
   100
--
alpar@1
   101
--       1         k1         k2         n
alpar@1
   102
--    1  x . . . . . . . . . . . . . # # #
alpar@1
   103
--       x x . . . . . . . . . . . . # # #
alpar@1
   104
--       x x x . . . . . . . . . . # # # #
alpar@1
   105
--       x x x x . . . . . . . . . # # # #
alpar@1
   106
--       x x x x x . . . . . . . # # # # #
alpar@1
   107
--    k1 x x x x x * * * * * * * # # # # #
alpar@1
   108
--       x x x x x * * * * * * * # # # # #
alpar@1
   109
--       x x x x x * * * * * * * # # # # #
alpar@1
   110
--       x x x x x * * * * * * * # # # # #
alpar@1
   111
--    m  x x x x x * * * * * * * # # # # #
alpar@1
   112
--       <--B1---> <----B2-----> <---B3-->
alpar@1
   113
--
alpar@1
   114
-- On each iteartion the routine looks for a singleton row, i.e. some
alpar@1
   115
-- row that has the only non-zero in the active submatrix B2. If such
alpar@1
   116
-- row exists and the corresponding non-zero is b[i,j], where (by the
alpar@1
   117
-- definition) k1 <= i <= m and k1 <= j <= k2, the routine permutes
alpar@1
   118
-- k1-th and i-th rows and k1-th and j-th columns of the matrix B (in
alpar@1
   119
-- order to place the element in the position b[k1,k1]), removes the
alpar@1
   120
-- k1-th column from the active submatrix B2, and adds this column to
alpar@1
   121
-- the submatrix B1. If no row singletons exist, but B2 is not empty
alpar@1
   122
-- yet, the routine chooses a j-th column, which has maximal number of
alpar@1
   123
-- non-zeros among other columns of B2, removes this column from B2 and
alpar@1
   124
-- adds it to the submatrix B3 in the hope that new row singletons will
alpar@1
   125
-- appear in the active submatrix. */
alpar@1
   126
alpar@1
   127
static int triang(int m, int n,
alpar@1
   128
      void *info, int (*mat)(void *info, int k, int ndx[]),
alpar@1
   129
      int rn[], int cn[])
alpar@1
   130
{     int *ndx; /* int ndx[1+max(m,n)]; */
alpar@1
   131
      /* this array is used for querying row and column patterns of the
alpar@1
   132
         given matrix A (the third parameter to the routine mat) */
alpar@1
   133
      int *rs_len; /* int rs_len[1+m]; */
alpar@1
   134
      /* rs_len[0] is not used;
alpar@1
   135
         rs_len[i], 1 <= i <= m, is number of non-zeros in the i-th row
alpar@1
   136
         of the matrix A, which (non-zeros) belong to the current active
alpar@1
   137
         submatrix */
alpar@1
   138
      int *rs_head; /* int rs_head[1+n]; */
alpar@1
   139
      /* rs_head[len], 0 <= len <= n, is the number i of the first row
alpar@1
   140
         of the matrix A, for which rs_len[i] = len */
alpar@1
   141
      int *rs_prev; /* int rs_prev[1+m]; */
alpar@1
   142
      /* rs_prev[0] is not used;
alpar@1
   143
         rs_prev[i], 1 <= i <= m, is a number i' of the previous row of
alpar@1
   144
         the matrix A, for which rs_len[i] = rs_len[i'] (zero marks the
alpar@1
   145
         end of this linked list) */
alpar@1
   146
      int *rs_next; /* int rs_next[1+m]; */
alpar@1
   147
      /* rs_next[0] is not used;
alpar@1
   148
         rs_next[i], 1 <= i <= m, is a number i' of the next row of the
alpar@1
   149
         matrix A, for which rs_len[i] = rs_len[i'] (zero marks the end
alpar@1
   150
         this linked list) */
alpar@1
   151
      int cs_head;
alpar@1
   152
      /* is a number j of the first column of the matrix A, which has
alpar@1
   153
         maximal number of non-zeros among other columns */
alpar@1
   154
      int *cs_prev; /* cs_prev[1+n]; */
alpar@1
   155
      /* cs_prev[0] is not used;
alpar@1
   156
         cs_prev[j], 1 <= j <= n, is a number of the previous column of
alpar@1
   157
         the matrix A with the same or greater number of non-zeros than
alpar@1
   158
         in the j-th column (zero marks the end of this linked list) */
alpar@1
   159
      int *cs_next; /* cs_next[1+n]; */
alpar@1
   160
      /* cs_next[0] is not used;
alpar@1
   161
         cs_next[j], 1 <= j <= n, is a number of the next column of
alpar@1
   162
         the matrix A with the same or lesser number of non-zeros than
alpar@1
   163
         in the j-th column (zero marks the end of this linked list) */
alpar@1
   164
      int i, j, ii, jj, k1, k2, len, t, size = 0;
alpar@1
   165
      int *head, *rn_inv, *cn_inv;
alpar@1
   166
      if (!(m > 0 && n > 0))
alpar@1
   167
         xerror("triang: m = %d; n = %d; invalid dimension\n", m, n);
alpar@1
   168
      /* allocate working arrays */
alpar@1
   169
      ndx = xcalloc(1+(m >= n ? m : n), sizeof(int));
alpar@1
   170
      rs_len = xcalloc(1+m, sizeof(int));
alpar@1
   171
      rs_head = xcalloc(1+n, sizeof(int));
alpar@1
   172
      rs_prev = xcalloc(1+m, sizeof(int));
alpar@1
   173
      rs_next = xcalloc(1+m, sizeof(int));
alpar@1
   174
      cs_prev = xcalloc(1+n, sizeof(int));
alpar@1
   175
      cs_next = xcalloc(1+n, sizeof(int));
alpar@1
   176
      /* build linked lists of columns of the matrix A with the same
alpar@1
   177
         number of non-zeros */
alpar@1
   178
      head = rs_len; /* currently rs_len is used as working array */
alpar@1
   179
      for (len = 0; len <= m; len ++) head[len] = 0;
alpar@1
   180
      for (j = 1; j <= n; j++)
alpar@1
   181
      {  /* obtain length of the j-th column */
alpar@1
   182
         len = mat(info, -j, ndx);
alpar@1
   183
         xassert(0 <= len && len <= m);
alpar@1
   184
         /* include the j-th column in the corresponding linked list */
alpar@1
   185
         cs_prev[j] = head[len];
alpar@1
   186
         head[len] = j;
alpar@1
   187
      }
alpar@1
   188
      /* merge all linked lists of columns in one linked list, where
alpar@1
   189
         columns are ordered by descending of their lengths */
alpar@1
   190
      cs_head = 0;
alpar@1
   191
      for (len = 0; len <= m; len++)
alpar@1
   192
      {  for (j = head[len]; j != 0; j = cs_prev[j])
alpar@1
   193
         {  cs_next[j] = cs_head;
alpar@1
   194
            cs_head = j;
alpar@1
   195
         }
alpar@1
   196
      }
alpar@1
   197
      jj = 0;
alpar@1
   198
      for (j = cs_head; j != 0; j = cs_next[j])
alpar@1
   199
      {  cs_prev[j] = jj;
alpar@1
   200
         jj = j;
alpar@1
   201
      }
alpar@1
   202
      /* build initial doubly linked lists of rows of the matrix A with
alpar@1
   203
         the same number of non-zeros */
alpar@1
   204
      for (len = 0; len <= n; len++) rs_head[len] = 0;
alpar@1
   205
      for (i = 1; i <= m; i++)
alpar@1
   206
      {  /* obtain length of the i-th row */
alpar@1
   207
         rs_len[i] = len = mat(info, +i, ndx);
alpar@1
   208
         xassert(0 <= len && len <= n);
alpar@1
   209
         /* include the i-th row in the correspondng linked list */
alpar@1
   210
         rs_prev[i] = 0;
alpar@1
   211
         rs_next[i] = rs_head[len];
alpar@1
   212
         if (rs_next[i] != 0) rs_prev[rs_next[i]] = i;
alpar@1
   213
         rs_head[len] = i;
alpar@1
   214
      }
alpar@1
   215
      /* initially all rows and columns of the matrix A are active */
alpar@1
   216
      for (i = 1; i <= m; i++) rn[i] = 0;
alpar@1
   217
      for (j = 1; j <= n; j++) cn[j] = 0;
alpar@1
   218
      /* set initial bounds of the active submatrix */
alpar@1
   219
      k1 = 1, k2 = n;
alpar@1
   220
      /* main loop starts here */
alpar@1
   221
      while (k1 <= k2)
alpar@1
   222
      {  i = rs_head[1];
alpar@1
   223
         if (i != 0)
alpar@1
   224
         {  /* the i-th row of the matrix A is a row singleton, since
alpar@1
   225
               it has the only non-zero in the active submatrix */
alpar@1
   226
            xassert(rs_len[i] == 1);
alpar@1
   227
            /* determine the number j of an active column of the matrix
alpar@1
   228
               A, in which this non-zero is placed */
alpar@1
   229
            j = 0;
alpar@1
   230
            t = mat(info, +i, ndx);
alpar@1
   231
            xassert(0 <= t && t <= n);
alpar@1
   232
            for (t = t; t >= 1; t--)
alpar@1
   233
            {  jj = ndx[t];
alpar@1
   234
               xassert(1 <= jj && jj <= n);
alpar@1
   235
               if (cn[jj] == 0)
alpar@1
   236
               {  xassert(j == 0);
alpar@1
   237
                  j = jj;
alpar@1
   238
               }
alpar@1
   239
            }
alpar@1
   240
            xassert(j != 0);
alpar@1
   241
            /* the singleton is a[i,j]; move a[i,j] to the position
alpar@1
   242
               b[k1,k1] of the matrix B */
alpar@1
   243
            rn[i] = cn[j] = k1;
alpar@1
   244
            /* shift the left bound of the active submatrix */
alpar@1
   245
            k1++;
alpar@1
   246
            /* increase the size of the lower triangular part */
alpar@1
   247
            size++;
alpar@1
   248
         }
alpar@1
   249
         else
alpar@1
   250
         {  /* the current active submatrix has no row singletons */
alpar@1
   251
            /* remove an active column with maximal number of non-zeros
alpar@1
   252
               from the active submatrix */
alpar@1
   253
            j = cs_head;
alpar@1
   254
            xassert(j != 0);
alpar@1
   255
            cn[j] = k2;
alpar@1
   256
            /* shift the right bound of the active submatrix */
alpar@1
   257
            k2--;
alpar@1
   258
         }
alpar@1
   259
         /* the j-th column of the matrix A has been removed from the
alpar@1
   260
            active submatrix */
alpar@1
   261
         /* remove the j-th column from the linked list */
alpar@1
   262
         if (cs_prev[j] == 0)
alpar@1
   263
            cs_head = cs_next[j];
alpar@1
   264
         else
alpar@1
   265
            cs_next[cs_prev[j]] = cs_next[j];
alpar@1
   266
         if (cs_next[j] == 0)
alpar@1
   267
            /* nop */;
alpar@1
   268
         else
alpar@1
   269
            cs_prev[cs_next[j]] = cs_prev[j];
alpar@1
   270
         /* go through non-zeros of the j-th columns and update active
alpar@1
   271
            lengths of the corresponding rows */
alpar@1
   272
         t = mat(info, -j, ndx);
alpar@1
   273
         xassert(0 <= t && t <= m);
alpar@1
   274
         for (t = t; t >= 1; t--)
alpar@1
   275
         {  i = ndx[t];
alpar@1
   276
            xassert(1 <= i && i <= m);
alpar@1
   277
            /* the non-zero a[i,j] has left the active submatrix */
alpar@1
   278
            len = rs_len[i];
alpar@1
   279
            xassert(len >= 1);
alpar@1
   280
            /* remove the i-th row from the linked list of rows with
alpar@1
   281
               active length len */
alpar@1
   282
            if (rs_prev[i] == 0)
alpar@1
   283
               rs_head[len] = rs_next[i];
alpar@1
   284
            else
alpar@1
   285
               rs_next[rs_prev[i]] = rs_next[i];
alpar@1
   286
            if (rs_next[i] == 0)
alpar@1
   287
               /* nop */;
alpar@1
   288
            else
alpar@1
   289
               rs_prev[rs_next[i]] = rs_prev[i];
alpar@1
   290
            /* decrease the active length of the i-th row */
alpar@1
   291
            rs_len[i] = --len;
alpar@1
   292
            /* return the i-th row to the corresponding linked list */
alpar@1
   293
            rs_prev[i] = 0;
alpar@1
   294
            rs_next[i] = rs_head[len];
alpar@1
   295
            if (rs_next[i] != 0) rs_prev[rs_next[i]] = i;
alpar@1
   296
            rs_head[len] = i;
alpar@1
   297
         }
alpar@1
   298
      }
alpar@1
   299
      /* other rows of the matrix A, which are still active, correspond
alpar@1
   300
         to rows k1, ..., m of the matrix B (in arbitrary order) */
alpar@1
   301
      for (i = 1; i <= m; i++) if (rn[i] == 0) rn[i] = k1++;
alpar@1
   302
      /* but for columns this is not needed, because now the submatrix
alpar@1
   303
         B2 has no columns */
alpar@1
   304
      for (j = 1; j <= n; j++) xassert(cn[j] != 0);
alpar@1
   305
      /* perform some optional checks */
alpar@1
   306
      /* make sure that rn is a permutation of {1, ..., m} and cn is a
alpar@1
   307
         permutation of {1, ..., n} */
alpar@1
   308
      rn_inv = rs_len; /* used as working array */
alpar@1
   309
      for (ii = 1; ii <= m; ii++) rn_inv[ii] = 0;
alpar@1
   310
      for (i = 1; i <= m; i++)
alpar@1
   311
      {  ii = rn[i];
alpar@1
   312
         xassert(1 <= ii && ii <= m);
alpar@1
   313
         xassert(rn_inv[ii] == 0);
alpar@1
   314
         rn_inv[ii] = i;
alpar@1
   315
      }
alpar@1
   316
      cn_inv = rs_head; /* used as working array */
alpar@1
   317
      for (jj = 1; jj <= n; jj++) cn_inv[jj] = 0;
alpar@1
   318
      for (j = 1; j <= n; j++)
alpar@1
   319
      {  jj = cn[j];
alpar@1
   320
         xassert(1 <= jj && jj <= n);
alpar@1
   321
         xassert(cn_inv[jj] == 0);
alpar@1
   322
         cn_inv[jj] = j;
alpar@1
   323
      }
alpar@1
   324
      /* make sure that the matrix B = P*A*Q really has the form, which
alpar@1
   325
         was declared */
alpar@1
   326
      for (ii = 1; ii <= size; ii++)
alpar@1
   327
      {  int diag = 0;
alpar@1
   328
         i = rn_inv[ii];
alpar@1
   329
         t = mat(info, +i, ndx);
alpar@1
   330
         xassert(0 <= t && t <= n);
alpar@1
   331
         for (t = t; t >= 1; t--)
alpar@1
   332
         {  j = ndx[t];
alpar@1
   333
            xassert(1 <= j && j <= n);
alpar@1
   334
            jj = cn[j];
alpar@1
   335
            if (jj <= size) xassert(jj <= ii);
alpar@1
   336
            if (jj == ii)
alpar@1
   337
            {  xassert(!diag);
alpar@1
   338
               diag = 1;
alpar@1
   339
            }
alpar@1
   340
         }
alpar@1
   341
         xassert(diag);
alpar@1
   342
      }
alpar@1
   343
      /* free working arrays */
alpar@1
   344
      xfree(ndx);
alpar@1
   345
      xfree(rs_len);
alpar@1
   346
      xfree(rs_head);
alpar@1
   347
      xfree(rs_prev);
alpar@1
   348
      xfree(rs_next);
alpar@1
   349
      xfree(cs_prev);
alpar@1
   350
      xfree(cs_next);
alpar@1
   351
      /* return to the calling program */
alpar@1
   352
      return size;
alpar@1
   353
}
alpar@1
   354
alpar@1
   355
/*----------------------------------------------------------------------
alpar@1
   356
-- adv_basis - construct advanced initial LP basis.
alpar@1
   357
--
alpar@1
   358
-- *Synopsis*
alpar@1
   359
--
alpar@1
   360
-- #include "glpini.h"
alpar@1
   361
-- void adv_basis(glp_prob *lp);
alpar@1
   362
--
alpar@1
   363
-- *Description*
alpar@1
   364
--
alpar@1
   365
-- The routine adv_basis constructs an advanced initial basis for an LP
alpar@1
   366
-- problem object, which the parameter lp points to.
alpar@1
   367
--
alpar@1
   368
-- In order to build the initial basis the routine does the following:
alpar@1
   369
--
alpar@1
   370
-- 1) includes in the basis all non-fixed auxiliary variables;
alpar@1
   371
--
alpar@1
   372
-- 2) includes in the basis as many as possible non-fixed structural
alpar@1
   373
--    variables preserving triangular form of the basis matrix;
alpar@1
   374
--
alpar@1
   375
-- 3) includes in the basis appropriate (fixed) auxiliary variables
alpar@1
   376
--    in order to complete the basis.
alpar@1
   377
--
alpar@1
   378
-- As a result the initial basis has minimum of fixed variables and the
alpar@1
   379
-- corresponding basis matrix is triangular. */
alpar@1
   380
alpar@1
   381
static int mat(void *info, int k, int ndx[])
alpar@1
   382
{     /* this auxiliary routine returns the pattern of a given row or
alpar@1
   383
         a given column of the augmented constraint matrix A~ = (I|-A),
alpar@1
   384
         in which columns of fixed variables are implicitly cleared */
alpar@1
   385
      LPX *lp = info;
alpar@1
   386
      int m = lpx_get_num_rows(lp);
alpar@1
   387
      int n = lpx_get_num_cols(lp);
alpar@1
   388
      int typx, i, j, lll, len = 0;
alpar@1
   389
      if (k > 0)
alpar@1
   390
      {  /* the pattern of the i-th row is required */
alpar@1
   391
         i = +k;
alpar@1
   392
         xassert(1 <= i && i <= m);
alpar@1
   393
#if 0 /* 22/XII-2003 */
alpar@1
   394
         /* if the auxiliary variable x[i] is non-fixed, include its
alpar@1
   395
            element (placed in the i-th column) in the pattern */
alpar@1
   396
         lpx_get_row_bnds(lp, i, &typx, NULL, NULL);
alpar@1
   397
         if (typx != LPX_FX) ndx[++len] = i;
alpar@1
   398
         /* include in the pattern elements placed in columns, which
alpar@1
   399
            correspond to non-fixed structural varables */
alpar@1
   400
         i_beg = aa_ptr[i];
alpar@1
   401
         i_end = i_beg + aa_len[i] - 1;
alpar@1
   402
         for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++)
alpar@1
   403
         {  j = m + sv_ndx[i_ptr];
alpar@1
   404
            lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL);
alpar@1
   405
            if (typx != LPX_FX) ndx[++len] = j;
alpar@1
   406
         }
alpar@1
   407
#else
alpar@1
   408
         lll = lpx_get_mat_row(lp, i, ndx, NULL);
alpar@1
   409
         for (k = 1; k <= lll; k++)
alpar@1
   410
         {  lpx_get_col_bnds(lp, ndx[k], &typx, NULL, NULL);
alpar@1
   411
            if (typx != LPX_FX) ndx[++len] = m + ndx[k];
alpar@1
   412
         }
alpar@1
   413
         lpx_get_row_bnds(lp, i, &typx, NULL, NULL);
alpar@1
   414
         if (typx != LPX_FX) ndx[++len] = i;
alpar@1
   415
#endif
alpar@1
   416
      }
alpar@1
   417
      else
alpar@1
   418
      {  /* the pattern of the j-th column is required */
alpar@1
   419
         j = -k;
alpar@1
   420
         xassert(1 <= j && j <= m+n);
alpar@1
   421
         /* if the (auxiliary or structural) variable x[j] is fixed,
alpar@1
   422
            the pattern of its column is empty */
alpar@1
   423
         if (j <= m)
alpar@1
   424
            lpx_get_row_bnds(lp, j, &typx, NULL, NULL);
alpar@1
   425
         else
alpar@1
   426
            lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL);
alpar@1
   427
         if (typx != LPX_FX)
alpar@1
   428
         {  if (j <= m)
alpar@1
   429
            {  /* x[j] is non-fixed auxiliary variable */
alpar@1
   430
               ndx[++len] = j;
alpar@1
   431
            }
alpar@1
   432
            else
alpar@1
   433
            {  /* x[j] is non-fixed structural variables */
alpar@1
   434
#if 0 /* 22/XII-2003 */
alpar@1
   435
               j_beg = aa_ptr[j];
alpar@1
   436
               j_end = j_beg + aa_len[j] - 1;
alpar@1
   437
               for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++)
alpar@1
   438
                  ndx[++len] = sv_ndx[j_ptr];
alpar@1
   439
#else
alpar@1
   440
               len = lpx_get_mat_col(lp, j-m, ndx, NULL);
alpar@1
   441
#endif
alpar@1
   442
            }
alpar@1
   443
         }
alpar@1
   444
      }
alpar@1
   445
      /* return the length of the row/column pattern */
alpar@1
   446
      return len;
alpar@1
   447
}
alpar@1
   448
alpar@1
   449
static void adv_basis(glp_prob *lp)
alpar@1
   450
{     int m = lpx_get_num_rows(lp);
alpar@1
   451
      int n = lpx_get_num_cols(lp);
alpar@1
   452
      int i, j, jj, k, size;
alpar@1
   453
      int *rn, *cn, *rn_inv, *cn_inv;
alpar@1
   454
      int typx, *tagx = xcalloc(1+m+n, sizeof(int));
alpar@1
   455
      double lb, ub;
alpar@1
   456
      xprintf("Constructing initial basis...\n");
alpar@1
   457
#if 0 /* 13/V-2009 */
alpar@1
   458
      if (m == 0)
alpar@1
   459
         xerror("glp_adv_basis: problem has no rows\n");
alpar@1
   460
      if (n == 0)
alpar@1
   461
         xerror("glp_adv_basis: problem has no columns\n");
alpar@1
   462
#else
alpar@1
   463
      if (m == 0 || n == 0)
alpar@1
   464
      {  glp_std_basis(lp);
alpar@1
   465
         return;
alpar@1
   466
      }
alpar@1
   467
#endif
alpar@1
   468
      /* use the routine triang (see above) to find maximal triangular
alpar@1
   469
         part of the augmented constraint matrix A~ = (I|-A); in order
alpar@1
   470
         to prevent columns of fixed variables to be included in the
alpar@1
   471
         triangular part, such columns are implictly removed from the
alpar@1
   472
         matrix A~ by the routine adv_mat */
alpar@1
   473
      rn = xcalloc(1+m, sizeof(int));
alpar@1
   474
      cn = xcalloc(1+m+n, sizeof(int));
alpar@1
   475
      size = triang(m, m+n, lp, mat, rn, cn);
alpar@1
   476
      if (lpx_get_int_parm(lp, LPX_K_MSGLEV) >= 3)
alpar@1
   477
         xprintf("Size of triangular part = %d\n", size);
alpar@1
   478
      /* the first size rows and columns of the matrix P*A~*Q (where
alpar@1
   479
         P and Q are permutation matrices defined by the arrays rn and
alpar@1
   480
         cn) form a lower triangular matrix; build the arrays (rn_inv
alpar@1
   481
         and cn_inv), which define the matrices inv(P) and inv(Q) */
alpar@1
   482
      rn_inv = xcalloc(1+m, sizeof(int));
alpar@1
   483
      cn_inv = xcalloc(1+m+n, sizeof(int));
alpar@1
   484
      for (i = 1; i <= m; i++) rn_inv[rn[i]] = i;
alpar@1
   485
      for (j = 1; j <= m+n; j++) cn_inv[cn[j]] = j;
alpar@1
   486
      /* include the columns of the matrix A~, which correspond to the
alpar@1
   487
         first size columns of the matrix P*A~*Q, in the basis */
alpar@1
   488
      for (k = 1; k <= m+n; k++) tagx[k] = -1;
alpar@1
   489
      for (jj = 1; jj <= size; jj++)
alpar@1
   490
      {  j = cn_inv[jj];
alpar@1
   491
         /* the j-th column of A~ is the jj-th column of P*A~*Q */
alpar@1
   492
         tagx[j] = LPX_BS;
alpar@1
   493
      }
alpar@1
   494
      /* if size < m, we need to add appropriate columns of auxiliary
alpar@1
   495
         variables to the basis */
alpar@1
   496
      for (jj = size + 1; jj <= m; jj++)
alpar@1
   497
      {  /* the jj-th column of P*A~*Q should be replaced by the column
alpar@1
   498
            of the auxiliary variable, for which the only unity element
alpar@1
   499
            is placed in the position [jj,jj] */
alpar@1
   500
         i = rn_inv[jj];
alpar@1
   501
         /* the jj-th row of P*A~*Q is the i-th row of A~, but in the
alpar@1
   502
            i-th row of A~ the unity element belongs to the i-th column
alpar@1
   503
            of A~; therefore the disired column corresponds to the i-th
alpar@1
   504
            auxiliary variable (note that this column doesn't belong to
alpar@1
   505
            the triangular part found by the routine triang) */
alpar@1
   506
         xassert(1 <= i && i <= m);
alpar@1
   507
         xassert(cn[i] > size);
alpar@1
   508
         tagx[i] = LPX_BS;
alpar@1
   509
      }
alpar@1
   510
      /* free working arrays */
alpar@1
   511
      xfree(rn);
alpar@1
   512
      xfree(cn);
alpar@1
   513
      xfree(rn_inv);
alpar@1
   514
      xfree(cn_inv);
alpar@1
   515
      /* build tags of non-basic variables */
alpar@1
   516
      for (k = 1; k <= m+n; k++)
alpar@1
   517
      {  if (tagx[k] != LPX_BS)
alpar@1
   518
         {  if (k <= m)
alpar@1
   519
               lpx_get_row_bnds(lp, k, &typx, &lb, &ub);
alpar@1
   520
            else
alpar@1
   521
               lpx_get_col_bnds(lp, k-m, &typx, &lb, &ub);
alpar@1
   522
            switch (typx)
alpar@1
   523
            {  case LPX_FR:
alpar@1
   524
                  tagx[k] = LPX_NF; break;
alpar@1
   525
               case LPX_LO:
alpar@1
   526
                  tagx[k] = LPX_NL; break;
alpar@1
   527
               case LPX_UP:
alpar@1
   528
                  tagx[k] = LPX_NU; break;
alpar@1
   529
               case LPX_DB:
alpar@1
   530
                  tagx[k] =
alpar@1
   531
                     (fabs(lb) <= fabs(ub) ? LPX_NL : LPX_NU);
alpar@1
   532
                  break;
alpar@1
   533
               case LPX_FX:
alpar@1
   534
                  tagx[k] = LPX_NS; break;
alpar@1
   535
               default:
alpar@1
   536
                  xassert(typx != typx);
alpar@1
   537
            }
alpar@1
   538
         }
alpar@1
   539
      }
alpar@1
   540
      for (k = 1; k <= m+n; k++)
alpar@1
   541
      {  if (k <= m)
alpar@1
   542
            lpx_set_row_stat(lp, k, tagx[k]);
alpar@1
   543
         else
alpar@1
   544
            lpx_set_col_stat(lp, k-m, tagx[k]);
alpar@1
   545
      }
alpar@1
   546
      xfree(tagx);
alpar@1
   547
      return;
alpar@1
   548
}
alpar@1
   549
alpar@1
   550
/***********************************************************************
alpar@1
   551
*  NAME
alpar@1
   552
*
alpar@1
   553
*  glp_adv_basis - construct advanced initial LP basis
alpar@1
   554
*
alpar@1
   555
*  SYNOPSIS
alpar@1
   556
*
alpar@1
   557
*  void glp_adv_basis(glp_prob *lp, int flags);
alpar@1
   558
*
alpar@1
   559
*  DESCRIPTION
alpar@1
   560
*
alpar@1
   561
*  The routine glp_adv_basis constructs an advanced initial basis for
alpar@1
   562
*  the specified problem object.
alpar@1
   563
*
alpar@1
   564
*  The parameter flags is reserved for use in the future and must be
alpar@1
   565
*  specified as zero. */
alpar@1
   566
alpar@1
   567
void glp_adv_basis(glp_prob *lp, int flags)
alpar@1
   568
{     if (flags != 0)
alpar@1
   569
         xerror("glp_adv_basis: flags = %d; invalid flags\n", flags);
alpar@1
   570
      if (lp->m == 0 || lp->n == 0)
alpar@1
   571
         glp_std_basis(lp);
alpar@1
   572
      else
alpar@1
   573
         adv_basis(lp);
alpar@1
   574
      return;
alpar@1
   575
}
alpar@1
   576
alpar@1
   577
/* eof */