|
1 /* ========================================================================= */ |
|
2 /* === AMD_2 =============================================================== */ |
|
3 /* ========================================================================= */ |
|
4 |
|
5 /* ------------------------------------------------------------------------- */ |
|
6 /* AMD, Copyright (c) Timothy A. Davis, */ |
|
7 /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ |
|
8 /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ |
|
9 /* web: http://www.cise.ufl.edu/research/sparse/amd */ |
|
10 /* ------------------------------------------------------------------------- */ |
|
11 |
|
12 /* AMD_2: performs the AMD ordering on a symmetric sparse matrix A, followed |
|
13 * by a postordering (via depth-first search) of the assembly tree using the |
|
14 * AMD_postorder routine. |
|
15 */ |
|
16 |
|
17 #include "amd_internal.h" |
|
18 |
|
19 /* ========================================================================= */ |
|
20 /* === clear_flag ========================================================== */ |
|
21 /* ========================================================================= */ |
|
22 |
|
23 static Int clear_flag (Int wflg, Int wbig, Int W [ ], Int n) |
|
24 { |
|
25 Int x ; |
|
26 if (wflg < 2 || wflg >= wbig) |
|
27 { |
|
28 for (x = 0 ; x < n ; x++) |
|
29 { |
|
30 if (W [x] != 0) W [x] = 1 ; |
|
31 } |
|
32 wflg = 2 ; |
|
33 } |
|
34 /* at this point, W [0..n-1] < wflg holds */ |
|
35 return (wflg) ; |
|
36 } |
|
37 |
|
38 |
|
39 /* ========================================================================= */ |
|
40 /* === AMD_2 =============================================================== */ |
|
41 /* ========================================================================= */ |
|
42 |
|
43 GLOBAL void AMD_2 |
|
44 ( |
|
45 Int n, /* A is n-by-n, where n > 0 */ |
|
46 Int Pe [ ], /* Pe [0..n-1]: index in Iw of row i on input */ |
|
47 Int Iw [ ], /* workspace of size iwlen. Iw [0..pfree-1] |
|
48 * holds the matrix on input */ |
|
49 Int Len [ ], /* Len [0..n-1]: length for row/column i on input */ |
|
50 Int iwlen, /* length of Iw. iwlen >= pfree + n */ |
|
51 Int pfree, /* Iw [pfree ... iwlen-1] is empty on input */ |
|
52 |
|
53 /* 7 size-n workspaces, not defined on input: */ |
|
54 Int Nv [ ], /* the size of each supernode on output */ |
|
55 Int Next [ ], /* the output inverse permutation */ |
|
56 Int Last [ ], /* the output permutation */ |
|
57 Int Head [ ], |
|
58 Int Elen [ ], /* the size columns of L for each supernode */ |
|
59 Int Degree [ ], |
|
60 Int W [ ], |
|
61 |
|
62 /* control parameters and output statistics */ |
|
63 double Control [ ], /* array of size AMD_CONTROL */ |
|
64 double Info [ ] /* array of size AMD_INFO */ |
|
65 ) |
|
66 { |
|
67 |
|
68 /* |
|
69 * Given a representation of the nonzero pattern of a symmetric matrix, A, |
|
70 * (excluding the diagonal) perform an approximate minimum (UMFPACK/MA38-style) |
|
71 * degree ordering to compute a pivot order such that the introduction of |
|
72 * nonzeros (fill-in) in the Cholesky factors A = LL' is kept low. At each |
|
73 * step, the pivot selected is the one with the minimum UMFAPACK/MA38-style |
|
74 * upper-bound on the external degree. This routine can optionally perform |
|
75 * aggresive absorption (as done by MC47B in the Harwell Subroutine |
|
76 * Library). |
|
77 * |
|
78 * The approximate degree algorithm implemented here is the symmetric analog of |
|
79 * the degree update algorithm in MA38 and UMFPACK (the Unsymmetric-pattern |
|
80 * MultiFrontal PACKage, both by Davis and Duff). The routine is based on the |
|
81 * MA27 minimum degree ordering algorithm by Iain Duff and John Reid. |
|
82 * |
|
83 * This routine is a translation of the original AMDBAR and MC47B routines, |
|
84 * in Fortran, with the following modifications: |
|
85 * |
|
86 * (1) dense rows/columns are removed prior to ordering the matrix, and placed |
|
87 * last in the output order. The presence of a dense row/column can |
|
88 * increase the ordering time by up to O(n^2), unless they are removed |
|
89 * prior to ordering. |
|
90 * |
|
91 * (2) the minimum degree ordering is followed by a postordering (depth-first |
|
92 * search) of the assembly tree. Note that mass elimination (discussed |
|
93 * below) combined with the approximate degree update can lead to the mass |
|
94 * elimination of nodes with lower exact degree than the current pivot |
|
95 * element. No additional fill-in is caused in the representation of the |
|
96 * Schur complement. The mass-eliminated nodes merge with the current |
|
97 * pivot element. They are ordered prior to the current pivot element. |
|
98 * Because they can have lower exact degree than the current element, the |
|
99 * merger of two or more of these nodes in the current pivot element can |
|
100 * lead to a single element that is not a "fundamental supernode". The |
|
101 * diagonal block can have zeros in it. Thus, the assembly tree used here |
|
102 * is not guaranteed to be the precise supernodal elemination tree (with |
|
103 * "funadmental" supernodes), and the postordering performed by this |
|
104 * routine is not guaranteed to be a precise postordering of the |
|
105 * elimination tree. |
|
106 * |
|
107 * (3) input parameters are added, to control aggressive absorption and the |
|
108 * detection of "dense" rows/columns of A. |
|
109 * |
|
110 * (4) additional statistical information is returned, such as the number of |
|
111 * nonzeros in L, and the flop counts for subsequent LDL' and LU |
|
112 * factorizations. These are slight upper bounds, because of the mass |
|
113 * elimination issue discussed above. |
|
114 * |
|
115 * (5) additional routines are added to interface this routine to MATLAB |
|
116 * to provide a simple C-callable user-interface, to check inputs for |
|
117 * errors, compute the symmetry of the pattern of A and the number of |
|
118 * nonzeros in each row/column of A+A', to compute the pattern of A+A', |
|
119 * to perform the assembly tree postordering, and to provide debugging |
|
120 * ouput. Many of these functions are also provided by the Fortran |
|
121 * Harwell Subroutine Library routine MC47A. |
|
122 * |
|
123 * (6) both int and UF_long versions are provided. In the descriptions below |
|
124 * and integer is and int or UF_long depending on which version is |
|
125 * being used. |
|
126 |
|
127 ********************************************************************** |
|
128 ***** CAUTION: ARGUMENTS ARE NOT CHECKED FOR ERRORS ON INPUT. ****** |
|
129 ********************************************************************** |
|
130 ** If you want error checking, a more versatile input format, and a ** |
|
131 ** simpler user interface, use amd_order or amd_l_order instead. ** |
|
132 ** This routine is not meant to be user-callable. ** |
|
133 ********************************************************************** |
|
134 |
|
135 * ---------------------------------------------------------------------------- |
|
136 * References: |
|
137 * ---------------------------------------------------------------------------- |
|
138 * |
|
139 * [1] Timothy A. Davis and Iain Duff, "An unsymmetric-pattern multifrontal |
|
140 * method for sparse LU factorization", SIAM J. Matrix Analysis and |
|
141 * Applications, vol. 18, no. 1, pp. 140-158. Discusses UMFPACK / MA38, |
|
142 * which first introduced the approximate minimum degree used by this |
|
143 * routine. |
|
144 * |
|
145 * [2] Patrick Amestoy, Timothy A. Davis, and Iain S. Duff, "An approximate |
|
146 * minimum degree ordering algorithm," SIAM J. Matrix Analysis and |
|
147 * Applications, vol. 17, no. 4, pp. 886-905, 1996. Discusses AMDBAR and |
|
148 * MC47B, which are the Fortran versions of this routine. |
|
149 * |
|
150 * [3] Alan George and Joseph Liu, "The evolution of the minimum degree |
|
151 * ordering algorithm," SIAM Review, vol. 31, no. 1, pp. 1-19, 1989. |
|
152 * We list below the features mentioned in that paper that this code |
|
153 * includes: |
|
154 * |
|
155 * mass elimination: |
|
156 * Yes. MA27 relied on supervariable detection for mass elimination. |
|
157 * |
|
158 * indistinguishable nodes: |
|
159 * Yes (we call these "supervariables"). This was also in the MA27 |
|
160 * code - although we modified the method of detecting them (the |
|
161 * previous hash was the true degree, which we no longer keep track |
|
162 * of). A supervariable is a set of rows with identical nonzero |
|
163 * pattern. All variables in a supervariable are eliminated together. |
|
164 * Each supervariable has as its numerical name that of one of its |
|
165 * variables (its principal variable). |
|
166 * |
|
167 * quotient graph representation: |
|
168 * Yes. We use the term "element" for the cliques formed during |
|
169 * elimination. This was also in the MA27 code. The algorithm can |
|
170 * operate in place, but it will work more efficiently if given some |
|
171 * "elbow room." |
|
172 * |
|
173 * element absorption: |
|
174 * Yes. This was also in the MA27 code. |
|
175 * |
|
176 * external degree: |
|
177 * Yes. The MA27 code was based on the true degree. |
|
178 * |
|
179 * incomplete degree update and multiple elimination: |
|
180 * No. This was not in MA27, either. Our method of degree update |
|
181 * within MC47B is element-based, not variable-based. It is thus |
|
182 * not well-suited for use with incomplete degree update or multiple |
|
183 * elimination. |
|
184 * |
|
185 * Authors, and Copyright (C) 2004 by: |
|
186 * Timothy A. Davis, Patrick Amestoy, Iain S. Duff, John K. Reid. |
|
187 * |
|
188 * Acknowledgements: This work (and the UMFPACK package) was supported by the |
|
189 * National Science Foundation (ASC-9111263, DMS-9223088, and CCR-0203270). |
|
190 * The UMFPACK/MA38 approximate degree update algorithm, the unsymmetric analog |
|
191 * which forms the basis of AMD, was developed while Tim Davis was supported by |
|
192 * CERFACS (Toulouse, France) in a post-doctoral position. This C version, and |
|
193 * the etree postorder, were written while Tim Davis was on sabbatical at |
|
194 * Stanford University and Lawrence Berkeley National Laboratory. |
|
195 |
|
196 * ---------------------------------------------------------------------------- |
|
197 * INPUT ARGUMENTS (unaltered): |
|
198 * ---------------------------------------------------------------------------- |
|
199 |
|
200 * n: The matrix order. Restriction: n >= 1. |
|
201 * |
|
202 * iwlen: The size of the Iw array. On input, the matrix is stored in |
|
203 * Iw [0..pfree-1]. However, Iw [0..iwlen-1] should be slightly larger |
|
204 * than what is required to hold the matrix, at least iwlen >= pfree + n. |
|
205 * Otherwise, excessive compressions will take place. The recommended |
|
206 * value of iwlen is 1.2 * pfree + n, which is the value used in the |
|
207 * user-callable interface to this routine (amd_order.c). The algorithm |
|
208 * will not run at all if iwlen < pfree. Restriction: iwlen >= pfree + n. |
|
209 * Note that this is slightly more restrictive than the actual minimum |
|
210 * (iwlen >= pfree), but AMD_2 will be very slow with no elbow room. |
|
211 * Thus, this routine enforces a bare minimum elbow room of size n. |
|
212 * |
|
213 * pfree: On input the tail end of the array, Iw [pfree..iwlen-1], is empty, |
|
214 * and the matrix is stored in Iw [0..pfree-1]. During execution, |
|
215 * additional data is placed in Iw, and pfree is modified so that |
|
216 * Iw [pfree..iwlen-1] is always the unused part of Iw. |
|
217 * |
|
218 * Control: A double array of size AMD_CONTROL containing input parameters |
|
219 * that affect how the ordering is computed. If NULL, then default |
|
220 * settings are used. |
|
221 * |
|
222 * Control [AMD_DENSE] is used to determine whether or not a given input |
|
223 * row is "dense". A row is "dense" if the number of entries in the row |
|
224 * exceeds Control [AMD_DENSE] times sqrt (n), except that rows with 16 or |
|
225 * fewer entries are never considered "dense". To turn off the detection |
|
226 * of dense rows, set Control [AMD_DENSE] to a negative number, or to a |
|
227 * number larger than sqrt (n). The default value of Control [AMD_DENSE] |
|
228 * is AMD_DEFAULT_DENSE, which is defined in amd.h as 10. |
|
229 * |
|
230 * Control [AMD_AGGRESSIVE] is used to determine whether or not aggressive |
|
231 * absorption is to be performed. If nonzero, then aggressive absorption |
|
232 * is performed (this is the default). |
|
233 |
|
234 * ---------------------------------------------------------------------------- |
|
235 * INPUT/OUPUT ARGUMENTS: |
|
236 * ---------------------------------------------------------------------------- |
|
237 * |
|
238 * Pe: An integer array of size n. On input, Pe [i] is the index in Iw of |
|
239 * the start of row i. Pe [i] is ignored if row i has no off-diagonal |
|
240 * entries. Thus Pe [i] must be in the range 0 to pfree-1 for non-empty |
|
241 * rows. |
|
242 * |
|
243 * During execution, it is used for both supervariables and elements: |
|
244 * |
|
245 * Principal supervariable i: index into Iw of the description of |
|
246 * supervariable i. A supervariable represents one or more rows of |
|
247 * the matrix with identical nonzero pattern. In this case, |
|
248 * Pe [i] >= 0. |
|
249 * |
|
250 * Non-principal supervariable i: if i has been absorbed into another |
|
251 * supervariable j, then Pe [i] = FLIP (j), where FLIP (j) is defined |
|
252 * as (-(j)-2). Row j has the same pattern as row i. Note that j |
|
253 * might later be absorbed into another supervariable j2, in which |
|
254 * case Pe [i] is still FLIP (j), and Pe [j] = FLIP (j2) which is |
|
255 * < EMPTY, where EMPTY is defined as (-1) in amd_internal.h. |
|
256 * |
|
257 * Unabsorbed element e: the index into Iw of the description of element |
|
258 * e, if e has not yet been absorbed by a subsequent element. Element |
|
259 * e is created when the supervariable of the same name is selected as |
|
260 * the pivot. In this case, Pe [i] >= 0. |
|
261 * |
|
262 * Absorbed element e: if element e is absorbed into element e2, then |
|
263 * Pe [e] = FLIP (e2). This occurs when the pattern of e (which we |
|
264 * refer to as Le) is found to be a subset of the pattern of e2 (that |
|
265 * is, Le2). In this case, Pe [i] < EMPTY. If element e is "null" |
|
266 * (it has no nonzeros outside its pivot block), then Pe [e] = EMPTY, |
|
267 * and e is the root of an assembly subtree (or the whole tree if |
|
268 * there is just one such root). |
|
269 * |
|
270 * Dense variable i: if i is "dense", then Pe [i] = EMPTY. |
|
271 * |
|
272 * On output, Pe holds the assembly tree/forest, which implicitly |
|
273 * represents a pivot order with identical fill-in as the actual order |
|
274 * (via a depth-first search of the tree), as follows. If Nv [i] > 0, |
|
275 * then i represents a node in the assembly tree, and the parent of i is |
|
276 * Pe [i], or EMPTY if i is a root. If Nv [i] = 0, then (i, Pe [i]) |
|
277 * represents an edge in a subtree, the root of which is a node in the |
|
278 * assembly tree. Note that i refers to a row/column in the original |
|
279 * matrix, not the permuted matrix. |
|
280 * |
|
281 * Info: A double array of size AMD_INFO. If present, (that is, not NULL), |
|
282 * then statistics about the ordering are returned in the Info array. |
|
283 * See amd.h for a description. |
|
284 |
|
285 * ---------------------------------------------------------------------------- |
|
286 * INPUT/MODIFIED (undefined on output): |
|
287 * ---------------------------------------------------------------------------- |
|
288 * |
|
289 * Len: An integer array of size n. On input, Len [i] holds the number of |
|
290 * entries in row i of the matrix, excluding the diagonal. The contents |
|
291 * of Len are undefined on output. |
|
292 * |
|
293 * Iw: An integer array of size iwlen. On input, Iw [0..pfree-1] holds the |
|
294 * description of each row i in the matrix. The matrix must be symmetric, |
|
295 * and both upper and lower triangular parts must be present. The |
|
296 * diagonal must not be present. Row i is held as follows: |
|
297 * |
|
298 * Len [i]: the length of the row i data structure in the Iw array. |
|
299 * Iw [Pe [i] ... Pe [i] + Len [i] - 1]: |
|
300 * the list of column indices for nonzeros in row i (simple |
|
301 * supervariables), excluding the diagonal. All supervariables |
|
302 * start with one row/column each (supervariable i is just row i). |
|
303 * If Len [i] is zero on input, then Pe [i] is ignored on input. |
|
304 * |
|
305 * Note that the rows need not be in any particular order, and there |
|
306 * may be empty space between the rows. |
|
307 * |
|
308 * During execution, the supervariable i experiences fill-in. This is |
|
309 * represented by placing in i a list of the elements that cause fill-in |
|
310 * in supervariable i: |
|
311 * |
|
312 * Len [i]: the length of supervariable i in the Iw array. |
|
313 * Iw [Pe [i] ... Pe [i] + Elen [i] - 1]: |
|
314 * the list of elements that contain i. This list is kept short |
|
315 * by removing absorbed elements. |
|
316 * Iw [Pe [i] + Elen [i] ... Pe [i] + Len [i] - 1]: |
|
317 * the list of supervariables in i. This list is kept short by |
|
318 * removing nonprincipal variables, and any entry j that is also |
|
319 * contained in at least one of the elements (j in Le) in the list |
|
320 * for i (e in row i). |
|
321 * |
|
322 * When supervariable i is selected as pivot, we create an element e of |
|
323 * the same name (e=i): |
|
324 * |
|
325 * Len [e]: the length of element e in the Iw array. |
|
326 * Iw [Pe [e] ... Pe [e] + Len [e] - 1]: |
|
327 * the list of supervariables in element e. |
|
328 * |
|
329 * An element represents the fill-in that occurs when supervariable i is |
|
330 * selected as pivot (which represents the selection of row i and all |
|
331 * non-principal variables whose principal variable is i). We use the |
|
332 * term Le to denote the set of all supervariables in element e. Absorbed |
|
333 * supervariables and elements are pruned from these lists when |
|
334 * computationally convenient. |
|
335 * |
|
336 * CAUTION: THE INPUT MATRIX IS OVERWRITTEN DURING COMPUTATION. |
|
337 * The contents of Iw are undefined on output. |
|
338 |
|
339 * ---------------------------------------------------------------------------- |
|
340 * OUTPUT (need not be set on input): |
|
341 * ---------------------------------------------------------------------------- |
|
342 * |
|
343 * Nv: An integer array of size n. During execution, ABS (Nv [i]) is equal to |
|
344 * the number of rows that are represented by the principal supervariable |
|
345 * i. If i is a nonprincipal or dense variable, then Nv [i] = 0. |
|
346 * Initially, Nv [i] = 1 for all i. Nv [i] < 0 signifies that i is a |
|
347 * principal variable in the pattern Lme of the current pivot element me. |
|
348 * After element me is constructed, Nv [i] is set back to a positive |
|
349 * value. |
|
350 * |
|
351 * On output, Nv [i] holds the number of pivots represented by super |
|
352 * row/column i of the original matrix, or Nv [i] = 0 for non-principal |
|
353 * rows/columns. Note that i refers to a row/column in the original |
|
354 * matrix, not the permuted matrix. |
|
355 * |
|
356 * Elen: An integer array of size n. See the description of Iw above. At the |
|
357 * start of execution, Elen [i] is set to zero for all rows i. During |
|
358 * execution, Elen [i] is the number of elements in the list for |
|
359 * supervariable i. When e becomes an element, Elen [e] = FLIP (esize) is |
|
360 * set, where esize is the size of the element (the number of pivots, plus |
|
361 * the number of nonpivotal entries). Thus Elen [e] < EMPTY. |
|
362 * Elen (i) = EMPTY set when variable i becomes nonprincipal. |
|
363 * |
|
364 * For variables, Elen (i) >= EMPTY holds until just before the |
|
365 * postordering and permutation vectors are computed. For elements, |
|
366 * Elen [e] < EMPTY holds. |
|
367 * |
|
368 * On output, Elen [i] is the degree of the row/column in the Cholesky |
|
369 * factorization of the permuted matrix, corresponding to the original row |
|
370 * i, if i is a super row/column. It is equal to EMPTY if i is |
|
371 * non-principal. Note that i refers to a row/column in the original |
|
372 * matrix, not the permuted matrix. |
|
373 * |
|
374 * Note that the contents of Elen on output differ from the Fortran |
|
375 * version (Elen holds the inverse permutation in the Fortran version, |
|
376 * which is instead returned in the Next array in this C version, |
|
377 * described below). |
|
378 * |
|
379 * Last: In a degree list, Last [i] is the supervariable preceding i, or EMPTY |
|
380 * if i is the head of the list. In a hash bucket, Last [i] is the hash |
|
381 * key for i. |
|
382 * |
|
383 * Last [Head [hash]] is also used as the head of a hash bucket if |
|
384 * Head [hash] contains a degree list (see the description of Head, |
|
385 * below). |
|
386 * |
|
387 * On output, Last [0..n-1] holds the permutation. That is, if |
|
388 * i = Last [k], then row i is the kth pivot row (where k ranges from 0 to |
|
389 * n-1). Row Last [k] of A is the kth row in the permuted matrix, PAP'. |
|
390 * |
|
391 * Next: Next [i] is the supervariable following i in a link list, or EMPTY if |
|
392 * i is the last in the list. Used for two kinds of lists: degree lists |
|
393 * and hash buckets (a supervariable can be in only one kind of list at a |
|
394 * time). |
|
395 * |
|
396 * On output Next [0..n-1] holds the inverse permutation. That is, if |
|
397 * k = Next [i], then row i is the kth pivot row. Row i of A appears as |
|
398 * the (Next[i])-th row in the permuted matrix, PAP'. |
|
399 * |
|
400 * Note that the contents of Next on output differ from the Fortran |
|
401 * version (Next is undefined on output in the Fortran version). |
|
402 |
|
403 * ---------------------------------------------------------------------------- |
|
404 * LOCAL WORKSPACE (not input or output - used only during execution): |
|
405 * ---------------------------------------------------------------------------- |
|
406 * |
|
407 * Degree: An integer array of size n. If i is a supervariable, then |
|
408 * Degree [i] holds the current approximation of the external degree of |
|
409 * row i (an upper bound). The external degree is the number of nonzeros |
|
410 * in row i, minus ABS (Nv [i]), the diagonal part. The bound is equal to |
|
411 * the exact external degree if Elen [i] is less than or equal to two. |
|
412 * |
|
413 * We also use the term "external degree" for elements e to refer to |
|
414 * |Le \ Lme|. If e is an element, then Degree [e] is |Le|, which is the |
|
415 * degree of the off-diagonal part of the element e (not including the |
|
416 * diagonal part). |
|
417 * |
|
418 * Head: An integer array of size n. Head is used for degree lists. |
|
419 * Head [deg] is the first supervariable in a degree list. All |
|
420 * supervariables i in a degree list Head [deg] have the same approximate |
|
421 * degree, namely, deg = Degree [i]. If the list Head [deg] is empty then |
|
422 * Head [deg] = EMPTY. |
|
423 * |
|
424 * During supervariable detection Head [hash] also serves as a pointer to |
|
425 * a hash bucket. If Head [hash] >= 0, there is a degree list of degree |
|
426 * hash. The hash bucket head pointer is Last [Head [hash]]. If |
|
427 * Head [hash] = EMPTY, then the degree list and hash bucket are both |
|
428 * empty. If Head [hash] < EMPTY, then the degree list is empty, and |
|
429 * FLIP (Head [hash]) is the head of the hash bucket. After supervariable |
|
430 * detection is complete, all hash buckets are empty, and the |
|
431 * (Last [Head [hash]] = EMPTY) condition is restored for the non-empty |
|
432 * degree lists. |
|
433 * |
|
434 * W: An integer array of size n. The flag array W determines the status of |
|
435 * elements and variables, and the external degree of elements. |
|
436 * |
|
437 * for elements: |
|
438 * if W [e] = 0, then the element e is absorbed. |
|
439 * if W [e] >= wflg, then W [e] - wflg is the size of the set |
|
440 * |Le \ Lme|, in terms of nonzeros (the sum of ABS (Nv [i]) for |
|
441 * each principal variable i that is both in the pattern of |
|
442 * element e and NOT in the pattern of the current pivot element, |
|
443 * me). |
|
444 * if wflg > W [e] > 0, then e is not absorbed and has not yet been |
|
445 * seen in the scan of the element lists in the computation of |
|
446 * |Le\Lme| in Scan 1 below. |
|
447 * |
|
448 * for variables: |
|
449 * during supervariable detection, if W [j] != wflg then j is |
|
450 * not in the pattern of variable i. |
|
451 * |
|
452 * The W array is initialized by setting W [i] = 1 for all i, and by |
|
453 * setting wflg = 2. It is reinitialized if wflg becomes too large (to |
|
454 * ensure that wflg+n does not cause integer overflow). |
|
455 |
|
456 * ---------------------------------------------------------------------------- |
|
457 * LOCAL INTEGERS: |
|
458 * ---------------------------------------------------------------------------- |
|
459 */ |
|
460 |
|
461 Int deg, degme, dext, lemax, e, elenme, eln, i, ilast, inext, j, |
|
462 jlast, jnext, k, knt1, knt2, knt3, lenj, ln, me, mindeg, nel, nleft, |
|
463 nvi, nvj, nvpiv, slenme, wbig, we, wflg, wnvi, ok, ndense, ncmpa, |
|
464 dense, aggressive ; |
|
465 |
|
466 unsigned Int hash ; /* unsigned, so that hash % n is well defined.*/ |
|
467 |
|
468 /* |
|
469 * deg: the degree of a variable or element |
|
470 * degme: size, |Lme|, of the current element, me (= Degree [me]) |
|
471 * dext: external degree, |Le \ Lme|, of some element e |
|
472 * lemax: largest |Le| seen so far (called dmax in Fortran version) |
|
473 * e: an element |
|
474 * elenme: the length, Elen [me], of element list of pivotal variable |
|
475 * eln: the length, Elen [...], of an element list |
|
476 * hash: the computed value of the hash function |
|
477 * i: a supervariable |
|
478 * ilast: the entry in a link list preceding i |
|
479 * inext: the entry in a link list following i |
|
480 * j: a supervariable |
|
481 * jlast: the entry in a link list preceding j |
|
482 * jnext: the entry in a link list, or path, following j |
|
483 * k: the pivot order of an element or variable |
|
484 * knt1: loop counter used during element construction |
|
485 * knt2: loop counter used during element construction |
|
486 * knt3: loop counter used during compression |
|
487 * lenj: Len [j] |
|
488 * ln: length of a supervariable list |
|
489 * me: current supervariable being eliminated, and the current |
|
490 * element created by eliminating that supervariable |
|
491 * mindeg: current minimum degree |
|
492 * nel: number of pivots selected so far |
|
493 * nleft: n - nel, the number of nonpivotal rows/columns remaining |
|
494 * nvi: the number of variables in a supervariable i (= Nv [i]) |
|
495 * nvj: the number of variables in a supervariable j (= Nv [j]) |
|
496 * nvpiv: number of pivots in current element |
|
497 * slenme: number of variables in variable list of pivotal variable |
|
498 * wbig: = INT_MAX - n for the int version, UF_long_max - n for the |
|
499 * UF_long version. wflg is not allowed to be >= wbig. |
|
500 * we: W [e] |
|
501 * wflg: used for flagging the W array. See description of Iw. |
|
502 * wnvi: wflg - Nv [i] |
|
503 * x: either a supervariable or an element |
|
504 * |
|
505 * ok: true if supervariable j can be absorbed into i |
|
506 * ndense: number of "dense" rows/columns |
|
507 * dense: rows/columns with initial degree > dense are considered "dense" |
|
508 * aggressive: true if aggressive absorption is being performed |
|
509 * ncmpa: number of garbage collections |
|
510 |
|
511 * ---------------------------------------------------------------------------- |
|
512 * LOCAL DOUBLES, used for statistical output only (except for alpha): |
|
513 * ---------------------------------------------------------------------------- |
|
514 */ |
|
515 |
|
516 double f, r, ndiv, s, nms_lu, nms_ldl, dmax, alpha, lnz, lnzme ; |
|
517 |
|
518 /* |
|
519 * f: nvpiv |
|
520 * r: degme + nvpiv |
|
521 * ndiv: number of divisions for LU or LDL' factorizations |
|
522 * s: number of multiply-subtract pairs for LU factorization, for the |
|
523 * current element me |
|
524 * nms_lu number of multiply-subtract pairs for LU factorization |
|
525 * nms_ldl number of multiply-subtract pairs for LDL' factorization |
|
526 * dmax: the largest number of entries in any column of L, including the |
|
527 * diagonal |
|
528 * alpha: "dense" degree ratio |
|
529 * lnz: the number of nonzeros in L (excluding the diagonal) |
|
530 * lnzme: the number of nonzeros in L (excl. the diagonal) for the |
|
531 * current element me |
|
532 |
|
533 * ---------------------------------------------------------------------------- |
|
534 * LOCAL "POINTERS" (indices into the Iw array) |
|
535 * ---------------------------------------------------------------------------- |
|
536 */ |
|
537 |
|
538 Int p, p1, p2, p3, p4, pdst, pend, pj, pme, pme1, pme2, pn, psrc ; |
|
539 |
|
540 /* |
|
541 * Any parameter (Pe [...] or pfree) or local variable starting with "p" (for |
|
542 * Pointer) is an index into Iw, and all indices into Iw use variables starting |
|
543 * with "p." The only exception to this rule is the iwlen input argument. |
|
544 * |
|
545 * p: pointer into lots of things |
|
546 * p1: Pe [i] for some variable i (start of element list) |
|
547 * p2: Pe [i] + Elen [i] - 1 for some variable i |
|
548 * p3: index of first supervariable in clean list |
|
549 * p4: |
|
550 * pdst: destination pointer, for compression |
|
551 * pend: end of memory to compress |
|
552 * pj: pointer into an element or variable |
|
553 * pme: pointer into the current element (pme1...pme2) |
|
554 * pme1: the current element, me, is stored in Iw [pme1...pme2] |
|
555 * pme2: the end of the current element |
|
556 * pn: pointer into a "clean" variable, also used to compress |
|
557 * psrc: source pointer, for compression |
|
558 */ |
|
559 |
|
560 /* ========================================================================= */ |
|
561 /* INITIALIZATIONS */ |
|
562 /* ========================================================================= */ |
|
563 |
|
564 /* Note that this restriction on iwlen is slightly more restrictive than |
|
565 * what is actually required in AMD_2. AMD_2 can operate with no elbow |
|
566 * room at all, but it will be slow. For better performance, at least |
|
567 * size-n elbow room is enforced. */ |
|
568 ASSERT (iwlen >= pfree + n) ; |
|
569 ASSERT (n > 0) ; |
|
570 |
|
571 /* initialize output statistics */ |
|
572 lnz = 0 ; |
|
573 ndiv = 0 ; |
|
574 nms_lu = 0 ; |
|
575 nms_ldl = 0 ; |
|
576 dmax = 1 ; |
|
577 me = EMPTY ; |
|
578 |
|
579 mindeg = 0 ; |
|
580 ncmpa = 0 ; |
|
581 nel = 0 ; |
|
582 lemax = 0 ; |
|
583 |
|
584 /* get control parameters */ |
|
585 if (Control != (double *) NULL) |
|
586 { |
|
587 alpha = Control [AMD_DENSE] ; |
|
588 aggressive = (Control [AMD_AGGRESSIVE] != 0) ; |
|
589 } |
|
590 else |
|
591 { |
|
592 alpha = AMD_DEFAULT_DENSE ; |
|
593 aggressive = AMD_DEFAULT_AGGRESSIVE ; |
|
594 } |
|
595 /* Note: if alpha is NaN, this is undefined: */ |
|
596 if (alpha < 0) |
|
597 { |
|
598 /* only remove completely dense rows/columns */ |
|
599 dense = n-2 ; |
|
600 } |
|
601 else |
|
602 { |
|
603 dense = alpha * sqrt ((double) n) ; |
|
604 } |
|
605 dense = MAX (16, dense) ; |
|
606 dense = MIN (n, dense) ; |
|
607 AMD_DEBUG1 (("\n\nAMD (debug), alpha %g, aggr. "ID"\n", |
|
608 alpha, aggressive)) ; |
|
609 |
|
610 for (i = 0 ; i < n ; i++) |
|
611 { |
|
612 Last [i] = EMPTY ; |
|
613 Head [i] = EMPTY ; |
|
614 Next [i] = EMPTY ; |
|
615 /* if separate Hhead array is used for hash buckets: * |
|
616 Hhead [i] = EMPTY ; |
|
617 */ |
|
618 Nv [i] = 1 ; |
|
619 W [i] = 1 ; |
|
620 Elen [i] = 0 ; |
|
621 Degree [i] = Len [i] ; |
|
622 } |
|
623 |
|
624 #ifndef NDEBUG |
|
625 AMD_DEBUG1 (("\n======Nel "ID" initial\n", nel)) ; |
|
626 AMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next, Last, |
|
627 Head, Elen, Degree, W, -1) ; |
|
628 #endif |
|
629 |
|
630 /* initialize wflg */ |
|
631 wbig = Int_MAX - n ; |
|
632 wflg = clear_flag (0, wbig, W, n) ; |
|
633 |
|
634 /* --------------------------------------------------------------------- */ |
|
635 /* initialize degree lists and eliminate dense and empty rows */ |
|
636 /* --------------------------------------------------------------------- */ |
|
637 |
|
638 ndense = 0 ; |
|
639 |
|
640 for (i = 0 ; i < n ; i++) |
|
641 { |
|
642 deg = Degree [i] ; |
|
643 ASSERT (deg >= 0 && deg < n) ; |
|
644 if (deg == 0) |
|
645 { |
|
646 |
|
647 /* ------------------------------------------------------------- |
|
648 * we have a variable that can be eliminated at once because |
|
649 * there is no off-diagonal non-zero in its row. Note that |
|
650 * Nv [i] = 1 for an empty variable i. It is treated just |
|
651 * the same as an eliminated element i. |
|
652 * ------------------------------------------------------------- */ |
|
653 |
|
654 Elen [i] = FLIP (1) ; |
|
655 nel++ ; |
|
656 Pe [i] = EMPTY ; |
|
657 W [i] = 0 ; |
|
658 |
|
659 } |
|
660 else if (deg > dense) |
|
661 { |
|
662 |
|
663 /* ------------------------------------------------------------- |
|
664 * Dense variables are not treated as elements, but as unordered, |
|
665 * non-principal variables that have no parent. They do not take |
|
666 * part in the postorder, since Nv [i] = 0. Note that the Fortran |
|
667 * version does not have this option. |
|
668 * ------------------------------------------------------------- */ |
|
669 |
|
670 AMD_DEBUG1 (("Dense node "ID" degree "ID"\n", i, deg)) ; |
|
671 ndense++ ; |
|
672 Nv [i] = 0 ; /* do not postorder this node */ |
|
673 Elen [i] = EMPTY ; |
|
674 nel++ ; |
|
675 Pe [i] = EMPTY ; |
|
676 |
|
677 } |
|
678 else |
|
679 { |
|
680 |
|
681 /* ------------------------------------------------------------- |
|
682 * place i in the degree list corresponding to its degree |
|
683 * ------------------------------------------------------------- */ |
|
684 |
|
685 inext = Head [deg] ; |
|
686 ASSERT (inext >= EMPTY && inext < n) ; |
|
687 if (inext != EMPTY) Last [inext] = i ; |
|
688 Next [i] = inext ; |
|
689 Head [deg] = i ; |
|
690 |
|
691 } |
|
692 } |
|
693 |
|
694 /* ========================================================================= */ |
|
695 /* WHILE (selecting pivots) DO */ |
|
696 /* ========================================================================= */ |
|
697 |
|
698 while (nel < n) |
|
699 { |
|
700 |
|
701 #ifndef NDEBUG |
|
702 AMD_DEBUG1 (("\n======Nel "ID"\n", nel)) ; |
|
703 if (AMD_debug >= 2) |
|
704 { |
|
705 AMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next, |
|
706 Last, Head, Elen, Degree, W, nel) ; |
|
707 } |
|
708 #endif |
|
709 |
|
710 /* ========================================================================= */ |
|
711 /* GET PIVOT OF MINIMUM DEGREE */ |
|
712 /* ========================================================================= */ |
|
713 |
|
714 /* ----------------------------------------------------------------- */ |
|
715 /* find next supervariable for elimination */ |
|
716 /* ----------------------------------------------------------------- */ |
|
717 |
|
718 ASSERT (mindeg >= 0 && mindeg < n) ; |
|
719 for (deg = mindeg ; deg < n ; deg++) |
|
720 { |
|
721 me = Head [deg] ; |
|
722 if (me != EMPTY) break ; |
|
723 } |
|
724 mindeg = deg ; |
|
725 ASSERT (me >= 0 && me < n) ; |
|
726 AMD_DEBUG1 (("=================me: "ID"\n", me)) ; |
|
727 |
|
728 /* ----------------------------------------------------------------- */ |
|
729 /* remove chosen variable from link list */ |
|
730 /* ----------------------------------------------------------------- */ |
|
731 |
|
732 inext = Next [me] ; |
|
733 ASSERT (inext >= EMPTY && inext < n) ; |
|
734 if (inext != EMPTY) Last [inext] = EMPTY ; |
|
735 Head [deg] = inext ; |
|
736 |
|
737 /* ----------------------------------------------------------------- */ |
|
738 /* me represents the elimination of pivots nel to nel+Nv[me]-1. */ |
|
739 /* place me itself as the first in this set. */ |
|
740 /* ----------------------------------------------------------------- */ |
|
741 |
|
742 elenme = Elen [me] ; |
|
743 nvpiv = Nv [me] ; |
|
744 ASSERT (nvpiv > 0) ; |
|
745 nel += nvpiv ; |
|
746 |
|
747 /* ========================================================================= */ |
|
748 /* CONSTRUCT NEW ELEMENT */ |
|
749 /* ========================================================================= */ |
|
750 |
|
751 /* ----------------------------------------------------------------- |
|
752 * At this point, me is the pivotal supervariable. It will be |
|
753 * converted into the current element. Scan list of the pivotal |
|
754 * supervariable, me, setting tree pointers and constructing new list |
|
755 * of supervariables for the new element, me. p is a pointer to the |
|
756 * current position in the old list. |
|
757 * ----------------------------------------------------------------- */ |
|
758 |
|
759 /* flag the variable "me" as being in Lme by negating Nv [me] */ |
|
760 Nv [me] = -nvpiv ; |
|
761 degme = 0 ; |
|
762 ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ; |
|
763 |
|
764 if (elenme == 0) |
|
765 { |
|
766 |
|
767 /* ------------------------------------------------------------- */ |
|
768 /* construct the new element in place */ |
|
769 /* ------------------------------------------------------------- */ |
|
770 |
|
771 pme1 = Pe [me] ; |
|
772 pme2 = pme1 - 1 ; |
|
773 |
|
774 for (p = pme1 ; p <= pme1 + Len [me] - 1 ; p++) |
|
775 { |
|
776 i = Iw [p] ; |
|
777 ASSERT (i >= 0 && i < n && Nv [i] >= 0) ; |
|
778 nvi = Nv [i] ; |
|
779 if (nvi > 0) |
|
780 { |
|
781 |
|
782 /* ----------------------------------------------------- */ |
|
783 /* i is a principal variable not yet placed in Lme. */ |
|
784 /* store i in new list */ |
|
785 /* ----------------------------------------------------- */ |
|
786 |
|
787 /* flag i as being in Lme by negating Nv [i] */ |
|
788 degme += nvi ; |
|
789 Nv [i] = -nvi ; |
|
790 Iw [++pme2] = i ; |
|
791 |
|
792 /* ----------------------------------------------------- */ |
|
793 /* remove variable i from degree list. */ |
|
794 /* ----------------------------------------------------- */ |
|
795 |
|
796 ilast = Last [i] ; |
|
797 inext = Next [i] ; |
|
798 ASSERT (ilast >= EMPTY && ilast < n) ; |
|
799 ASSERT (inext >= EMPTY && inext < n) ; |
|
800 if (inext != EMPTY) Last [inext] = ilast ; |
|
801 if (ilast != EMPTY) |
|
802 { |
|
803 Next [ilast] = inext ; |
|
804 } |
|
805 else |
|
806 { |
|
807 /* i is at the head of the degree list */ |
|
808 ASSERT (Degree [i] >= 0 && Degree [i] < n) ; |
|
809 Head [Degree [i]] = inext ; |
|
810 } |
|
811 } |
|
812 } |
|
813 } |
|
814 else |
|
815 { |
|
816 |
|
817 /* ------------------------------------------------------------- */ |
|
818 /* construct the new element in empty space, Iw [pfree ...] */ |
|
819 /* ------------------------------------------------------------- */ |
|
820 |
|
821 p = Pe [me] ; |
|
822 pme1 = pfree ; |
|
823 slenme = Len [me] - elenme ; |
|
824 |
|
825 for (knt1 = 1 ; knt1 <= elenme + 1 ; knt1++) |
|
826 { |
|
827 |
|
828 if (knt1 > elenme) |
|
829 { |
|
830 /* search the supervariables in me. */ |
|
831 e = me ; |
|
832 pj = p ; |
|
833 ln = slenme ; |
|
834 AMD_DEBUG2 (("Search sv: "ID" "ID" "ID"\n", me,pj,ln)) ; |
|
835 } |
|
836 else |
|
837 { |
|
838 /* search the elements in me. */ |
|
839 e = Iw [p++] ; |
|
840 ASSERT (e >= 0 && e < n) ; |
|
841 pj = Pe [e] ; |
|
842 ln = Len [e] ; |
|
843 AMD_DEBUG2 (("Search element e "ID" in me "ID"\n", e,me)) ; |
|
844 ASSERT (Elen [e] < EMPTY && W [e] > 0 && pj >= 0) ; |
|
845 } |
|
846 ASSERT (ln >= 0 && (ln == 0 || (pj >= 0 && pj < iwlen))) ; |
|
847 |
|
848 /* --------------------------------------------------------- |
|
849 * search for different supervariables and add them to the |
|
850 * new list, compressing when necessary. this loop is |
|
851 * executed once for each element in the list and once for |
|
852 * all the supervariables in the list. |
|
853 * --------------------------------------------------------- */ |
|
854 |
|
855 for (knt2 = 1 ; knt2 <= ln ; knt2++) |
|
856 { |
|
857 i = Iw [pj++] ; |
|
858 ASSERT (i >= 0 && i < n && (i == me || Elen [i] >= EMPTY)); |
|
859 nvi = Nv [i] ; |
|
860 AMD_DEBUG2 ((": "ID" "ID" "ID" "ID"\n", |
|
861 i, Elen [i], Nv [i], wflg)) ; |
|
862 |
|
863 if (nvi > 0) |
|
864 { |
|
865 |
|
866 /* ------------------------------------------------- */ |
|
867 /* compress Iw, if necessary */ |
|
868 /* ------------------------------------------------- */ |
|
869 |
|
870 if (pfree >= iwlen) |
|
871 { |
|
872 |
|
873 AMD_DEBUG1 (("GARBAGE COLLECTION\n")) ; |
|
874 |
|
875 /* prepare for compressing Iw by adjusting pointers |
|
876 * and lengths so that the lists being searched in |
|
877 * the inner and outer loops contain only the |
|
878 * remaining entries. */ |
|
879 |
|
880 Pe [me] = p ; |
|
881 Len [me] -= knt1 ; |
|
882 /* check if nothing left of supervariable me */ |
|
883 if (Len [me] == 0) Pe [me] = EMPTY ; |
|
884 Pe [e] = pj ; |
|
885 Len [e] = ln - knt2 ; |
|
886 /* nothing left of element e */ |
|
887 if (Len [e] == 0) Pe [e] = EMPTY ; |
|
888 |
|
889 ncmpa++ ; /* one more garbage collection */ |
|
890 |
|
891 /* store first entry of each object in Pe */ |
|
892 /* FLIP the first entry in each object */ |
|
893 for (j = 0 ; j < n ; j++) |
|
894 { |
|
895 pn = Pe [j] ; |
|
896 if (pn >= 0) |
|
897 { |
|
898 ASSERT (pn >= 0 && pn < iwlen) ; |
|
899 Pe [j] = Iw [pn] ; |
|
900 Iw [pn] = FLIP (j) ; |
|
901 } |
|
902 } |
|
903 |
|
904 /* psrc/pdst point to source/destination */ |
|
905 psrc = 0 ; |
|
906 pdst = 0 ; |
|
907 pend = pme1 - 1 ; |
|
908 |
|
909 while (psrc <= pend) |
|
910 { |
|
911 /* search for next FLIP'd entry */ |
|
912 j = FLIP (Iw [psrc++]) ; |
|
913 if (j >= 0) |
|
914 { |
|
915 AMD_DEBUG2 (("Got object j: "ID"\n", j)) ; |
|
916 Iw [pdst] = Pe [j] ; |
|
917 Pe [j] = pdst++ ; |
|
918 lenj = Len [j] ; |
|
919 /* copy from source to destination */ |
|
920 for (knt3 = 0 ; knt3 <= lenj - 2 ; knt3++) |
|
921 { |
|
922 Iw [pdst++] = Iw [psrc++] ; |
|
923 } |
|
924 } |
|
925 } |
|
926 |
|
927 /* move the new partially-constructed element */ |
|
928 p1 = pdst ; |
|
929 for (psrc = pme1 ; psrc <= pfree-1 ; psrc++) |
|
930 { |
|
931 Iw [pdst++] = Iw [psrc] ; |
|
932 } |
|
933 pme1 = p1 ; |
|
934 pfree = pdst ; |
|
935 pj = Pe [e] ; |
|
936 p = Pe [me] ; |
|
937 |
|
938 } |
|
939 |
|
940 /* ------------------------------------------------- */ |
|
941 /* i is a principal variable not yet placed in Lme */ |
|
942 /* store i in new list */ |
|
943 /* ------------------------------------------------- */ |
|
944 |
|
945 /* flag i as being in Lme by negating Nv [i] */ |
|
946 degme += nvi ; |
|
947 Nv [i] = -nvi ; |
|
948 Iw [pfree++] = i ; |
|
949 AMD_DEBUG2 ((" s: "ID" nv "ID"\n", i, Nv [i])); |
|
950 |
|
951 /* ------------------------------------------------- */ |
|
952 /* remove variable i from degree link list */ |
|
953 /* ------------------------------------------------- */ |
|
954 |
|
955 ilast = Last [i] ; |
|
956 inext = Next [i] ; |
|
957 ASSERT (ilast >= EMPTY && ilast < n) ; |
|
958 ASSERT (inext >= EMPTY && inext < n) ; |
|
959 if (inext != EMPTY) Last [inext] = ilast ; |
|
960 if (ilast != EMPTY) |
|
961 { |
|
962 Next [ilast] = inext ; |
|
963 } |
|
964 else |
|
965 { |
|
966 /* i is at the head of the degree list */ |
|
967 ASSERT (Degree [i] >= 0 && Degree [i] < n) ; |
|
968 Head [Degree [i]] = inext ; |
|
969 } |
|
970 } |
|
971 } |
|
972 |
|
973 if (e != me) |
|
974 { |
|
975 /* set tree pointer and flag to indicate element e is |
|
976 * absorbed into new element me (the parent of e is me) */ |
|
977 AMD_DEBUG1 ((" Element "ID" => "ID"\n", e, me)) ; |
|
978 Pe [e] = FLIP (me) ; |
|
979 W [e] = 0 ; |
|
980 } |
|
981 } |
|
982 |
|
983 pme2 = pfree - 1 ; |
|
984 } |
|
985 |
|
986 /* ----------------------------------------------------------------- */ |
|
987 /* me has now been converted into an element in Iw [pme1..pme2] */ |
|
988 /* ----------------------------------------------------------------- */ |
|
989 |
|
990 /* degme holds the external degree of new element */ |
|
991 Degree [me] = degme ; |
|
992 Pe [me] = pme1 ; |
|
993 Len [me] = pme2 - pme1 + 1 ; |
|
994 ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ; |
|
995 |
|
996 Elen [me] = FLIP (nvpiv + degme) ; |
|
997 /* FLIP (Elen (me)) is now the degree of pivot (including |
|
998 * diagonal part). */ |
|
999 |
|
1000 #ifndef NDEBUG |
|
1001 AMD_DEBUG2 (("New element structure: length= "ID"\n", pme2-pme1+1)) ; |
|
1002 for (pme = pme1 ; pme <= pme2 ; pme++) AMD_DEBUG3 ((" "ID"", Iw[pme])); |
|
1003 AMD_DEBUG3 (("\n")) ; |
|
1004 #endif |
|
1005 |
|
1006 /* ----------------------------------------------------------------- */ |
|
1007 /* make sure that wflg is not too large. */ |
|
1008 /* ----------------------------------------------------------------- */ |
|
1009 |
|
1010 /* With the current value of wflg, wflg+n must not cause integer |
|
1011 * overflow */ |
|
1012 |
|
1013 wflg = clear_flag (wflg, wbig, W, n) ; |
|
1014 |
|
1015 /* ========================================================================= */ |
|
1016 /* COMPUTE (W [e] - wflg) = |Le\Lme| FOR ALL ELEMENTS */ |
|
1017 /* ========================================================================= */ |
|
1018 |
|
1019 /* ----------------------------------------------------------------- |
|
1020 * Scan 1: compute the external degrees of previous elements with |
|
1021 * respect to the current element. That is: |
|
1022 * (W [e] - wflg) = |Le \ Lme| |
|
1023 * for each element e that appears in any supervariable in Lme. The |
|
1024 * notation Le refers to the pattern (list of supervariables) of a |
|
1025 * previous element e, where e is not yet absorbed, stored in |
|
1026 * Iw [Pe [e] + 1 ... Pe [e] + Len [e]]. The notation Lme |
|
1027 * refers to the pattern of the current element (stored in |
|
1028 * Iw [pme1..pme2]). If aggressive absorption is enabled, and |
|
1029 * (W [e] - wflg) becomes zero, then the element e will be absorbed |
|
1030 * in Scan 2. |
|
1031 * ----------------------------------------------------------------- */ |
|
1032 |
|
1033 AMD_DEBUG2 (("me: ")) ; |
|
1034 for (pme = pme1 ; pme <= pme2 ; pme++) |
|
1035 { |
|
1036 i = Iw [pme] ; |
|
1037 ASSERT (i >= 0 && i < n) ; |
|
1038 eln = Elen [i] ; |
|
1039 AMD_DEBUG3 ((""ID" Elen "ID": \n", i, eln)) ; |
|
1040 if (eln > 0) |
|
1041 { |
|
1042 /* note that Nv [i] has been negated to denote i in Lme: */ |
|
1043 nvi = -Nv [i] ; |
|
1044 ASSERT (nvi > 0 && Pe [i] >= 0 && Pe [i] < iwlen) ; |
|
1045 wnvi = wflg - nvi ; |
|
1046 for (p = Pe [i] ; p <= Pe [i] + eln - 1 ; p++) |
|
1047 { |
|
1048 e = Iw [p] ; |
|
1049 ASSERT (e >= 0 && e < n) ; |
|
1050 we = W [e] ; |
|
1051 AMD_DEBUG4 ((" e "ID" we "ID" ", e, we)) ; |
|
1052 if (we >= wflg) |
|
1053 { |
|
1054 /* unabsorbed element e has been seen in this loop */ |
|
1055 AMD_DEBUG4 ((" unabsorbed, first time seen")) ; |
|
1056 we -= nvi ; |
|
1057 } |
|
1058 else if (we != 0) |
|
1059 { |
|
1060 /* e is an unabsorbed element */ |
|
1061 /* this is the first we have seen e in all of Scan 1 */ |
|
1062 AMD_DEBUG4 ((" unabsorbed")) ; |
|
1063 we = Degree [e] + wnvi ; |
|
1064 } |
|
1065 AMD_DEBUG4 (("\n")) ; |
|
1066 W [e] = we ; |
|
1067 } |
|
1068 } |
|
1069 } |
|
1070 AMD_DEBUG2 (("\n")) ; |
|
1071 |
|
1072 /* ========================================================================= */ |
|
1073 /* DEGREE UPDATE AND ELEMENT ABSORPTION */ |
|
1074 /* ========================================================================= */ |
|
1075 |
|
1076 /* ----------------------------------------------------------------- |
|
1077 * Scan 2: for each i in Lme, sum up the degree of Lme (which is |
|
1078 * degme), plus the sum of the external degrees of each Le for the |
|
1079 * elements e appearing within i, plus the supervariables in i. |
|
1080 * Place i in hash list. |
|
1081 * ----------------------------------------------------------------- */ |
|
1082 |
|
1083 for (pme = pme1 ; pme <= pme2 ; pme++) |
|
1084 { |
|
1085 i = Iw [pme] ; |
|
1086 ASSERT (i >= 0 && i < n && Nv [i] < 0 && Elen [i] >= 0) ; |
|
1087 AMD_DEBUG2 (("Updating: i "ID" "ID" "ID"\n", i, Elen[i], Len [i])); |
|
1088 p1 = Pe [i] ; |
|
1089 p2 = p1 + Elen [i] - 1 ; |
|
1090 pn = p1 ; |
|
1091 hash = 0 ; |
|
1092 deg = 0 ; |
|
1093 ASSERT (p1 >= 0 && p1 < iwlen && p2 >= -1 && p2 < iwlen) ; |
|
1094 |
|
1095 /* ------------------------------------------------------------- */ |
|
1096 /* scan the element list associated with supervariable i */ |
|
1097 /* ------------------------------------------------------------- */ |
|
1098 |
|
1099 /* UMFPACK/MA38-style approximate degree: */ |
|
1100 if (aggressive) |
|
1101 { |
|
1102 for (p = p1 ; p <= p2 ; p++) |
|
1103 { |
|
1104 e = Iw [p] ; |
|
1105 ASSERT (e >= 0 && e < n) ; |
|
1106 we = W [e] ; |
|
1107 if (we != 0) |
|
1108 { |
|
1109 /* e is an unabsorbed element */ |
|
1110 /* dext = | Le \ Lme | */ |
|
1111 dext = we - wflg ; |
|
1112 if (dext > 0) |
|
1113 { |
|
1114 deg += dext ; |
|
1115 Iw [pn++] = e ; |
|
1116 hash += e ; |
|
1117 AMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ; |
|
1118 } |
|
1119 else |
|
1120 { |
|
1121 /* external degree of e is zero, absorb e into me*/ |
|
1122 AMD_DEBUG1 ((" Element "ID" =>"ID" (aggressive)\n", |
|
1123 e, me)) ; |
|
1124 ASSERT (dext == 0) ; |
|
1125 Pe [e] = FLIP (me) ; |
|
1126 W [e] = 0 ; |
|
1127 } |
|
1128 } |
|
1129 } |
|
1130 } |
|
1131 else |
|
1132 { |
|
1133 for (p = p1 ; p <= p2 ; p++) |
|
1134 { |
|
1135 e = Iw [p] ; |
|
1136 ASSERT (e >= 0 && e < n) ; |
|
1137 we = W [e] ; |
|
1138 if (we != 0) |
|
1139 { |
|
1140 /* e is an unabsorbed element */ |
|
1141 dext = we - wflg ; |
|
1142 ASSERT (dext >= 0) ; |
|
1143 deg += dext ; |
|
1144 Iw [pn++] = e ; |
|
1145 hash += e ; |
|
1146 AMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ; |
|
1147 } |
|
1148 } |
|
1149 } |
|
1150 |
|
1151 /* count the number of elements in i (including me): */ |
|
1152 Elen [i] = pn - p1 + 1 ; |
|
1153 |
|
1154 /* ------------------------------------------------------------- */ |
|
1155 /* scan the supervariables in the list associated with i */ |
|
1156 /* ------------------------------------------------------------- */ |
|
1157 |
|
1158 /* The bulk of the AMD run time is typically spent in this loop, |
|
1159 * particularly if the matrix has many dense rows that are not |
|
1160 * removed prior to ordering. */ |
|
1161 p3 = pn ; |
|
1162 p4 = p1 + Len [i] ; |
|
1163 for (p = p2 + 1 ; p < p4 ; p++) |
|
1164 { |
|
1165 j = Iw [p] ; |
|
1166 ASSERT (j >= 0 && j < n) ; |
|
1167 nvj = Nv [j] ; |
|
1168 if (nvj > 0) |
|
1169 { |
|
1170 /* j is unabsorbed, and not in Lme. */ |
|
1171 /* add to degree and add to new list */ |
|
1172 deg += nvj ; |
|
1173 Iw [pn++] = j ; |
|
1174 hash += j ; |
|
1175 AMD_DEBUG4 ((" s: "ID" hash "ID" Nv[j]= "ID"\n", |
|
1176 j, hash, nvj)) ; |
|
1177 } |
|
1178 } |
|
1179 |
|
1180 /* ------------------------------------------------------------- */ |
|
1181 /* update the degree and check for mass elimination */ |
|
1182 /* ------------------------------------------------------------- */ |
|
1183 |
|
1184 /* with aggressive absorption, deg==0 is identical to the |
|
1185 * Elen [i] == 1 && p3 == pn test, below. */ |
|
1186 ASSERT (IMPLIES (aggressive, (deg==0) == (Elen[i]==1 && p3==pn))) ; |
|
1187 |
|
1188 if (Elen [i] == 1 && p3 == pn) |
|
1189 { |
|
1190 |
|
1191 /* --------------------------------------------------------- */ |
|
1192 /* mass elimination */ |
|
1193 /* --------------------------------------------------------- */ |
|
1194 |
|
1195 /* There is nothing left of this node except for an edge to |
|
1196 * the current pivot element. Elen [i] is 1, and there are |
|
1197 * no variables adjacent to node i. Absorb i into the |
|
1198 * current pivot element, me. Note that if there are two or |
|
1199 * more mass eliminations, fillin due to mass elimination is |
|
1200 * possible within the nvpiv-by-nvpiv pivot block. It is this |
|
1201 * step that causes AMD's analysis to be an upper bound. |
|
1202 * |
|
1203 * The reason is that the selected pivot has a lower |
|
1204 * approximate degree than the true degree of the two mass |
|
1205 * eliminated nodes. There is no edge between the two mass |
|
1206 * eliminated nodes. They are merged with the current pivot |
|
1207 * anyway. |
|
1208 * |
|
1209 * No fillin occurs in the Schur complement, in any case, |
|
1210 * and this effect does not decrease the quality of the |
|
1211 * ordering itself, just the quality of the nonzero and |
|
1212 * flop count analysis. It also means that the post-ordering |
|
1213 * is not an exact elimination tree post-ordering. */ |
|
1214 |
|
1215 AMD_DEBUG1 ((" MASS i "ID" => parent e "ID"\n", i, me)) ; |
|
1216 Pe [i] = FLIP (me) ; |
|
1217 nvi = -Nv [i] ; |
|
1218 degme -= nvi ; |
|
1219 nvpiv += nvi ; |
|
1220 nel += nvi ; |
|
1221 Nv [i] = 0 ; |
|
1222 Elen [i] = EMPTY ; |
|
1223 |
|
1224 } |
|
1225 else |
|
1226 { |
|
1227 |
|
1228 /* --------------------------------------------------------- */ |
|
1229 /* update the upper-bound degree of i */ |
|
1230 /* --------------------------------------------------------- */ |
|
1231 |
|
1232 /* the following degree does not yet include the size |
|
1233 * of the current element, which is added later: */ |
|
1234 |
|
1235 Degree [i] = MIN (Degree [i], deg) ; |
|
1236 |
|
1237 /* --------------------------------------------------------- */ |
|
1238 /* add me to the list for i */ |
|
1239 /* --------------------------------------------------------- */ |
|
1240 |
|
1241 /* move first supervariable to end of list */ |
|
1242 Iw [pn] = Iw [p3] ; |
|
1243 /* move first element to end of element part of list */ |
|
1244 Iw [p3] = Iw [p1] ; |
|
1245 /* add new element, me, to front of list. */ |
|
1246 Iw [p1] = me ; |
|
1247 /* store the new length of the list in Len [i] */ |
|
1248 Len [i] = pn - p1 + 1 ; |
|
1249 |
|
1250 /* --------------------------------------------------------- */ |
|
1251 /* place in hash bucket. Save hash key of i in Last [i]. */ |
|
1252 /* --------------------------------------------------------- */ |
|
1253 |
|
1254 /* NOTE: this can fail if hash is negative, because the ANSI C |
|
1255 * standard does not define a % b when a and/or b are negative. |
|
1256 * That's why hash is defined as an unsigned Int, to avoid this |
|
1257 * problem. */ |
|
1258 hash = hash % n ; |
|
1259 ASSERT (((Int) hash) >= 0 && ((Int) hash) < n) ; |
|
1260 |
|
1261 /* if the Hhead array is not used: */ |
|
1262 j = Head [hash] ; |
|
1263 if (j <= EMPTY) |
|
1264 { |
|
1265 /* degree list is empty, hash head is FLIP (j) */ |
|
1266 Next [i] = FLIP (j) ; |
|
1267 Head [hash] = FLIP (i) ; |
|
1268 } |
|
1269 else |
|
1270 { |
|
1271 /* degree list is not empty, use Last [Head [hash]] as |
|
1272 * hash head. */ |
|
1273 Next [i] = Last [j] ; |
|
1274 Last [j] = i ; |
|
1275 } |
|
1276 |
|
1277 /* if a separate Hhead array is used: * |
|
1278 Next [i] = Hhead [hash] ; |
|
1279 Hhead [hash] = i ; |
|
1280 */ |
|
1281 |
|
1282 Last [i] = hash ; |
|
1283 } |
|
1284 } |
|
1285 |
|
1286 Degree [me] = degme ; |
|
1287 |
|
1288 /* ----------------------------------------------------------------- */ |
|
1289 /* Clear the counter array, W [...], by incrementing wflg. */ |
|
1290 /* ----------------------------------------------------------------- */ |
|
1291 |
|
1292 /* make sure that wflg+n does not cause integer overflow */ |
|
1293 lemax = MAX (lemax, degme) ; |
|
1294 wflg += lemax ; |
|
1295 wflg = clear_flag (wflg, wbig, W, n) ; |
|
1296 /* at this point, W [0..n-1] < wflg holds */ |
|
1297 |
|
1298 /* ========================================================================= */ |
|
1299 /* SUPERVARIABLE DETECTION */ |
|
1300 /* ========================================================================= */ |
|
1301 |
|
1302 AMD_DEBUG1 (("Detecting supervariables:\n")) ; |
|
1303 for (pme = pme1 ; pme <= pme2 ; pme++) |
|
1304 { |
|
1305 i = Iw [pme] ; |
|
1306 ASSERT (i >= 0 && i < n) ; |
|
1307 AMD_DEBUG2 (("Consider i "ID" nv "ID"\n", i, Nv [i])) ; |
|
1308 if (Nv [i] < 0) |
|
1309 { |
|
1310 /* i is a principal variable in Lme */ |
|
1311 |
|
1312 /* --------------------------------------------------------- |
|
1313 * examine all hash buckets with 2 or more variables. We do |
|
1314 * this by examing all unique hash keys for supervariables in |
|
1315 * the pattern Lme of the current element, me |
|
1316 * --------------------------------------------------------- */ |
|
1317 |
|
1318 /* let i = head of hash bucket, and empty the hash bucket */ |
|
1319 ASSERT (Last [i] >= 0 && Last [i] < n) ; |
|
1320 hash = Last [i] ; |
|
1321 |
|
1322 /* if Hhead array is not used: */ |
|
1323 j = Head [hash] ; |
|
1324 if (j == EMPTY) |
|
1325 { |
|
1326 /* hash bucket and degree list are both empty */ |
|
1327 i = EMPTY ; |
|
1328 } |
|
1329 else if (j < EMPTY) |
|
1330 { |
|
1331 /* degree list is empty */ |
|
1332 i = FLIP (j) ; |
|
1333 Head [hash] = EMPTY ; |
|
1334 } |
|
1335 else |
|
1336 { |
|
1337 /* degree list is not empty, restore Last [j] of head j */ |
|
1338 i = Last [j] ; |
|
1339 Last [j] = EMPTY ; |
|
1340 } |
|
1341 |
|
1342 /* if separate Hhead array is used: * |
|
1343 i = Hhead [hash] ; |
|
1344 Hhead [hash] = EMPTY ; |
|
1345 */ |
|
1346 |
|
1347 ASSERT (i >= EMPTY && i < n) ; |
|
1348 AMD_DEBUG2 (("----i "ID" hash "ID"\n", i, hash)) ; |
|
1349 |
|
1350 while (i != EMPTY && Next [i] != EMPTY) |
|
1351 { |
|
1352 |
|
1353 /* ----------------------------------------------------- |
|
1354 * this bucket has one or more variables following i. |
|
1355 * scan all of them to see if i can absorb any entries |
|
1356 * that follow i in hash bucket. Scatter i into w. |
|
1357 * ----------------------------------------------------- */ |
|
1358 |
|
1359 ln = Len [i] ; |
|
1360 eln = Elen [i] ; |
|
1361 ASSERT (ln >= 0 && eln >= 0) ; |
|
1362 ASSERT (Pe [i] >= 0 && Pe [i] < iwlen) ; |
|
1363 /* do not flag the first element in the list (me) */ |
|
1364 for (p = Pe [i] + 1 ; p <= Pe [i] + ln - 1 ; p++) |
|
1365 { |
|
1366 ASSERT (Iw [p] >= 0 && Iw [p] < n) ; |
|
1367 W [Iw [p]] = wflg ; |
|
1368 } |
|
1369 |
|
1370 /* ----------------------------------------------------- */ |
|
1371 /* scan every other entry j following i in bucket */ |
|
1372 /* ----------------------------------------------------- */ |
|
1373 |
|
1374 jlast = i ; |
|
1375 j = Next [i] ; |
|
1376 ASSERT (j >= EMPTY && j < n) ; |
|
1377 |
|
1378 while (j != EMPTY) |
|
1379 { |
|
1380 /* ------------------------------------------------- */ |
|
1381 /* check if j and i have identical nonzero pattern */ |
|
1382 /* ------------------------------------------------- */ |
|
1383 |
|
1384 AMD_DEBUG3 (("compare i "ID" and j "ID"\n", i,j)) ; |
|
1385 |
|
1386 /* check if i and j have the same Len and Elen */ |
|
1387 ASSERT (Len [j] >= 0 && Elen [j] >= 0) ; |
|
1388 ASSERT (Pe [j] >= 0 && Pe [j] < iwlen) ; |
|
1389 ok = (Len [j] == ln) && (Elen [j] == eln) ; |
|
1390 /* skip the first element in the list (me) */ |
|
1391 for (p = Pe [j] + 1 ; ok && p <= Pe [j] + ln - 1 ; p++) |
|
1392 { |
|
1393 ASSERT (Iw [p] >= 0 && Iw [p] < n) ; |
|
1394 if (W [Iw [p]] != wflg) ok = 0 ; |
|
1395 } |
|
1396 if (ok) |
|
1397 { |
|
1398 /* --------------------------------------------- */ |
|
1399 /* found it! j can be absorbed into i */ |
|
1400 /* --------------------------------------------- */ |
|
1401 |
|
1402 AMD_DEBUG1 (("found it! j "ID" => i "ID"\n", j,i)); |
|
1403 Pe [j] = FLIP (i) ; |
|
1404 /* both Nv [i] and Nv [j] are negated since they */ |
|
1405 /* are in Lme, and the absolute values of each */ |
|
1406 /* are the number of variables in i and j: */ |
|
1407 Nv [i] += Nv [j] ; |
|
1408 Nv [j] = 0 ; |
|
1409 Elen [j] = EMPTY ; |
|
1410 /* delete j from hash bucket */ |
|
1411 ASSERT (j != Next [j]) ; |
|
1412 j = Next [j] ; |
|
1413 Next [jlast] = j ; |
|
1414 |
|
1415 } |
|
1416 else |
|
1417 { |
|
1418 /* j cannot be absorbed into i */ |
|
1419 jlast = j ; |
|
1420 ASSERT (j != Next [j]) ; |
|
1421 j = Next [j] ; |
|
1422 } |
|
1423 ASSERT (j >= EMPTY && j < n) ; |
|
1424 } |
|
1425 |
|
1426 /* ----------------------------------------------------- |
|
1427 * no more variables can be absorbed into i |
|
1428 * go to next i in bucket and clear flag array |
|
1429 * ----------------------------------------------------- */ |
|
1430 |
|
1431 wflg++ ; |
|
1432 i = Next [i] ; |
|
1433 ASSERT (i >= EMPTY && i < n) ; |
|
1434 |
|
1435 } |
|
1436 } |
|
1437 } |
|
1438 AMD_DEBUG2 (("detect done\n")) ; |
|
1439 |
|
1440 /* ========================================================================= */ |
|
1441 /* RESTORE DEGREE LISTS AND REMOVE NONPRINCIPAL SUPERVARIABLES FROM ELEMENT */ |
|
1442 /* ========================================================================= */ |
|
1443 |
|
1444 p = pme1 ; |
|
1445 nleft = n - nel ; |
|
1446 for (pme = pme1 ; pme <= pme2 ; pme++) |
|
1447 { |
|
1448 i = Iw [pme] ; |
|
1449 ASSERT (i >= 0 && i < n) ; |
|
1450 nvi = -Nv [i] ; |
|
1451 AMD_DEBUG3 (("Restore i "ID" "ID"\n", i, nvi)) ; |
|
1452 if (nvi > 0) |
|
1453 { |
|
1454 /* i is a principal variable in Lme */ |
|
1455 /* restore Nv [i] to signify that i is principal */ |
|
1456 Nv [i] = nvi ; |
|
1457 |
|
1458 /* --------------------------------------------------------- */ |
|
1459 /* compute the external degree (add size of current element) */ |
|
1460 /* --------------------------------------------------------- */ |
|
1461 |
|
1462 deg = Degree [i] + degme - nvi ; |
|
1463 deg = MIN (deg, nleft - nvi) ; |
|
1464 ASSERT (IMPLIES (aggressive, deg > 0) && deg >= 0 && deg < n) ; |
|
1465 |
|
1466 /* --------------------------------------------------------- */ |
|
1467 /* place the supervariable at the head of the degree list */ |
|
1468 /* --------------------------------------------------------- */ |
|
1469 |
|
1470 inext = Head [deg] ; |
|
1471 ASSERT (inext >= EMPTY && inext < n) ; |
|
1472 if (inext != EMPTY) Last [inext] = i ; |
|
1473 Next [i] = inext ; |
|
1474 Last [i] = EMPTY ; |
|
1475 Head [deg] = i ; |
|
1476 |
|
1477 /* --------------------------------------------------------- */ |
|
1478 /* save the new degree, and find the minimum degree */ |
|
1479 /* --------------------------------------------------------- */ |
|
1480 |
|
1481 mindeg = MIN (mindeg, deg) ; |
|
1482 Degree [i] = deg ; |
|
1483 |
|
1484 /* --------------------------------------------------------- */ |
|
1485 /* place the supervariable in the element pattern */ |
|
1486 /* --------------------------------------------------------- */ |
|
1487 |
|
1488 Iw [p++] = i ; |
|
1489 |
|
1490 } |
|
1491 } |
|
1492 AMD_DEBUG2 (("restore done\n")) ; |
|
1493 |
|
1494 /* ========================================================================= */ |
|
1495 /* FINALIZE THE NEW ELEMENT */ |
|
1496 /* ========================================================================= */ |
|
1497 |
|
1498 AMD_DEBUG2 (("ME = "ID" DONE\n", me)) ; |
|
1499 Nv [me] = nvpiv ; |
|
1500 /* save the length of the list for the new element me */ |
|
1501 Len [me] = p - pme1 ; |
|
1502 if (Len [me] == 0) |
|
1503 { |
|
1504 /* there is nothing left of the current pivot element */ |
|
1505 /* it is a root of the assembly tree */ |
|
1506 Pe [me] = EMPTY ; |
|
1507 W [me] = 0 ; |
|
1508 } |
|
1509 if (elenme != 0) |
|
1510 { |
|
1511 /* element was not constructed in place: deallocate part of */ |
|
1512 /* it since newly nonprincipal variables may have been removed */ |
|
1513 pfree = p ; |
|
1514 } |
|
1515 |
|
1516 /* The new element has nvpiv pivots and the size of the contribution |
|
1517 * block for a multifrontal method is degme-by-degme, not including |
|
1518 * the "dense" rows/columns. If the "dense" rows/columns are included, |
|
1519 * the frontal matrix is no larger than |
|
1520 * (degme+ndense)-by-(degme+ndense). |
|
1521 */ |
|
1522 |
|
1523 if (Info != (double *) NULL) |
|
1524 { |
|
1525 f = nvpiv ; |
|
1526 r = degme + ndense ; |
|
1527 dmax = MAX (dmax, f + r) ; |
|
1528 |
|
1529 /* number of nonzeros in L (excluding the diagonal) */ |
|
1530 lnzme = f*r + (f-1)*f/2 ; |
|
1531 lnz += lnzme ; |
|
1532 |
|
1533 /* number of divide operations for LDL' and for LU */ |
|
1534 ndiv += lnzme ; |
|
1535 |
|
1536 /* number of multiply-subtract pairs for LU */ |
|
1537 s = f*r*r + r*(f-1)*f + (f-1)*f*(2*f-1)/6 ; |
|
1538 nms_lu += s ; |
|
1539 |
|
1540 /* number of multiply-subtract pairs for LDL' */ |
|
1541 nms_ldl += (s + lnzme)/2 ; |
|
1542 } |
|
1543 |
|
1544 #ifndef NDEBUG |
|
1545 AMD_DEBUG2 (("finalize done nel "ID" n "ID"\n ::::\n", nel, n)) ; |
|
1546 for (pme = Pe [me] ; pme <= Pe [me] + Len [me] - 1 ; pme++) |
|
1547 { |
|
1548 AMD_DEBUG3 ((" "ID"", Iw [pme])) ; |
|
1549 } |
|
1550 AMD_DEBUG3 (("\n")) ; |
|
1551 #endif |
|
1552 |
|
1553 } |
|
1554 |
|
1555 /* ========================================================================= */ |
|
1556 /* DONE SELECTING PIVOTS */ |
|
1557 /* ========================================================================= */ |
|
1558 |
|
1559 if (Info != (double *) NULL) |
|
1560 { |
|
1561 |
|
1562 /* count the work to factorize the ndense-by-ndense submatrix */ |
|
1563 f = ndense ; |
|
1564 dmax = MAX (dmax, (double) ndense) ; |
|
1565 |
|
1566 /* number of nonzeros in L (excluding the diagonal) */ |
|
1567 lnzme = (f-1)*f/2 ; |
|
1568 lnz += lnzme ; |
|
1569 |
|
1570 /* number of divide operations for LDL' and for LU */ |
|
1571 ndiv += lnzme ; |
|
1572 |
|
1573 /* number of multiply-subtract pairs for LU */ |
|
1574 s = (f-1)*f*(2*f-1)/6 ; |
|
1575 nms_lu += s ; |
|
1576 |
|
1577 /* number of multiply-subtract pairs for LDL' */ |
|
1578 nms_ldl += (s + lnzme)/2 ; |
|
1579 |
|
1580 /* number of nz's in L (excl. diagonal) */ |
|
1581 Info [AMD_LNZ] = lnz ; |
|
1582 |
|
1583 /* number of divide ops for LU and LDL' */ |
|
1584 Info [AMD_NDIV] = ndiv ; |
|
1585 |
|
1586 /* number of multiply-subtract pairs for LDL' */ |
|
1587 Info [AMD_NMULTSUBS_LDL] = nms_ldl ; |
|
1588 |
|
1589 /* number of multiply-subtract pairs for LU */ |
|
1590 Info [AMD_NMULTSUBS_LU] = nms_lu ; |
|
1591 |
|
1592 /* number of "dense" rows/columns */ |
|
1593 Info [AMD_NDENSE] = ndense ; |
|
1594 |
|
1595 /* largest front is dmax-by-dmax */ |
|
1596 Info [AMD_DMAX] = dmax ; |
|
1597 |
|
1598 /* number of garbage collections in AMD */ |
|
1599 Info [AMD_NCMPA] = ncmpa ; |
|
1600 |
|
1601 /* successful ordering */ |
|
1602 Info [AMD_STATUS] = AMD_OK ; |
|
1603 } |
|
1604 |
|
1605 /* ========================================================================= */ |
|
1606 /* POST-ORDERING */ |
|
1607 /* ========================================================================= */ |
|
1608 |
|
1609 /* ------------------------------------------------------------------------- |
|
1610 * Variables at this point: |
|
1611 * |
|
1612 * Pe: holds the elimination tree. The parent of j is FLIP (Pe [j]), |
|
1613 * or EMPTY if j is a root. The tree holds both elements and |
|
1614 * non-principal (unordered) variables absorbed into them. |
|
1615 * Dense variables are non-principal and unordered. |
|
1616 * |
|
1617 * Elen: holds the size of each element, including the diagonal part. |
|
1618 * FLIP (Elen [e]) > 0 if e is an element. For unordered |
|
1619 * variables i, Elen [i] is EMPTY. |
|
1620 * |
|
1621 * Nv: Nv [e] > 0 is the number of pivots represented by the element e. |
|
1622 * For unordered variables i, Nv [i] is zero. |
|
1623 * |
|
1624 * Contents no longer needed: |
|
1625 * W, Iw, Len, Degree, Head, Next, Last. |
|
1626 * |
|
1627 * The matrix itself has been destroyed. |
|
1628 * |
|
1629 * n: the size of the matrix. |
|
1630 * No other scalars needed (pfree, iwlen, etc.) |
|
1631 * ------------------------------------------------------------------------- */ |
|
1632 |
|
1633 /* restore Pe */ |
|
1634 for (i = 0 ; i < n ; i++) |
|
1635 { |
|
1636 Pe [i] = FLIP (Pe [i]) ; |
|
1637 } |
|
1638 |
|
1639 /* restore Elen, for output information, and for postordering */ |
|
1640 for (i = 0 ; i < n ; i++) |
|
1641 { |
|
1642 Elen [i] = FLIP (Elen [i]) ; |
|
1643 } |
|
1644 |
|
1645 /* Now the parent of j is Pe [j], or EMPTY if j is a root. Elen [e] > 0 |
|
1646 * is the size of element e. Elen [i] is EMPTY for unordered variable i. */ |
|
1647 |
|
1648 #ifndef NDEBUG |
|
1649 AMD_DEBUG2 (("\nTree:\n")) ; |
|
1650 for (i = 0 ; i < n ; i++) |
|
1651 { |
|
1652 AMD_DEBUG2 ((" "ID" parent: "ID" ", i, Pe [i])) ; |
|
1653 ASSERT (Pe [i] >= EMPTY && Pe [i] < n) ; |
|
1654 if (Nv [i] > 0) |
|
1655 { |
|
1656 /* this is an element */ |
|
1657 e = i ; |
|
1658 AMD_DEBUG2 ((" element, size is "ID"\n", Elen [i])) ; |
|
1659 ASSERT (Elen [e] > 0) ; |
|
1660 } |
|
1661 AMD_DEBUG2 (("\n")) ; |
|
1662 } |
|
1663 AMD_DEBUG2 (("\nelements:\n")) ; |
|
1664 for (e = 0 ; e < n ; e++) |
|
1665 { |
|
1666 if (Nv [e] > 0) |
|
1667 { |
|
1668 AMD_DEBUG3 (("Element e= "ID" size "ID" nv "ID" \n", e, |
|
1669 Elen [e], Nv [e])) ; |
|
1670 } |
|
1671 } |
|
1672 AMD_DEBUG2 (("\nvariables:\n")) ; |
|
1673 for (i = 0 ; i < n ; i++) |
|
1674 { |
|
1675 Int cnt ; |
|
1676 if (Nv [i] == 0) |
|
1677 { |
|
1678 AMD_DEBUG3 (("i unordered: "ID"\n", i)) ; |
|
1679 j = Pe [i] ; |
|
1680 cnt = 0 ; |
|
1681 AMD_DEBUG3 ((" j: "ID"\n", j)) ; |
|
1682 if (j == EMPTY) |
|
1683 { |
|
1684 AMD_DEBUG3 ((" i is a dense variable\n")) ; |
|
1685 } |
|
1686 else |
|
1687 { |
|
1688 ASSERT (j >= 0 && j < n) ; |
|
1689 while (Nv [j] == 0) |
|
1690 { |
|
1691 AMD_DEBUG3 ((" j : "ID"\n", j)) ; |
|
1692 j = Pe [j] ; |
|
1693 AMD_DEBUG3 ((" j:: "ID"\n", j)) ; |
|
1694 cnt++ ; |
|
1695 if (cnt > n) break ; |
|
1696 } |
|
1697 e = j ; |
|
1698 AMD_DEBUG3 ((" got to e: "ID"\n", e)) ; |
|
1699 } |
|
1700 } |
|
1701 } |
|
1702 #endif |
|
1703 |
|
1704 /* ========================================================================= */ |
|
1705 /* compress the paths of the variables */ |
|
1706 /* ========================================================================= */ |
|
1707 |
|
1708 for (i = 0 ; i < n ; i++) |
|
1709 { |
|
1710 if (Nv [i] == 0) |
|
1711 { |
|
1712 |
|
1713 /* ------------------------------------------------------------- |
|
1714 * i is an un-ordered row. Traverse the tree from i until |
|
1715 * reaching an element, e. The element, e, was the principal |
|
1716 * supervariable of i and all nodes in the path from i to when e |
|
1717 * was selected as pivot. |
|
1718 * ------------------------------------------------------------- */ |
|
1719 |
|
1720 AMD_DEBUG1 (("Path compression, i unordered: "ID"\n", i)) ; |
|
1721 j = Pe [i] ; |
|
1722 ASSERT (j >= EMPTY && j < n) ; |
|
1723 AMD_DEBUG3 ((" j: "ID"\n", j)) ; |
|
1724 if (j == EMPTY) |
|
1725 { |
|
1726 /* Skip a dense variable. It has no parent. */ |
|
1727 AMD_DEBUG3 ((" i is a dense variable\n")) ; |
|
1728 continue ; |
|
1729 } |
|
1730 |
|
1731 /* while (j is a variable) */ |
|
1732 while (Nv [j] == 0) |
|
1733 { |
|
1734 AMD_DEBUG3 ((" j : "ID"\n", j)) ; |
|
1735 j = Pe [j] ; |
|
1736 AMD_DEBUG3 ((" j:: "ID"\n", j)) ; |
|
1737 ASSERT (j >= 0 && j < n) ; |
|
1738 } |
|
1739 /* got to an element e */ |
|
1740 e = j ; |
|
1741 AMD_DEBUG3 (("got to e: "ID"\n", e)) ; |
|
1742 |
|
1743 /* ------------------------------------------------------------- |
|
1744 * traverse the path again from i to e, and compress the path |
|
1745 * (all nodes point to e). Path compression allows this code to |
|
1746 * compute in O(n) time. |
|
1747 * ------------------------------------------------------------- */ |
|
1748 |
|
1749 j = i ; |
|
1750 /* while (j is a variable) */ |
|
1751 while (Nv [j] == 0) |
|
1752 { |
|
1753 jnext = Pe [j] ; |
|
1754 AMD_DEBUG3 (("j "ID" jnext "ID"\n", j, jnext)) ; |
|
1755 Pe [j] = e ; |
|
1756 j = jnext ; |
|
1757 ASSERT (j >= 0 && j < n) ; |
|
1758 } |
|
1759 } |
|
1760 } |
|
1761 |
|
1762 /* ========================================================================= */ |
|
1763 /* postorder the assembly tree */ |
|
1764 /* ========================================================================= */ |
|
1765 |
|
1766 AMD_postorder (n, Pe, Nv, Elen, |
|
1767 W, /* output order */ |
|
1768 Head, Next, Last) ; /* workspace */ |
|
1769 |
|
1770 /* ========================================================================= */ |
|
1771 /* compute output permutation and inverse permutation */ |
|
1772 /* ========================================================================= */ |
|
1773 |
|
1774 /* W [e] = k means that element e is the kth element in the new |
|
1775 * order. e is in the range 0 to n-1, and k is in the range 0 to |
|
1776 * the number of elements. Use Head for inverse order. */ |
|
1777 |
|
1778 for (k = 0 ; k < n ; k++) |
|
1779 { |
|
1780 Head [k] = EMPTY ; |
|
1781 Next [k] = EMPTY ; |
|
1782 } |
|
1783 for (e = 0 ; e < n ; e++) |
|
1784 { |
|
1785 k = W [e] ; |
|
1786 ASSERT ((k == EMPTY) == (Nv [e] == 0)) ; |
|
1787 if (k != EMPTY) |
|
1788 { |
|
1789 ASSERT (k >= 0 && k < n) ; |
|
1790 Head [k] = e ; |
|
1791 } |
|
1792 } |
|
1793 |
|
1794 /* construct output inverse permutation in Next, |
|
1795 * and permutation in Last */ |
|
1796 nel = 0 ; |
|
1797 for (k = 0 ; k < n ; k++) |
|
1798 { |
|
1799 e = Head [k] ; |
|
1800 if (e == EMPTY) break ; |
|
1801 ASSERT (e >= 0 && e < n && Nv [e] > 0) ; |
|
1802 Next [e] = nel ; |
|
1803 nel += Nv [e] ; |
|
1804 } |
|
1805 ASSERT (nel == n - ndense) ; |
|
1806 |
|
1807 /* order non-principal variables (dense, & those merged into supervar's) */ |
|
1808 for (i = 0 ; i < n ; i++) |
|
1809 { |
|
1810 if (Nv [i] == 0) |
|
1811 { |
|
1812 e = Pe [i] ; |
|
1813 ASSERT (e >= EMPTY && e < n) ; |
|
1814 if (e != EMPTY) |
|
1815 { |
|
1816 /* This is an unordered variable that was merged |
|
1817 * into element e via supernode detection or mass |
|
1818 * elimination of i when e became the pivot element. |
|
1819 * Place i in order just before e. */ |
|
1820 ASSERT (Next [i] == EMPTY && Nv [e] > 0) ; |
|
1821 Next [i] = Next [e] ; |
|
1822 Next [e]++ ; |
|
1823 } |
|
1824 else |
|
1825 { |
|
1826 /* This is a dense unordered variable, with no parent. |
|
1827 * Place it last in the output order. */ |
|
1828 Next [i] = nel++ ; |
|
1829 } |
|
1830 } |
|
1831 } |
|
1832 ASSERT (nel == n) ; |
|
1833 |
|
1834 AMD_DEBUG2 (("\n\nPerm:\n")) ; |
|
1835 for (i = 0 ; i < n ; i++) |
|
1836 { |
|
1837 k = Next [i] ; |
|
1838 ASSERT (k >= 0 && k < n) ; |
|
1839 Last [k] = i ; |
|
1840 AMD_DEBUG2 ((" perm ["ID"] = "ID"\n", k, i)) ; |
|
1841 } |
|
1842 } |