alpar@1
|
1 |
/* ========================================================================= */
|
alpar@1
|
2 |
/* === AMD_2 =============================================================== */
|
alpar@1
|
3 |
/* ========================================================================= */
|
alpar@1
|
4 |
|
alpar@1
|
5 |
/* ------------------------------------------------------------------------- */
|
alpar@1
|
6 |
/* AMD, Copyright (c) Timothy A. Davis, */
|
alpar@1
|
7 |
/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */
|
alpar@1
|
8 |
/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */
|
alpar@1
|
9 |
/* web: http://www.cise.ufl.edu/research/sparse/amd */
|
alpar@1
|
10 |
/* ------------------------------------------------------------------------- */
|
alpar@1
|
11 |
|
alpar@1
|
12 |
/* AMD_2: performs the AMD ordering on a symmetric sparse matrix A, followed
|
alpar@1
|
13 |
* by a postordering (via depth-first search) of the assembly tree using the
|
alpar@1
|
14 |
* AMD_postorder routine.
|
alpar@1
|
15 |
*/
|
alpar@1
|
16 |
|
alpar@1
|
17 |
#include "amd_internal.h"
|
alpar@1
|
18 |
|
alpar@1
|
19 |
/* ========================================================================= */
|
alpar@1
|
20 |
/* === clear_flag ========================================================== */
|
alpar@1
|
21 |
/* ========================================================================= */
|
alpar@1
|
22 |
|
alpar@1
|
23 |
static Int clear_flag (Int wflg, Int wbig, Int W [ ], Int n)
|
alpar@1
|
24 |
{
|
alpar@1
|
25 |
Int x ;
|
alpar@1
|
26 |
if (wflg < 2 || wflg >= wbig)
|
alpar@1
|
27 |
{
|
alpar@1
|
28 |
for (x = 0 ; x < n ; x++)
|
alpar@1
|
29 |
{
|
alpar@1
|
30 |
if (W [x] != 0) W [x] = 1 ;
|
alpar@1
|
31 |
}
|
alpar@1
|
32 |
wflg = 2 ;
|
alpar@1
|
33 |
}
|
alpar@1
|
34 |
/* at this point, W [0..n-1] < wflg holds */
|
alpar@1
|
35 |
return (wflg) ;
|
alpar@1
|
36 |
}
|
alpar@1
|
37 |
|
alpar@1
|
38 |
|
alpar@1
|
39 |
/* ========================================================================= */
|
alpar@1
|
40 |
/* === AMD_2 =============================================================== */
|
alpar@1
|
41 |
/* ========================================================================= */
|
alpar@1
|
42 |
|
alpar@1
|
43 |
GLOBAL void AMD_2
|
alpar@1
|
44 |
(
|
alpar@1
|
45 |
Int n, /* A is n-by-n, where n > 0 */
|
alpar@1
|
46 |
Int Pe [ ], /* Pe [0..n-1]: index in Iw of row i on input */
|
alpar@1
|
47 |
Int Iw [ ], /* workspace of size iwlen. Iw [0..pfree-1]
|
alpar@1
|
48 |
* holds the matrix on input */
|
alpar@1
|
49 |
Int Len [ ], /* Len [0..n-1]: length for row/column i on input */
|
alpar@1
|
50 |
Int iwlen, /* length of Iw. iwlen >= pfree + n */
|
alpar@1
|
51 |
Int pfree, /* Iw [pfree ... iwlen-1] is empty on input */
|
alpar@1
|
52 |
|
alpar@1
|
53 |
/* 7 size-n workspaces, not defined on input: */
|
alpar@1
|
54 |
Int Nv [ ], /* the size of each supernode on output */
|
alpar@1
|
55 |
Int Next [ ], /* the output inverse permutation */
|
alpar@1
|
56 |
Int Last [ ], /* the output permutation */
|
alpar@1
|
57 |
Int Head [ ],
|
alpar@1
|
58 |
Int Elen [ ], /* the size columns of L for each supernode */
|
alpar@1
|
59 |
Int Degree [ ],
|
alpar@1
|
60 |
Int W [ ],
|
alpar@1
|
61 |
|
alpar@1
|
62 |
/* control parameters and output statistics */
|
alpar@1
|
63 |
double Control [ ], /* array of size AMD_CONTROL */
|
alpar@1
|
64 |
double Info [ ] /* array of size AMD_INFO */
|
alpar@1
|
65 |
)
|
alpar@1
|
66 |
{
|
alpar@1
|
67 |
|
alpar@1
|
68 |
/*
|
alpar@1
|
69 |
* Given a representation of the nonzero pattern of a symmetric matrix, A,
|
alpar@1
|
70 |
* (excluding the diagonal) perform an approximate minimum (UMFPACK/MA38-style)
|
alpar@1
|
71 |
* degree ordering to compute a pivot order such that the introduction of
|
alpar@1
|
72 |
* nonzeros (fill-in) in the Cholesky factors A = LL' is kept low. At each
|
alpar@1
|
73 |
* step, the pivot selected is the one with the minimum UMFAPACK/MA38-style
|
alpar@1
|
74 |
* upper-bound on the external degree. This routine can optionally perform
|
alpar@1
|
75 |
* aggresive absorption (as done by MC47B in the Harwell Subroutine
|
alpar@1
|
76 |
* Library).
|
alpar@1
|
77 |
*
|
alpar@1
|
78 |
* The approximate degree algorithm implemented here is the symmetric analog of
|
alpar@1
|
79 |
* the degree update algorithm in MA38 and UMFPACK (the Unsymmetric-pattern
|
alpar@1
|
80 |
* MultiFrontal PACKage, both by Davis and Duff). The routine is based on the
|
alpar@1
|
81 |
* MA27 minimum degree ordering algorithm by Iain Duff and John Reid.
|
alpar@1
|
82 |
*
|
alpar@1
|
83 |
* This routine is a translation of the original AMDBAR and MC47B routines,
|
alpar@1
|
84 |
* in Fortran, with the following modifications:
|
alpar@1
|
85 |
*
|
alpar@1
|
86 |
* (1) dense rows/columns are removed prior to ordering the matrix, and placed
|
alpar@1
|
87 |
* last in the output order. The presence of a dense row/column can
|
alpar@1
|
88 |
* increase the ordering time by up to O(n^2), unless they are removed
|
alpar@1
|
89 |
* prior to ordering.
|
alpar@1
|
90 |
*
|
alpar@1
|
91 |
* (2) the minimum degree ordering is followed by a postordering (depth-first
|
alpar@1
|
92 |
* search) of the assembly tree. Note that mass elimination (discussed
|
alpar@1
|
93 |
* below) combined with the approximate degree update can lead to the mass
|
alpar@1
|
94 |
* elimination of nodes with lower exact degree than the current pivot
|
alpar@1
|
95 |
* element. No additional fill-in is caused in the representation of the
|
alpar@1
|
96 |
* Schur complement. The mass-eliminated nodes merge with the current
|
alpar@1
|
97 |
* pivot element. They are ordered prior to the current pivot element.
|
alpar@1
|
98 |
* Because they can have lower exact degree than the current element, the
|
alpar@1
|
99 |
* merger of two or more of these nodes in the current pivot element can
|
alpar@1
|
100 |
* lead to a single element that is not a "fundamental supernode". The
|
alpar@1
|
101 |
* diagonal block can have zeros in it. Thus, the assembly tree used here
|
alpar@1
|
102 |
* is not guaranteed to be the precise supernodal elemination tree (with
|
alpar@1
|
103 |
* "funadmental" supernodes), and the postordering performed by this
|
alpar@1
|
104 |
* routine is not guaranteed to be a precise postordering of the
|
alpar@1
|
105 |
* elimination tree.
|
alpar@1
|
106 |
*
|
alpar@1
|
107 |
* (3) input parameters are added, to control aggressive absorption and the
|
alpar@1
|
108 |
* detection of "dense" rows/columns of A.
|
alpar@1
|
109 |
*
|
alpar@1
|
110 |
* (4) additional statistical information is returned, such as the number of
|
alpar@1
|
111 |
* nonzeros in L, and the flop counts for subsequent LDL' and LU
|
alpar@1
|
112 |
* factorizations. These are slight upper bounds, because of the mass
|
alpar@1
|
113 |
* elimination issue discussed above.
|
alpar@1
|
114 |
*
|
alpar@1
|
115 |
* (5) additional routines are added to interface this routine to MATLAB
|
alpar@1
|
116 |
* to provide a simple C-callable user-interface, to check inputs for
|
alpar@1
|
117 |
* errors, compute the symmetry of the pattern of A and the number of
|
alpar@1
|
118 |
* nonzeros in each row/column of A+A', to compute the pattern of A+A',
|
alpar@1
|
119 |
* to perform the assembly tree postordering, and to provide debugging
|
alpar@1
|
120 |
* ouput. Many of these functions are also provided by the Fortran
|
alpar@1
|
121 |
* Harwell Subroutine Library routine MC47A.
|
alpar@1
|
122 |
*
|
alpar@1
|
123 |
* (6) both int and UF_long versions are provided. In the descriptions below
|
alpar@1
|
124 |
* and integer is and int or UF_long depending on which version is
|
alpar@1
|
125 |
* being used.
|
alpar@1
|
126 |
|
alpar@1
|
127 |
**********************************************************************
|
alpar@1
|
128 |
***** CAUTION: ARGUMENTS ARE NOT CHECKED FOR ERRORS ON INPUT. ******
|
alpar@1
|
129 |
**********************************************************************
|
alpar@1
|
130 |
** If you want error checking, a more versatile input format, and a **
|
alpar@1
|
131 |
** simpler user interface, use amd_order or amd_l_order instead. **
|
alpar@1
|
132 |
** This routine is not meant to be user-callable. **
|
alpar@1
|
133 |
**********************************************************************
|
alpar@1
|
134 |
|
alpar@1
|
135 |
* ----------------------------------------------------------------------------
|
alpar@1
|
136 |
* References:
|
alpar@1
|
137 |
* ----------------------------------------------------------------------------
|
alpar@1
|
138 |
*
|
alpar@1
|
139 |
* [1] Timothy A. Davis and Iain Duff, "An unsymmetric-pattern multifrontal
|
alpar@1
|
140 |
* method for sparse LU factorization", SIAM J. Matrix Analysis and
|
alpar@1
|
141 |
* Applications, vol. 18, no. 1, pp. 140-158. Discusses UMFPACK / MA38,
|
alpar@1
|
142 |
* which first introduced the approximate minimum degree used by this
|
alpar@1
|
143 |
* routine.
|
alpar@1
|
144 |
*
|
alpar@1
|
145 |
* [2] Patrick Amestoy, Timothy A. Davis, and Iain S. Duff, "An approximate
|
alpar@1
|
146 |
* minimum degree ordering algorithm," SIAM J. Matrix Analysis and
|
alpar@1
|
147 |
* Applications, vol. 17, no. 4, pp. 886-905, 1996. Discusses AMDBAR and
|
alpar@1
|
148 |
* MC47B, which are the Fortran versions of this routine.
|
alpar@1
|
149 |
*
|
alpar@1
|
150 |
* [3] Alan George and Joseph Liu, "The evolution of the minimum degree
|
alpar@1
|
151 |
* ordering algorithm," SIAM Review, vol. 31, no. 1, pp. 1-19, 1989.
|
alpar@1
|
152 |
* We list below the features mentioned in that paper that this code
|
alpar@1
|
153 |
* includes:
|
alpar@1
|
154 |
*
|
alpar@1
|
155 |
* mass elimination:
|
alpar@1
|
156 |
* Yes. MA27 relied on supervariable detection for mass elimination.
|
alpar@1
|
157 |
*
|
alpar@1
|
158 |
* indistinguishable nodes:
|
alpar@1
|
159 |
* Yes (we call these "supervariables"). This was also in the MA27
|
alpar@1
|
160 |
* code - although we modified the method of detecting them (the
|
alpar@1
|
161 |
* previous hash was the true degree, which we no longer keep track
|
alpar@1
|
162 |
* of). A supervariable is a set of rows with identical nonzero
|
alpar@1
|
163 |
* pattern. All variables in a supervariable are eliminated together.
|
alpar@1
|
164 |
* Each supervariable has as its numerical name that of one of its
|
alpar@1
|
165 |
* variables (its principal variable).
|
alpar@1
|
166 |
*
|
alpar@1
|
167 |
* quotient graph representation:
|
alpar@1
|
168 |
* Yes. We use the term "element" for the cliques formed during
|
alpar@1
|
169 |
* elimination. This was also in the MA27 code. The algorithm can
|
alpar@1
|
170 |
* operate in place, but it will work more efficiently if given some
|
alpar@1
|
171 |
* "elbow room."
|
alpar@1
|
172 |
*
|
alpar@1
|
173 |
* element absorption:
|
alpar@1
|
174 |
* Yes. This was also in the MA27 code.
|
alpar@1
|
175 |
*
|
alpar@1
|
176 |
* external degree:
|
alpar@1
|
177 |
* Yes. The MA27 code was based on the true degree.
|
alpar@1
|
178 |
*
|
alpar@1
|
179 |
* incomplete degree update and multiple elimination:
|
alpar@1
|
180 |
* No. This was not in MA27, either. Our method of degree update
|
alpar@1
|
181 |
* within MC47B is element-based, not variable-based. It is thus
|
alpar@1
|
182 |
* not well-suited for use with incomplete degree update or multiple
|
alpar@1
|
183 |
* elimination.
|
alpar@1
|
184 |
*
|
alpar@1
|
185 |
* Authors, and Copyright (C) 2004 by:
|
alpar@1
|
186 |
* Timothy A. Davis, Patrick Amestoy, Iain S. Duff, John K. Reid.
|
alpar@1
|
187 |
*
|
alpar@1
|
188 |
* Acknowledgements: This work (and the UMFPACK package) was supported by the
|
alpar@1
|
189 |
* National Science Foundation (ASC-9111263, DMS-9223088, and CCR-0203270).
|
alpar@1
|
190 |
* The UMFPACK/MA38 approximate degree update algorithm, the unsymmetric analog
|
alpar@1
|
191 |
* which forms the basis of AMD, was developed while Tim Davis was supported by
|
alpar@1
|
192 |
* CERFACS (Toulouse, France) in a post-doctoral position. This C version, and
|
alpar@1
|
193 |
* the etree postorder, were written while Tim Davis was on sabbatical at
|
alpar@1
|
194 |
* Stanford University and Lawrence Berkeley National Laboratory.
|
alpar@1
|
195 |
|
alpar@1
|
196 |
* ----------------------------------------------------------------------------
|
alpar@1
|
197 |
* INPUT ARGUMENTS (unaltered):
|
alpar@1
|
198 |
* ----------------------------------------------------------------------------
|
alpar@1
|
199 |
|
alpar@1
|
200 |
* n: The matrix order. Restriction: n >= 1.
|
alpar@1
|
201 |
*
|
alpar@1
|
202 |
* iwlen: The size of the Iw array. On input, the matrix is stored in
|
alpar@1
|
203 |
* Iw [0..pfree-1]. However, Iw [0..iwlen-1] should be slightly larger
|
alpar@1
|
204 |
* than what is required to hold the matrix, at least iwlen >= pfree + n.
|
alpar@1
|
205 |
* Otherwise, excessive compressions will take place. The recommended
|
alpar@1
|
206 |
* value of iwlen is 1.2 * pfree + n, which is the value used in the
|
alpar@1
|
207 |
* user-callable interface to this routine (amd_order.c). The algorithm
|
alpar@1
|
208 |
* will not run at all if iwlen < pfree. Restriction: iwlen >= pfree + n.
|
alpar@1
|
209 |
* Note that this is slightly more restrictive than the actual minimum
|
alpar@1
|
210 |
* (iwlen >= pfree), but AMD_2 will be very slow with no elbow room.
|
alpar@1
|
211 |
* Thus, this routine enforces a bare minimum elbow room of size n.
|
alpar@1
|
212 |
*
|
alpar@1
|
213 |
* pfree: On input the tail end of the array, Iw [pfree..iwlen-1], is empty,
|
alpar@1
|
214 |
* and the matrix is stored in Iw [0..pfree-1]. During execution,
|
alpar@1
|
215 |
* additional data is placed in Iw, and pfree is modified so that
|
alpar@1
|
216 |
* Iw [pfree..iwlen-1] is always the unused part of Iw.
|
alpar@1
|
217 |
*
|
alpar@1
|
218 |
* Control: A double array of size AMD_CONTROL containing input parameters
|
alpar@1
|
219 |
* that affect how the ordering is computed. If NULL, then default
|
alpar@1
|
220 |
* settings are used.
|
alpar@1
|
221 |
*
|
alpar@1
|
222 |
* Control [AMD_DENSE] is used to determine whether or not a given input
|
alpar@1
|
223 |
* row is "dense". A row is "dense" if the number of entries in the row
|
alpar@1
|
224 |
* exceeds Control [AMD_DENSE] times sqrt (n), except that rows with 16 or
|
alpar@1
|
225 |
* fewer entries are never considered "dense". To turn off the detection
|
alpar@1
|
226 |
* of dense rows, set Control [AMD_DENSE] to a negative number, or to a
|
alpar@1
|
227 |
* number larger than sqrt (n). The default value of Control [AMD_DENSE]
|
alpar@1
|
228 |
* is AMD_DEFAULT_DENSE, which is defined in amd.h as 10.
|
alpar@1
|
229 |
*
|
alpar@1
|
230 |
* Control [AMD_AGGRESSIVE] is used to determine whether or not aggressive
|
alpar@1
|
231 |
* absorption is to be performed. If nonzero, then aggressive absorption
|
alpar@1
|
232 |
* is performed (this is the default).
|
alpar@1
|
233 |
|
alpar@1
|
234 |
* ----------------------------------------------------------------------------
|
alpar@1
|
235 |
* INPUT/OUPUT ARGUMENTS:
|
alpar@1
|
236 |
* ----------------------------------------------------------------------------
|
alpar@1
|
237 |
*
|
alpar@1
|
238 |
* Pe: An integer array of size n. On input, Pe [i] is the index in Iw of
|
alpar@1
|
239 |
* the start of row i. Pe [i] is ignored if row i has no off-diagonal
|
alpar@1
|
240 |
* entries. Thus Pe [i] must be in the range 0 to pfree-1 for non-empty
|
alpar@1
|
241 |
* rows.
|
alpar@1
|
242 |
*
|
alpar@1
|
243 |
* During execution, it is used for both supervariables and elements:
|
alpar@1
|
244 |
*
|
alpar@1
|
245 |
* Principal supervariable i: index into Iw of the description of
|
alpar@1
|
246 |
* supervariable i. A supervariable represents one or more rows of
|
alpar@1
|
247 |
* the matrix with identical nonzero pattern. In this case,
|
alpar@1
|
248 |
* Pe [i] >= 0.
|
alpar@1
|
249 |
*
|
alpar@1
|
250 |
* Non-principal supervariable i: if i has been absorbed into another
|
alpar@1
|
251 |
* supervariable j, then Pe [i] = FLIP (j), where FLIP (j) is defined
|
alpar@1
|
252 |
* as (-(j)-2). Row j has the same pattern as row i. Note that j
|
alpar@1
|
253 |
* might later be absorbed into another supervariable j2, in which
|
alpar@1
|
254 |
* case Pe [i] is still FLIP (j), and Pe [j] = FLIP (j2) which is
|
alpar@1
|
255 |
* < EMPTY, where EMPTY is defined as (-1) in amd_internal.h.
|
alpar@1
|
256 |
*
|
alpar@1
|
257 |
* Unabsorbed element e: the index into Iw of the description of element
|
alpar@1
|
258 |
* e, if e has not yet been absorbed by a subsequent element. Element
|
alpar@1
|
259 |
* e is created when the supervariable of the same name is selected as
|
alpar@1
|
260 |
* the pivot. In this case, Pe [i] >= 0.
|
alpar@1
|
261 |
*
|
alpar@1
|
262 |
* Absorbed element e: if element e is absorbed into element e2, then
|
alpar@1
|
263 |
* Pe [e] = FLIP (e2). This occurs when the pattern of e (which we
|
alpar@1
|
264 |
* refer to as Le) is found to be a subset of the pattern of e2 (that
|
alpar@1
|
265 |
* is, Le2). In this case, Pe [i] < EMPTY. If element e is "null"
|
alpar@1
|
266 |
* (it has no nonzeros outside its pivot block), then Pe [e] = EMPTY,
|
alpar@1
|
267 |
* and e is the root of an assembly subtree (or the whole tree if
|
alpar@1
|
268 |
* there is just one such root).
|
alpar@1
|
269 |
*
|
alpar@1
|
270 |
* Dense variable i: if i is "dense", then Pe [i] = EMPTY.
|
alpar@1
|
271 |
*
|
alpar@1
|
272 |
* On output, Pe holds the assembly tree/forest, which implicitly
|
alpar@1
|
273 |
* represents a pivot order with identical fill-in as the actual order
|
alpar@1
|
274 |
* (via a depth-first search of the tree), as follows. If Nv [i] > 0,
|
alpar@1
|
275 |
* then i represents a node in the assembly tree, and the parent of i is
|
alpar@1
|
276 |
* Pe [i], or EMPTY if i is a root. If Nv [i] = 0, then (i, Pe [i])
|
alpar@1
|
277 |
* represents an edge in a subtree, the root of which is a node in the
|
alpar@1
|
278 |
* assembly tree. Note that i refers to a row/column in the original
|
alpar@1
|
279 |
* matrix, not the permuted matrix.
|
alpar@1
|
280 |
*
|
alpar@1
|
281 |
* Info: A double array of size AMD_INFO. If present, (that is, not NULL),
|
alpar@1
|
282 |
* then statistics about the ordering are returned in the Info array.
|
alpar@1
|
283 |
* See amd.h for a description.
|
alpar@1
|
284 |
|
alpar@1
|
285 |
* ----------------------------------------------------------------------------
|
alpar@1
|
286 |
* INPUT/MODIFIED (undefined on output):
|
alpar@1
|
287 |
* ----------------------------------------------------------------------------
|
alpar@1
|
288 |
*
|
alpar@1
|
289 |
* Len: An integer array of size n. On input, Len [i] holds the number of
|
alpar@1
|
290 |
* entries in row i of the matrix, excluding the diagonal. The contents
|
alpar@1
|
291 |
* of Len are undefined on output.
|
alpar@1
|
292 |
*
|
alpar@1
|
293 |
* Iw: An integer array of size iwlen. On input, Iw [0..pfree-1] holds the
|
alpar@1
|
294 |
* description of each row i in the matrix. The matrix must be symmetric,
|
alpar@1
|
295 |
* and both upper and lower triangular parts must be present. The
|
alpar@1
|
296 |
* diagonal must not be present. Row i is held as follows:
|
alpar@1
|
297 |
*
|
alpar@1
|
298 |
* Len [i]: the length of the row i data structure in the Iw array.
|
alpar@1
|
299 |
* Iw [Pe [i] ... Pe [i] + Len [i] - 1]:
|
alpar@1
|
300 |
* the list of column indices for nonzeros in row i (simple
|
alpar@1
|
301 |
* supervariables), excluding the diagonal. All supervariables
|
alpar@1
|
302 |
* start with one row/column each (supervariable i is just row i).
|
alpar@1
|
303 |
* If Len [i] is zero on input, then Pe [i] is ignored on input.
|
alpar@1
|
304 |
*
|
alpar@1
|
305 |
* Note that the rows need not be in any particular order, and there
|
alpar@1
|
306 |
* may be empty space between the rows.
|
alpar@1
|
307 |
*
|
alpar@1
|
308 |
* During execution, the supervariable i experiences fill-in. This is
|
alpar@1
|
309 |
* represented by placing in i a list of the elements that cause fill-in
|
alpar@1
|
310 |
* in supervariable i:
|
alpar@1
|
311 |
*
|
alpar@1
|
312 |
* Len [i]: the length of supervariable i in the Iw array.
|
alpar@1
|
313 |
* Iw [Pe [i] ... Pe [i] + Elen [i] - 1]:
|
alpar@1
|
314 |
* the list of elements that contain i. This list is kept short
|
alpar@1
|
315 |
* by removing absorbed elements.
|
alpar@1
|
316 |
* Iw [Pe [i] + Elen [i] ... Pe [i] + Len [i] - 1]:
|
alpar@1
|
317 |
* the list of supervariables in i. This list is kept short by
|
alpar@1
|
318 |
* removing nonprincipal variables, and any entry j that is also
|
alpar@1
|
319 |
* contained in at least one of the elements (j in Le) in the list
|
alpar@1
|
320 |
* for i (e in row i).
|
alpar@1
|
321 |
*
|
alpar@1
|
322 |
* When supervariable i is selected as pivot, we create an element e of
|
alpar@1
|
323 |
* the same name (e=i):
|
alpar@1
|
324 |
*
|
alpar@1
|
325 |
* Len [e]: the length of element e in the Iw array.
|
alpar@1
|
326 |
* Iw [Pe [e] ... Pe [e] + Len [e] - 1]:
|
alpar@1
|
327 |
* the list of supervariables in element e.
|
alpar@1
|
328 |
*
|
alpar@1
|
329 |
* An element represents the fill-in that occurs when supervariable i is
|
alpar@1
|
330 |
* selected as pivot (which represents the selection of row i and all
|
alpar@1
|
331 |
* non-principal variables whose principal variable is i). We use the
|
alpar@1
|
332 |
* term Le to denote the set of all supervariables in element e. Absorbed
|
alpar@1
|
333 |
* supervariables and elements are pruned from these lists when
|
alpar@1
|
334 |
* computationally convenient.
|
alpar@1
|
335 |
*
|
alpar@1
|
336 |
* CAUTION: THE INPUT MATRIX IS OVERWRITTEN DURING COMPUTATION.
|
alpar@1
|
337 |
* The contents of Iw are undefined on output.
|
alpar@1
|
338 |
|
alpar@1
|
339 |
* ----------------------------------------------------------------------------
|
alpar@1
|
340 |
* OUTPUT (need not be set on input):
|
alpar@1
|
341 |
* ----------------------------------------------------------------------------
|
alpar@1
|
342 |
*
|
alpar@1
|
343 |
* Nv: An integer array of size n. During execution, ABS (Nv [i]) is equal to
|
alpar@1
|
344 |
* the number of rows that are represented by the principal supervariable
|
alpar@1
|
345 |
* i. If i is a nonprincipal or dense variable, then Nv [i] = 0.
|
alpar@1
|
346 |
* Initially, Nv [i] = 1 for all i. Nv [i] < 0 signifies that i is a
|
alpar@1
|
347 |
* principal variable in the pattern Lme of the current pivot element me.
|
alpar@1
|
348 |
* After element me is constructed, Nv [i] is set back to a positive
|
alpar@1
|
349 |
* value.
|
alpar@1
|
350 |
*
|
alpar@1
|
351 |
* On output, Nv [i] holds the number of pivots represented by super
|
alpar@1
|
352 |
* row/column i of the original matrix, or Nv [i] = 0 for non-principal
|
alpar@1
|
353 |
* rows/columns. Note that i refers to a row/column in the original
|
alpar@1
|
354 |
* matrix, not the permuted matrix.
|
alpar@1
|
355 |
*
|
alpar@1
|
356 |
* Elen: An integer array of size n. See the description of Iw above. At the
|
alpar@1
|
357 |
* start of execution, Elen [i] is set to zero for all rows i. During
|
alpar@1
|
358 |
* execution, Elen [i] is the number of elements in the list for
|
alpar@1
|
359 |
* supervariable i. When e becomes an element, Elen [e] = FLIP (esize) is
|
alpar@1
|
360 |
* set, where esize is the size of the element (the number of pivots, plus
|
alpar@1
|
361 |
* the number of nonpivotal entries). Thus Elen [e] < EMPTY.
|
alpar@1
|
362 |
* Elen (i) = EMPTY set when variable i becomes nonprincipal.
|
alpar@1
|
363 |
*
|
alpar@1
|
364 |
* For variables, Elen (i) >= EMPTY holds until just before the
|
alpar@1
|
365 |
* postordering and permutation vectors are computed. For elements,
|
alpar@1
|
366 |
* Elen [e] < EMPTY holds.
|
alpar@1
|
367 |
*
|
alpar@1
|
368 |
* On output, Elen [i] is the degree of the row/column in the Cholesky
|
alpar@1
|
369 |
* factorization of the permuted matrix, corresponding to the original row
|
alpar@1
|
370 |
* i, if i is a super row/column. It is equal to EMPTY if i is
|
alpar@1
|
371 |
* non-principal. Note that i refers to a row/column in the original
|
alpar@1
|
372 |
* matrix, not the permuted matrix.
|
alpar@1
|
373 |
*
|
alpar@1
|
374 |
* Note that the contents of Elen on output differ from the Fortran
|
alpar@1
|
375 |
* version (Elen holds the inverse permutation in the Fortran version,
|
alpar@1
|
376 |
* which is instead returned in the Next array in this C version,
|
alpar@1
|
377 |
* described below).
|
alpar@1
|
378 |
*
|
alpar@1
|
379 |
* Last: In a degree list, Last [i] is the supervariable preceding i, or EMPTY
|
alpar@1
|
380 |
* if i is the head of the list. In a hash bucket, Last [i] is the hash
|
alpar@1
|
381 |
* key for i.
|
alpar@1
|
382 |
*
|
alpar@1
|
383 |
* Last [Head [hash]] is also used as the head of a hash bucket if
|
alpar@1
|
384 |
* Head [hash] contains a degree list (see the description of Head,
|
alpar@1
|
385 |
* below).
|
alpar@1
|
386 |
*
|
alpar@1
|
387 |
* On output, Last [0..n-1] holds the permutation. That is, if
|
alpar@1
|
388 |
* i = Last [k], then row i is the kth pivot row (where k ranges from 0 to
|
alpar@1
|
389 |
* n-1). Row Last [k] of A is the kth row in the permuted matrix, PAP'.
|
alpar@1
|
390 |
*
|
alpar@1
|
391 |
* Next: Next [i] is the supervariable following i in a link list, or EMPTY if
|
alpar@1
|
392 |
* i is the last in the list. Used for two kinds of lists: degree lists
|
alpar@1
|
393 |
* and hash buckets (a supervariable can be in only one kind of list at a
|
alpar@1
|
394 |
* time).
|
alpar@1
|
395 |
*
|
alpar@1
|
396 |
* On output Next [0..n-1] holds the inverse permutation. That is, if
|
alpar@1
|
397 |
* k = Next [i], then row i is the kth pivot row. Row i of A appears as
|
alpar@1
|
398 |
* the (Next[i])-th row in the permuted matrix, PAP'.
|
alpar@1
|
399 |
*
|
alpar@1
|
400 |
* Note that the contents of Next on output differ from the Fortran
|
alpar@1
|
401 |
* version (Next is undefined on output in the Fortran version).
|
alpar@1
|
402 |
|
alpar@1
|
403 |
* ----------------------------------------------------------------------------
|
alpar@1
|
404 |
* LOCAL WORKSPACE (not input or output - used only during execution):
|
alpar@1
|
405 |
* ----------------------------------------------------------------------------
|
alpar@1
|
406 |
*
|
alpar@1
|
407 |
* Degree: An integer array of size n. If i is a supervariable, then
|
alpar@1
|
408 |
* Degree [i] holds the current approximation of the external degree of
|
alpar@1
|
409 |
* row i (an upper bound). The external degree is the number of nonzeros
|
alpar@1
|
410 |
* in row i, minus ABS (Nv [i]), the diagonal part. The bound is equal to
|
alpar@1
|
411 |
* the exact external degree if Elen [i] is less than or equal to two.
|
alpar@1
|
412 |
*
|
alpar@1
|
413 |
* We also use the term "external degree" for elements e to refer to
|
alpar@1
|
414 |
* |Le \ Lme|. If e is an element, then Degree [e] is |Le|, which is the
|
alpar@1
|
415 |
* degree of the off-diagonal part of the element e (not including the
|
alpar@1
|
416 |
* diagonal part).
|
alpar@1
|
417 |
*
|
alpar@1
|
418 |
* Head: An integer array of size n. Head is used for degree lists.
|
alpar@1
|
419 |
* Head [deg] is the first supervariable in a degree list. All
|
alpar@1
|
420 |
* supervariables i in a degree list Head [deg] have the same approximate
|
alpar@1
|
421 |
* degree, namely, deg = Degree [i]. If the list Head [deg] is empty then
|
alpar@1
|
422 |
* Head [deg] = EMPTY.
|
alpar@1
|
423 |
*
|
alpar@1
|
424 |
* During supervariable detection Head [hash] also serves as a pointer to
|
alpar@1
|
425 |
* a hash bucket. If Head [hash] >= 0, there is a degree list of degree
|
alpar@1
|
426 |
* hash. The hash bucket head pointer is Last [Head [hash]]. If
|
alpar@1
|
427 |
* Head [hash] = EMPTY, then the degree list and hash bucket are both
|
alpar@1
|
428 |
* empty. If Head [hash] < EMPTY, then the degree list is empty, and
|
alpar@1
|
429 |
* FLIP (Head [hash]) is the head of the hash bucket. After supervariable
|
alpar@1
|
430 |
* detection is complete, all hash buckets are empty, and the
|
alpar@1
|
431 |
* (Last [Head [hash]] = EMPTY) condition is restored for the non-empty
|
alpar@1
|
432 |
* degree lists.
|
alpar@1
|
433 |
*
|
alpar@1
|
434 |
* W: An integer array of size n. The flag array W determines the status of
|
alpar@1
|
435 |
* elements and variables, and the external degree of elements.
|
alpar@1
|
436 |
*
|
alpar@1
|
437 |
* for elements:
|
alpar@1
|
438 |
* if W [e] = 0, then the element e is absorbed.
|
alpar@1
|
439 |
* if W [e] >= wflg, then W [e] - wflg is the size of the set
|
alpar@1
|
440 |
* |Le \ Lme|, in terms of nonzeros (the sum of ABS (Nv [i]) for
|
alpar@1
|
441 |
* each principal variable i that is both in the pattern of
|
alpar@1
|
442 |
* element e and NOT in the pattern of the current pivot element,
|
alpar@1
|
443 |
* me).
|
alpar@1
|
444 |
* if wflg > W [e] > 0, then e is not absorbed and has not yet been
|
alpar@1
|
445 |
* seen in the scan of the element lists in the computation of
|
alpar@1
|
446 |
* |Le\Lme| in Scan 1 below.
|
alpar@1
|
447 |
*
|
alpar@1
|
448 |
* for variables:
|
alpar@1
|
449 |
* during supervariable detection, if W [j] != wflg then j is
|
alpar@1
|
450 |
* not in the pattern of variable i.
|
alpar@1
|
451 |
*
|
alpar@1
|
452 |
* The W array is initialized by setting W [i] = 1 for all i, and by
|
alpar@1
|
453 |
* setting wflg = 2. It is reinitialized if wflg becomes too large (to
|
alpar@1
|
454 |
* ensure that wflg+n does not cause integer overflow).
|
alpar@1
|
455 |
|
alpar@1
|
456 |
* ----------------------------------------------------------------------------
|
alpar@1
|
457 |
* LOCAL INTEGERS:
|
alpar@1
|
458 |
* ----------------------------------------------------------------------------
|
alpar@1
|
459 |
*/
|
alpar@1
|
460 |
|
alpar@1
|
461 |
Int deg, degme, dext, lemax, e, elenme, eln, i, ilast, inext, j,
|
alpar@1
|
462 |
jlast, jnext, k, knt1, knt2, knt3, lenj, ln, me, mindeg, nel, nleft,
|
alpar@1
|
463 |
nvi, nvj, nvpiv, slenme, wbig, we, wflg, wnvi, ok, ndense, ncmpa,
|
alpar@1
|
464 |
dense, aggressive ;
|
alpar@1
|
465 |
|
alpar@1
|
466 |
unsigned Int hash ; /* unsigned, so that hash % n is well defined.*/
|
alpar@1
|
467 |
|
alpar@1
|
468 |
/*
|
alpar@1
|
469 |
* deg: the degree of a variable or element
|
alpar@1
|
470 |
* degme: size, |Lme|, of the current element, me (= Degree [me])
|
alpar@1
|
471 |
* dext: external degree, |Le \ Lme|, of some element e
|
alpar@1
|
472 |
* lemax: largest |Le| seen so far (called dmax in Fortran version)
|
alpar@1
|
473 |
* e: an element
|
alpar@1
|
474 |
* elenme: the length, Elen [me], of element list of pivotal variable
|
alpar@1
|
475 |
* eln: the length, Elen [...], of an element list
|
alpar@1
|
476 |
* hash: the computed value of the hash function
|
alpar@1
|
477 |
* i: a supervariable
|
alpar@1
|
478 |
* ilast: the entry in a link list preceding i
|
alpar@1
|
479 |
* inext: the entry in a link list following i
|
alpar@1
|
480 |
* j: a supervariable
|
alpar@1
|
481 |
* jlast: the entry in a link list preceding j
|
alpar@1
|
482 |
* jnext: the entry in a link list, or path, following j
|
alpar@1
|
483 |
* k: the pivot order of an element or variable
|
alpar@1
|
484 |
* knt1: loop counter used during element construction
|
alpar@1
|
485 |
* knt2: loop counter used during element construction
|
alpar@1
|
486 |
* knt3: loop counter used during compression
|
alpar@1
|
487 |
* lenj: Len [j]
|
alpar@1
|
488 |
* ln: length of a supervariable list
|
alpar@1
|
489 |
* me: current supervariable being eliminated, and the current
|
alpar@1
|
490 |
* element created by eliminating that supervariable
|
alpar@1
|
491 |
* mindeg: current minimum degree
|
alpar@1
|
492 |
* nel: number of pivots selected so far
|
alpar@1
|
493 |
* nleft: n - nel, the number of nonpivotal rows/columns remaining
|
alpar@1
|
494 |
* nvi: the number of variables in a supervariable i (= Nv [i])
|
alpar@1
|
495 |
* nvj: the number of variables in a supervariable j (= Nv [j])
|
alpar@1
|
496 |
* nvpiv: number of pivots in current element
|
alpar@1
|
497 |
* slenme: number of variables in variable list of pivotal variable
|
alpar@1
|
498 |
* wbig: = INT_MAX - n for the int version, UF_long_max - n for the
|
alpar@1
|
499 |
* UF_long version. wflg is not allowed to be >= wbig.
|
alpar@1
|
500 |
* we: W [e]
|
alpar@1
|
501 |
* wflg: used for flagging the W array. See description of Iw.
|
alpar@1
|
502 |
* wnvi: wflg - Nv [i]
|
alpar@1
|
503 |
* x: either a supervariable or an element
|
alpar@1
|
504 |
*
|
alpar@1
|
505 |
* ok: true if supervariable j can be absorbed into i
|
alpar@1
|
506 |
* ndense: number of "dense" rows/columns
|
alpar@1
|
507 |
* dense: rows/columns with initial degree > dense are considered "dense"
|
alpar@1
|
508 |
* aggressive: true if aggressive absorption is being performed
|
alpar@1
|
509 |
* ncmpa: number of garbage collections
|
alpar@1
|
510 |
|
alpar@1
|
511 |
* ----------------------------------------------------------------------------
|
alpar@1
|
512 |
* LOCAL DOUBLES, used for statistical output only (except for alpha):
|
alpar@1
|
513 |
* ----------------------------------------------------------------------------
|
alpar@1
|
514 |
*/
|
alpar@1
|
515 |
|
alpar@1
|
516 |
double f, r, ndiv, s, nms_lu, nms_ldl, dmax, alpha, lnz, lnzme ;
|
alpar@1
|
517 |
|
alpar@1
|
518 |
/*
|
alpar@1
|
519 |
* f: nvpiv
|
alpar@1
|
520 |
* r: degme + nvpiv
|
alpar@1
|
521 |
* ndiv: number of divisions for LU or LDL' factorizations
|
alpar@1
|
522 |
* s: number of multiply-subtract pairs for LU factorization, for the
|
alpar@1
|
523 |
* current element me
|
alpar@1
|
524 |
* nms_lu number of multiply-subtract pairs for LU factorization
|
alpar@1
|
525 |
* nms_ldl number of multiply-subtract pairs for LDL' factorization
|
alpar@1
|
526 |
* dmax: the largest number of entries in any column of L, including the
|
alpar@1
|
527 |
* diagonal
|
alpar@1
|
528 |
* alpha: "dense" degree ratio
|
alpar@1
|
529 |
* lnz: the number of nonzeros in L (excluding the diagonal)
|
alpar@1
|
530 |
* lnzme: the number of nonzeros in L (excl. the diagonal) for the
|
alpar@1
|
531 |
* current element me
|
alpar@1
|
532 |
|
alpar@1
|
533 |
* ----------------------------------------------------------------------------
|
alpar@1
|
534 |
* LOCAL "POINTERS" (indices into the Iw array)
|
alpar@1
|
535 |
* ----------------------------------------------------------------------------
|
alpar@1
|
536 |
*/
|
alpar@1
|
537 |
|
alpar@1
|
538 |
Int p, p1, p2, p3, p4, pdst, pend, pj, pme, pme1, pme2, pn, psrc ;
|
alpar@1
|
539 |
|
alpar@1
|
540 |
/*
|
alpar@1
|
541 |
* Any parameter (Pe [...] or pfree) or local variable starting with "p" (for
|
alpar@1
|
542 |
* Pointer) is an index into Iw, and all indices into Iw use variables starting
|
alpar@1
|
543 |
* with "p." The only exception to this rule is the iwlen input argument.
|
alpar@1
|
544 |
*
|
alpar@1
|
545 |
* p: pointer into lots of things
|
alpar@1
|
546 |
* p1: Pe [i] for some variable i (start of element list)
|
alpar@1
|
547 |
* p2: Pe [i] + Elen [i] - 1 for some variable i
|
alpar@1
|
548 |
* p3: index of first supervariable in clean list
|
alpar@1
|
549 |
* p4:
|
alpar@1
|
550 |
* pdst: destination pointer, for compression
|
alpar@1
|
551 |
* pend: end of memory to compress
|
alpar@1
|
552 |
* pj: pointer into an element or variable
|
alpar@1
|
553 |
* pme: pointer into the current element (pme1...pme2)
|
alpar@1
|
554 |
* pme1: the current element, me, is stored in Iw [pme1...pme2]
|
alpar@1
|
555 |
* pme2: the end of the current element
|
alpar@1
|
556 |
* pn: pointer into a "clean" variable, also used to compress
|
alpar@1
|
557 |
* psrc: source pointer, for compression
|
alpar@1
|
558 |
*/
|
alpar@1
|
559 |
|
alpar@1
|
560 |
/* ========================================================================= */
|
alpar@1
|
561 |
/* INITIALIZATIONS */
|
alpar@1
|
562 |
/* ========================================================================= */
|
alpar@1
|
563 |
|
alpar@1
|
564 |
/* Note that this restriction on iwlen is slightly more restrictive than
|
alpar@1
|
565 |
* what is actually required in AMD_2. AMD_2 can operate with no elbow
|
alpar@1
|
566 |
* room at all, but it will be slow. For better performance, at least
|
alpar@1
|
567 |
* size-n elbow room is enforced. */
|
alpar@1
|
568 |
ASSERT (iwlen >= pfree + n) ;
|
alpar@1
|
569 |
ASSERT (n > 0) ;
|
alpar@1
|
570 |
|
alpar@1
|
571 |
/* initialize output statistics */
|
alpar@1
|
572 |
lnz = 0 ;
|
alpar@1
|
573 |
ndiv = 0 ;
|
alpar@1
|
574 |
nms_lu = 0 ;
|
alpar@1
|
575 |
nms_ldl = 0 ;
|
alpar@1
|
576 |
dmax = 1 ;
|
alpar@1
|
577 |
me = EMPTY ;
|
alpar@1
|
578 |
|
alpar@1
|
579 |
mindeg = 0 ;
|
alpar@1
|
580 |
ncmpa = 0 ;
|
alpar@1
|
581 |
nel = 0 ;
|
alpar@1
|
582 |
lemax = 0 ;
|
alpar@1
|
583 |
|
alpar@1
|
584 |
/* get control parameters */
|
alpar@1
|
585 |
if (Control != (double *) NULL)
|
alpar@1
|
586 |
{
|
alpar@1
|
587 |
alpha = Control [AMD_DENSE] ;
|
alpar@1
|
588 |
aggressive = (Control [AMD_AGGRESSIVE] != 0) ;
|
alpar@1
|
589 |
}
|
alpar@1
|
590 |
else
|
alpar@1
|
591 |
{
|
alpar@1
|
592 |
alpha = AMD_DEFAULT_DENSE ;
|
alpar@1
|
593 |
aggressive = AMD_DEFAULT_AGGRESSIVE ;
|
alpar@1
|
594 |
}
|
alpar@1
|
595 |
/* Note: if alpha is NaN, this is undefined: */
|
alpar@1
|
596 |
if (alpha < 0)
|
alpar@1
|
597 |
{
|
alpar@1
|
598 |
/* only remove completely dense rows/columns */
|
alpar@1
|
599 |
dense = n-2 ;
|
alpar@1
|
600 |
}
|
alpar@1
|
601 |
else
|
alpar@1
|
602 |
{
|
alpar@1
|
603 |
dense = alpha * sqrt ((double) n) ;
|
alpar@1
|
604 |
}
|
alpar@1
|
605 |
dense = MAX (16, dense) ;
|
alpar@1
|
606 |
dense = MIN (n, dense) ;
|
alpar@1
|
607 |
AMD_DEBUG1 (("\n\nAMD (debug), alpha %g, aggr. "ID"\n",
|
alpar@1
|
608 |
alpha, aggressive)) ;
|
alpar@1
|
609 |
|
alpar@1
|
610 |
for (i = 0 ; i < n ; i++)
|
alpar@1
|
611 |
{
|
alpar@1
|
612 |
Last [i] = EMPTY ;
|
alpar@1
|
613 |
Head [i] = EMPTY ;
|
alpar@1
|
614 |
Next [i] = EMPTY ;
|
alpar@1
|
615 |
/* if separate Hhead array is used for hash buckets: *
|
alpar@1
|
616 |
Hhead [i] = EMPTY ;
|
alpar@1
|
617 |
*/
|
alpar@1
|
618 |
Nv [i] = 1 ;
|
alpar@1
|
619 |
W [i] = 1 ;
|
alpar@1
|
620 |
Elen [i] = 0 ;
|
alpar@1
|
621 |
Degree [i] = Len [i] ;
|
alpar@1
|
622 |
}
|
alpar@1
|
623 |
|
alpar@1
|
624 |
#ifndef NDEBUG
|
alpar@1
|
625 |
AMD_DEBUG1 (("\n======Nel "ID" initial\n", nel)) ;
|
alpar@1
|
626 |
AMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next, Last,
|
alpar@1
|
627 |
Head, Elen, Degree, W, -1) ;
|
alpar@1
|
628 |
#endif
|
alpar@1
|
629 |
|
alpar@1
|
630 |
/* initialize wflg */
|
alpar@1
|
631 |
wbig = Int_MAX - n ;
|
alpar@1
|
632 |
wflg = clear_flag (0, wbig, W, n) ;
|
alpar@1
|
633 |
|
alpar@1
|
634 |
/* --------------------------------------------------------------------- */
|
alpar@1
|
635 |
/* initialize degree lists and eliminate dense and empty rows */
|
alpar@1
|
636 |
/* --------------------------------------------------------------------- */
|
alpar@1
|
637 |
|
alpar@1
|
638 |
ndense = 0 ;
|
alpar@1
|
639 |
|
alpar@1
|
640 |
for (i = 0 ; i < n ; i++)
|
alpar@1
|
641 |
{
|
alpar@1
|
642 |
deg = Degree [i] ;
|
alpar@1
|
643 |
ASSERT (deg >= 0 && deg < n) ;
|
alpar@1
|
644 |
if (deg == 0)
|
alpar@1
|
645 |
{
|
alpar@1
|
646 |
|
alpar@1
|
647 |
/* -------------------------------------------------------------
|
alpar@1
|
648 |
* we have a variable that can be eliminated at once because
|
alpar@1
|
649 |
* there is no off-diagonal non-zero in its row. Note that
|
alpar@1
|
650 |
* Nv [i] = 1 for an empty variable i. It is treated just
|
alpar@1
|
651 |
* the same as an eliminated element i.
|
alpar@1
|
652 |
* ------------------------------------------------------------- */
|
alpar@1
|
653 |
|
alpar@1
|
654 |
Elen [i] = FLIP (1) ;
|
alpar@1
|
655 |
nel++ ;
|
alpar@1
|
656 |
Pe [i] = EMPTY ;
|
alpar@1
|
657 |
W [i] = 0 ;
|
alpar@1
|
658 |
|
alpar@1
|
659 |
}
|
alpar@1
|
660 |
else if (deg > dense)
|
alpar@1
|
661 |
{
|
alpar@1
|
662 |
|
alpar@1
|
663 |
/* -------------------------------------------------------------
|
alpar@1
|
664 |
* Dense variables are not treated as elements, but as unordered,
|
alpar@1
|
665 |
* non-principal variables that have no parent. They do not take
|
alpar@1
|
666 |
* part in the postorder, since Nv [i] = 0. Note that the Fortran
|
alpar@1
|
667 |
* version does not have this option.
|
alpar@1
|
668 |
* ------------------------------------------------------------- */
|
alpar@1
|
669 |
|
alpar@1
|
670 |
AMD_DEBUG1 (("Dense node "ID" degree "ID"\n", i, deg)) ;
|
alpar@1
|
671 |
ndense++ ;
|
alpar@1
|
672 |
Nv [i] = 0 ; /* do not postorder this node */
|
alpar@1
|
673 |
Elen [i] = EMPTY ;
|
alpar@1
|
674 |
nel++ ;
|
alpar@1
|
675 |
Pe [i] = EMPTY ;
|
alpar@1
|
676 |
|
alpar@1
|
677 |
}
|
alpar@1
|
678 |
else
|
alpar@1
|
679 |
{
|
alpar@1
|
680 |
|
alpar@1
|
681 |
/* -------------------------------------------------------------
|
alpar@1
|
682 |
* place i in the degree list corresponding to its degree
|
alpar@1
|
683 |
* ------------------------------------------------------------- */
|
alpar@1
|
684 |
|
alpar@1
|
685 |
inext = Head [deg] ;
|
alpar@1
|
686 |
ASSERT (inext >= EMPTY && inext < n) ;
|
alpar@1
|
687 |
if (inext != EMPTY) Last [inext] = i ;
|
alpar@1
|
688 |
Next [i] = inext ;
|
alpar@1
|
689 |
Head [deg] = i ;
|
alpar@1
|
690 |
|
alpar@1
|
691 |
}
|
alpar@1
|
692 |
}
|
alpar@1
|
693 |
|
alpar@1
|
694 |
/* ========================================================================= */
|
alpar@1
|
695 |
/* WHILE (selecting pivots) DO */
|
alpar@1
|
696 |
/* ========================================================================= */
|
alpar@1
|
697 |
|
alpar@1
|
698 |
while (nel < n)
|
alpar@1
|
699 |
{
|
alpar@1
|
700 |
|
alpar@1
|
701 |
#ifndef NDEBUG
|
alpar@1
|
702 |
AMD_DEBUG1 (("\n======Nel "ID"\n", nel)) ;
|
alpar@1
|
703 |
if (AMD_debug >= 2)
|
alpar@1
|
704 |
{
|
alpar@1
|
705 |
AMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next,
|
alpar@1
|
706 |
Last, Head, Elen, Degree, W, nel) ;
|
alpar@1
|
707 |
}
|
alpar@1
|
708 |
#endif
|
alpar@1
|
709 |
|
alpar@1
|
710 |
/* ========================================================================= */
|
alpar@1
|
711 |
/* GET PIVOT OF MINIMUM DEGREE */
|
alpar@1
|
712 |
/* ========================================================================= */
|
alpar@1
|
713 |
|
alpar@1
|
714 |
/* ----------------------------------------------------------------- */
|
alpar@1
|
715 |
/* find next supervariable for elimination */
|
alpar@1
|
716 |
/* ----------------------------------------------------------------- */
|
alpar@1
|
717 |
|
alpar@1
|
718 |
ASSERT (mindeg >= 0 && mindeg < n) ;
|
alpar@1
|
719 |
for (deg = mindeg ; deg < n ; deg++)
|
alpar@1
|
720 |
{
|
alpar@1
|
721 |
me = Head [deg] ;
|
alpar@1
|
722 |
if (me != EMPTY) break ;
|
alpar@1
|
723 |
}
|
alpar@1
|
724 |
mindeg = deg ;
|
alpar@1
|
725 |
ASSERT (me >= 0 && me < n) ;
|
alpar@1
|
726 |
AMD_DEBUG1 (("=================me: "ID"\n", me)) ;
|
alpar@1
|
727 |
|
alpar@1
|
728 |
/* ----------------------------------------------------------------- */
|
alpar@1
|
729 |
/* remove chosen variable from link list */
|
alpar@1
|
730 |
/* ----------------------------------------------------------------- */
|
alpar@1
|
731 |
|
alpar@1
|
732 |
inext = Next [me] ;
|
alpar@1
|
733 |
ASSERT (inext >= EMPTY && inext < n) ;
|
alpar@1
|
734 |
if (inext != EMPTY) Last [inext] = EMPTY ;
|
alpar@1
|
735 |
Head [deg] = inext ;
|
alpar@1
|
736 |
|
alpar@1
|
737 |
/* ----------------------------------------------------------------- */
|
alpar@1
|
738 |
/* me represents the elimination of pivots nel to nel+Nv[me]-1. */
|
alpar@1
|
739 |
/* place me itself as the first in this set. */
|
alpar@1
|
740 |
/* ----------------------------------------------------------------- */
|
alpar@1
|
741 |
|
alpar@1
|
742 |
elenme = Elen [me] ;
|
alpar@1
|
743 |
nvpiv = Nv [me] ;
|
alpar@1
|
744 |
ASSERT (nvpiv > 0) ;
|
alpar@1
|
745 |
nel += nvpiv ;
|
alpar@1
|
746 |
|
alpar@1
|
747 |
/* ========================================================================= */
|
alpar@1
|
748 |
/* CONSTRUCT NEW ELEMENT */
|
alpar@1
|
749 |
/* ========================================================================= */
|
alpar@1
|
750 |
|
alpar@1
|
751 |
/* -----------------------------------------------------------------
|
alpar@1
|
752 |
* At this point, me is the pivotal supervariable. It will be
|
alpar@1
|
753 |
* converted into the current element. Scan list of the pivotal
|
alpar@1
|
754 |
* supervariable, me, setting tree pointers and constructing new list
|
alpar@1
|
755 |
* of supervariables for the new element, me. p is a pointer to the
|
alpar@1
|
756 |
* current position in the old list.
|
alpar@1
|
757 |
* ----------------------------------------------------------------- */
|
alpar@1
|
758 |
|
alpar@1
|
759 |
/* flag the variable "me" as being in Lme by negating Nv [me] */
|
alpar@1
|
760 |
Nv [me] = -nvpiv ;
|
alpar@1
|
761 |
degme = 0 ;
|
alpar@1
|
762 |
ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ;
|
alpar@1
|
763 |
|
alpar@1
|
764 |
if (elenme == 0)
|
alpar@1
|
765 |
{
|
alpar@1
|
766 |
|
alpar@1
|
767 |
/* ------------------------------------------------------------- */
|
alpar@1
|
768 |
/* construct the new element in place */
|
alpar@1
|
769 |
/* ------------------------------------------------------------- */
|
alpar@1
|
770 |
|
alpar@1
|
771 |
pme1 = Pe [me] ;
|
alpar@1
|
772 |
pme2 = pme1 - 1 ;
|
alpar@1
|
773 |
|
alpar@1
|
774 |
for (p = pme1 ; p <= pme1 + Len [me] - 1 ; p++)
|
alpar@1
|
775 |
{
|
alpar@1
|
776 |
i = Iw [p] ;
|
alpar@1
|
777 |
ASSERT (i >= 0 && i < n && Nv [i] >= 0) ;
|
alpar@1
|
778 |
nvi = Nv [i] ;
|
alpar@1
|
779 |
if (nvi > 0)
|
alpar@1
|
780 |
{
|
alpar@1
|
781 |
|
alpar@1
|
782 |
/* ----------------------------------------------------- */
|
alpar@1
|
783 |
/* i is a principal variable not yet placed in Lme. */
|
alpar@1
|
784 |
/* store i in new list */
|
alpar@1
|
785 |
/* ----------------------------------------------------- */
|
alpar@1
|
786 |
|
alpar@1
|
787 |
/* flag i as being in Lme by negating Nv [i] */
|
alpar@1
|
788 |
degme += nvi ;
|
alpar@1
|
789 |
Nv [i] = -nvi ;
|
alpar@1
|
790 |
Iw [++pme2] = i ;
|
alpar@1
|
791 |
|
alpar@1
|
792 |
/* ----------------------------------------------------- */
|
alpar@1
|
793 |
/* remove variable i from degree list. */
|
alpar@1
|
794 |
/* ----------------------------------------------------- */
|
alpar@1
|
795 |
|
alpar@1
|
796 |
ilast = Last [i] ;
|
alpar@1
|
797 |
inext = Next [i] ;
|
alpar@1
|
798 |
ASSERT (ilast >= EMPTY && ilast < n) ;
|
alpar@1
|
799 |
ASSERT (inext >= EMPTY && inext < n) ;
|
alpar@1
|
800 |
if (inext != EMPTY) Last [inext] = ilast ;
|
alpar@1
|
801 |
if (ilast != EMPTY)
|
alpar@1
|
802 |
{
|
alpar@1
|
803 |
Next [ilast] = inext ;
|
alpar@1
|
804 |
}
|
alpar@1
|
805 |
else
|
alpar@1
|
806 |
{
|
alpar@1
|
807 |
/* i is at the head of the degree list */
|
alpar@1
|
808 |
ASSERT (Degree [i] >= 0 && Degree [i] < n) ;
|
alpar@1
|
809 |
Head [Degree [i]] = inext ;
|
alpar@1
|
810 |
}
|
alpar@1
|
811 |
}
|
alpar@1
|
812 |
}
|
alpar@1
|
813 |
}
|
alpar@1
|
814 |
else
|
alpar@1
|
815 |
{
|
alpar@1
|
816 |
|
alpar@1
|
817 |
/* ------------------------------------------------------------- */
|
alpar@1
|
818 |
/* construct the new element in empty space, Iw [pfree ...] */
|
alpar@1
|
819 |
/* ------------------------------------------------------------- */
|
alpar@1
|
820 |
|
alpar@1
|
821 |
p = Pe [me] ;
|
alpar@1
|
822 |
pme1 = pfree ;
|
alpar@1
|
823 |
slenme = Len [me] - elenme ;
|
alpar@1
|
824 |
|
alpar@1
|
825 |
for (knt1 = 1 ; knt1 <= elenme + 1 ; knt1++)
|
alpar@1
|
826 |
{
|
alpar@1
|
827 |
|
alpar@1
|
828 |
if (knt1 > elenme)
|
alpar@1
|
829 |
{
|
alpar@1
|
830 |
/* search the supervariables in me. */
|
alpar@1
|
831 |
e = me ;
|
alpar@1
|
832 |
pj = p ;
|
alpar@1
|
833 |
ln = slenme ;
|
alpar@1
|
834 |
AMD_DEBUG2 (("Search sv: "ID" "ID" "ID"\n", me,pj,ln)) ;
|
alpar@1
|
835 |
}
|
alpar@1
|
836 |
else
|
alpar@1
|
837 |
{
|
alpar@1
|
838 |
/* search the elements in me. */
|
alpar@1
|
839 |
e = Iw [p++] ;
|
alpar@1
|
840 |
ASSERT (e >= 0 && e < n) ;
|
alpar@1
|
841 |
pj = Pe [e] ;
|
alpar@1
|
842 |
ln = Len [e] ;
|
alpar@1
|
843 |
AMD_DEBUG2 (("Search element e "ID" in me "ID"\n", e,me)) ;
|
alpar@1
|
844 |
ASSERT (Elen [e] < EMPTY && W [e] > 0 && pj >= 0) ;
|
alpar@1
|
845 |
}
|
alpar@1
|
846 |
ASSERT (ln >= 0 && (ln == 0 || (pj >= 0 && pj < iwlen))) ;
|
alpar@1
|
847 |
|
alpar@1
|
848 |
/* ---------------------------------------------------------
|
alpar@1
|
849 |
* search for different supervariables and add them to the
|
alpar@1
|
850 |
* new list, compressing when necessary. this loop is
|
alpar@1
|
851 |
* executed once for each element in the list and once for
|
alpar@1
|
852 |
* all the supervariables in the list.
|
alpar@1
|
853 |
* --------------------------------------------------------- */
|
alpar@1
|
854 |
|
alpar@1
|
855 |
for (knt2 = 1 ; knt2 <= ln ; knt2++)
|
alpar@1
|
856 |
{
|
alpar@1
|
857 |
i = Iw [pj++] ;
|
alpar@1
|
858 |
ASSERT (i >= 0 && i < n && (i == me || Elen [i] >= EMPTY));
|
alpar@1
|
859 |
nvi = Nv [i] ;
|
alpar@1
|
860 |
AMD_DEBUG2 ((": "ID" "ID" "ID" "ID"\n",
|
alpar@1
|
861 |
i, Elen [i], Nv [i], wflg)) ;
|
alpar@1
|
862 |
|
alpar@1
|
863 |
if (nvi > 0)
|
alpar@1
|
864 |
{
|
alpar@1
|
865 |
|
alpar@1
|
866 |
/* ------------------------------------------------- */
|
alpar@1
|
867 |
/* compress Iw, if necessary */
|
alpar@1
|
868 |
/* ------------------------------------------------- */
|
alpar@1
|
869 |
|
alpar@1
|
870 |
if (pfree >= iwlen)
|
alpar@1
|
871 |
{
|
alpar@1
|
872 |
|
alpar@1
|
873 |
AMD_DEBUG1 (("GARBAGE COLLECTION\n")) ;
|
alpar@1
|
874 |
|
alpar@1
|
875 |
/* prepare for compressing Iw by adjusting pointers
|
alpar@1
|
876 |
* and lengths so that the lists being searched in
|
alpar@1
|
877 |
* the inner and outer loops contain only the
|
alpar@1
|
878 |
* remaining entries. */
|
alpar@1
|
879 |
|
alpar@1
|
880 |
Pe [me] = p ;
|
alpar@1
|
881 |
Len [me] -= knt1 ;
|
alpar@1
|
882 |
/* check if nothing left of supervariable me */
|
alpar@1
|
883 |
if (Len [me] == 0) Pe [me] = EMPTY ;
|
alpar@1
|
884 |
Pe [e] = pj ;
|
alpar@1
|
885 |
Len [e] = ln - knt2 ;
|
alpar@1
|
886 |
/* nothing left of element e */
|
alpar@1
|
887 |
if (Len [e] == 0) Pe [e] = EMPTY ;
|
alpar@1
|
888 |
|
alpar@1
|
889 |
ncmpa++ ; /* one more garbage collection */
|
alpar@1
|
890 |
|
alpar@1
|
891 |
/* store first entry of each object in Pe */
|
alpar@1
|
892 |
/* FLIP the first entry in each object */
|
alpar@1
|
893 |
for (j = 0 ; j < n ; j++)
|
alpar@1
|
894 |
{
|
alpar@1
|
895 |
pn = Pe [j] ;
|
alpar@1
|
896 |
if (pn >= 0)
|
alpar@1
|
897 |
{
|
alpar@1
|
898 |
ASSERT (pn >= 0 && pn < iwlen) ;
|
alpar@1
|
899 |
Pe [j] = Iw [pn] ;
|
alpar@1
|
900 |
Iw [pn] = FLIP (j) ;
|
alpar@1
|
901 |
}
|
alpar@1
|
902 |
}
|
alpar@1
|
903 |
|
alpar@1
|
904 |
/* psrc/pdst point to source/destination */
|
alpar@1
|
905 |
psrc = 0 ;
|
alpar@1
|
906 |
pdst = 0 ;
|
alpar@1
|
907 |
pend = pme1 - 1 ;
|
alpar@1
|
908 |
|
alpar@1
|
909 |
while (psrc <= pend)
|
alpar@1
|
910 |
{
|
alpar@1
|
911 |
/* search for next FLIP'd entry */
|
alpar@1
|
912 |
j = FLIP (Iw [psrc++]) ;
|
alpar@1
|
913 |
if (j >= 0)
|
alpar@1
|
914 |
{
|
alpar@1
|
915 |
AMD_DEBUG2 (("Got object j: "ID"\n", j)) ;
|
alpar@1
|
916 |
Iw [pdst] = Pe [j] ;
|
alpar@1
|
917 |
Pe [j] = pdst++ ;
|
alpar@1
|
918 |
lenj = Len [j] ;
|
alpar@1
|
919 |
/* copy from source to destination */
|
alpar@1
|
920 |
for (knt3 = 0 ; knt3 <= lenj - 2 ; knt3++)
|
alpar@1
|
921 |
{
|
alpar@1
|
922 |
Iw [pdst++] = Iw [psrc++] ;
|
alpar@1
|
923 |
}
|
alpar@1
|
924 |
}
|
alpar@1
|
925 |
}
|
alpar@1
|
926 |
|
alpar@1
|
927 |
/* move the new partially-constructed element */
|
alpar@1
|
928 |
p1 = pdst ;
|
alpar@1
|
929 |
for (psrc = pme1 ; psrc <= pfree-1 ; psrc++)
|
alpar@1
|
930 |
{
|
alpar@1
|
931 |
Iw [pdst++] = Iw [psrc] ;
|
alpar@1
|
932 |
}
|
alpar@1
|
933 |
pme1 = p1 ;
|
alpar@1
|
934 |
pfree = pdst ;
|
alpar@1
|
935 |
pj = Pe [e] ;
|
alpar@1
|
936 |
p = Pe [me] ;
|
alpar@1
|
937 |
|
alpar@1
|
938 |
}
|
alpar@1
|
939 |
|
alpar@1
|
940 |
/* ------------------------------------------------- */
|
alpar@1
|
941 |
/* i is a principal variable not yet placed in Lme */
|
alpar@1
|
942 |
/* store i in new list */
|
alpar@1
|
943 |
/* ------------------------------------------------- */
|
alpar@1
|
944 |
|
alpar@1
|
945 |
/* flag i as being in Lme by negating Nv [i] */
|
alpar@1
|
946 |
degme += nvi ;
|
alpar@1
|
947 |
Nv [i] = -nvi ;
|
alpar@1
|
948 |
Iw [pfree++] = i ;
|
alpar@1
|
949 |
AMD_DEBUG2 ((" s: "ID" nv "ID"\n", i, Nv [i]));
|
alpar@1
|
950 |
|
alpar@1
|
951 |
/* ------------------------------------------------- */
|
alpar@1
|
952 |
/* remove variable i from degree link list */
|
alpar@1
|
953 |
/* ------------------------------------------------- */
|
alpar@1
|
954 |
|
alpar@1
|
955 |
ilast = Last [i] ;
|
alpar@1
|
956 |
inext = Next [i] ;
|
alpar@1
|
957 |
ASSERT (ilast >= EMPTY && ilast < n) ;
|
alpar@1
|
958 |
ASSERT (inext >= EMPTY && inext < n) ;
|
alpar@1
|
959 |
if (inext != EMPTY) Last [inext] = ilast ;
|
alpar@1
|
960 |
if (ilast != EMPTY)
|
alpar@1
|
961 |
{
|
alpar@1
|
962 |
Next [ilast] = inext ;
|
alpar@1
|
963 |
}
|
alpar@1
|
964 |
else
|
alpar@1
|
965 |
{
|
alpar@1
|
966 |
/* i is at the head of the degree list */
|
alpar@1
|
967 |
ASSERT (Degree [i] >= 0 && Degree [i] < n) ;
|
alpar@1
|
968 |
Head [Degree [i]] = inext ;
|
alpar@1
|
969 |
}
|
alpar@1
|
970 |
}
|
alpar@1
|
971 |
}
|
alpar@1
|
972 |
|
alpar@1
|
973 |
if (e != me)
|
alpar@1
|
974 |
{
|
alpar@1
|
975 |
/* set tree pointer and flag to indicate element e is
|
alpar@1
|
976 |
* absorbed into new element me (the parent of e is me) */
|
alpar@1
|
977 |
AMD_DEBUG1 ((" Element "ID" => "ID"\n", e, me)) ;
|
alpar@1
|
978 |
Pe [e] = FLIP (me) ;
|
alpar@1
|
979 |
W [e] = 0 ;
|
alpar@1
|
980 |
}
|
alpar@1
|
981 |
}
|
alpar@1
|
982 |
|
alpar@1
|
983 |
pme2 = pfree - 1 ;
|
alpar@1
|
984 |
}
|
alpar@1
|
985 |
|
alpar@1
|
986 |
/* ----------------------------------------------------------------- */
|
alpar@1
|
987 |
/* me has now been converted into an element in Iw [pme1..pme2] */
|
alpar@1
|
988 |
/* ----------------------------------------------------------------- */
|
alpar@1
|
989 |
|
alpar@1
|
990 |
/* degme holds the external degree of new element */
|
alpar@1
|
991 |
Degree [me] = degme ;
|
alpar@1
|
992 |
Pe [me] = pme1 ;
|
alpar@1
|
993 |
Len [me] = pme2 - pme1 + 1 ;
|
alpar@1
|
994 |
ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ;
|
alpar@1
|
995 |
|
alpar@1
|
996 |
Elen [me] = FLIP (nvpiv + degme) ;
|
alpar@1
|
997 |
/* FLIP (Elen (me)) is now the degree of pivot (including
|
alpar@1
|
998 |
* diagonal part). */
|
alpar@1
|
999 |
|
alpar@1
|
1000 |
#ifndef NDEBUG
|
alpar@1
|
1001 |
AMD_DEBUG2 (("New element structure: length= "ID"\n", pme2-pme1+1)) ;
|
alpar@1
|
1002 |
for (pme = pme1 ; pme <= pme2 ; pme++) AMD_DEBUG3 ((" "ID"", Iw[pme]));
|
alpar@1
|
1003 |
AMD_DEBUG3 (("\n")) ;
|
alpar@1
|
1004 |
#endif
|
alpar@1
|
1005 |
|
alpar@1
|
1006 |
/* ----------------------------------------------------------------- */
|
alpar@1
|
1007 |
/* make sure that wflg is not too large. */
|
alpar@1
|
1008 |
/* ----------------------------------------------------------------- */
|
alpar@1
|
1009 |
|
alpar@1
|
1010 |
/* With the current value of wflg, wflg+n must not cause integer
|
alpar@1
|
1011 |
* overflow */
|
alpar@1
|
1012 |
|
alpar@1
|
1013 |
wflg = clear_flag (wflg, wbig, W, n) ;
|
alpar@1
|
1014 |
|
alpar@1
|
1015 |
/* ========================================================================= */
|
alpar@1
|
1016 |
/* COMPUTE (W [e] - wflg) = |Le\Lme| FOR ALL ELEMENTS */
|
alpar@1
|
1017 |
/* ========================================================================= */
|
alpar@1
|
1018 |
|
alpar@1
|
1019 |
/* -----------------------------------------------------------------
|
alpar@1
|
1020 |
* Scan 1: compute the external degrees of previous elements with
|
alpar@1
|
1021 |
* respect to the current element. That is:
|
alpar@1
|
1022 |
* (W [e] - wflg) = |Le \ Lme|
|
alpar@1
|
1023 |
* for each element e that appears in any supervariable in Lme. The
|
alpar@1
|
1024 |
* notation Le refers to the pattern (list of supervariables) of a
|
alpar@1
|
1025 |
* previous element e, where e is not yet absorbed, stored in
|
alpar@1
|
1026 |
* Iw [Pe [e] + 1 ... Pe [e] + Len [e]]. The notation Lme
|
alpar@1
|
1027 |
* refers to the pattern of the current element (stored in
|
alpar@1
|
1028 |
* Iw [pme1..pme2]). If aggressive absorption is enabled, and
|
alpar@1
|
1029 |
* (W [e] - wflg) becomes zero, then the element e will be absorbed
|
alpar@1
|
1030 |
* in Scan 2.
|
alpar@1
|
1031 |
* ----------------------------------------------------------------- */
|
alpar@1
|
1032 |
|
alpar@1
|
1033 |
AMD_DEBUG2 (("me: ")) ;
|
alpar@1
|
1034 |
for (pme = pme1 ; pme <= pme2 ; pme++)
|
alpar@1
|
1035 |
{
|
alpar@1
|
1036 |
i = Iw [pme] ;
|
alpar@1
|
1037 |
ASSERT (i >= 0 && i < n) ;
|
alpar@1
|
1038 |
eln = Elen [i] ;
|
alpar@1
|
1039 |
AMD_DEBUG3 ((""ID" Elen "ID": \n", i, eln)) ;
|
alpar@1
|
1040 |
if (eln > 0)
|
alpar@1
|
1041 |
{
|
alpar@1
|
1042 |
/* note that Nv [i] has been negated to denote i in Lme: */
|
alpar@1
|
1043 |
nvi = -Nv [i] ;
|
alpar@1
|
1044 |
ASSERT (nvi > 0 && Pe [i] >= 0 && Pe [i] < iwlen) ;
|
alpar@1
|
1045 |
wnvi = wflg - nvi ;
|
alpar@1
|
1046 |
for (p = Pe [i] ; p <= Pe [i] + eln - 1 ; p++)
|
alpar@1
|
1047 |
{
|
alpar@1
|
1048 |
e = Iw [p] ;
|
alpar@1
|
1049 |
ASSERT (e >= 0 && e < n) ;
|
alpar@1
|
1050 |
we = W [e] ;
|
alpar@1
|
1051 |
AMD_DEBUG4 ((" e "ID" we "ID" ", e, we)) ;
|
alpar@1
|
1052 |
if (we >= wflg)
|
alpar@1
|
1053 |
{
|
alpar@1
|
1054 |
/* unabsorbed element e has been seen in this loop */
|
alpar@1
|
1055 |
AMD_DEBUG4 ((" unabsorbed, first time seen")) ;
|
alpar@1
|
1056 |
we -= nvi ;
|
alpar@1
|
1057 |
}
|
alpar@1
|
1058 |
else if (we != 0)
|
alpar@1
|
1059 |
{
|
alpar@1
|
1060 |
/* e is an unabsorbed element */
|
alpar@1
|
1061 |
/* this is the first we have seen e in all of Scan 1 */
|
alpar@1
|
1062 |
AMD_DEBUG4 ((" unabsorbed")) ;
|
alpar@1
|
1063 |
we = Degree [e] + wnvi ;
|
alpar@1
|
1064 |
}
|
alpar@1
|
1065 |
AMD_DEBUG4 (("\n")) ;
|
alpar@1
|
1066 |
W [e] = we ;
|
alpar@1
|
1067 |
}
|
alpar@1
|
1068 |
}
|
alpar@1
|
1069 |
}
|
alpar@1
|
1070 |
AMD_DEBUG2 (("\n")) ;
|
alpar@1
|
1071 |
|
alpar@1
|
1072 |
/* ========================================================================= */
|
alpar@1
|
1073 |
/* DEGREE UPDATE AND ELEMENT ABSORPTION */
|
alpar@1
|
1074 |
/* ========================================================================= */
|
alpar@1
|
1075 |
|
alpar@1
|
1076 |
/* -----------------------------------------------------------------
|
alpar@1
|
1077 |
* Scan 2: for each i in Lme, sum up the degree of Lme (which is
|
alpar@1
|
1078 |
* degme), plus the sum of the external degrees of each Le for the
|
alpar@1
|
1079 |
* elements e appearing within i, plus the supervariables in i.
|
alpar@1
|
1080 |
* Place i in hash list.
|
alpar@1
|
1081 |
* ----------------------------------------------------------------- */
|
alpar@1
|
1082 |
|
alpar@1
|
1083 |
for (pme = pme1 ; pme <= pme2 ; pme++)
|
alpar@1
|
1084 |
{
|
alpar@1
|
1085 |
i = Iw [pme] ;
|
alpar@1
|
1086 |
ASSERT (i >= 0 && i < n && Nv [i] < 0 && Elen [i] >= 0) ;
|
alpar@1
|
1087 |
AMD_DEBUG2 (("Updating: i "ID" "ID" "ID"\n", i, Elen[i], Len [i]));
|
alpar@1
|
1088 |
p1 = Pe [i] ;
|
alpar@1
|
1089 |
p2 = p1 + Elen [i] - 1 ;
|
alpar@1
|
1090 |
pn = p1 ;
|
alpar@1
|
1091 |
hash = 0 ;
|
alpar@1
|
1092 |
deg = 0 ;
|
alpar@1
|
1093 |
ASSERT (p1 >= 0 && p1 < iwlen && p2 >= -1 && p2 < iwlen) ;
|
alpar@1
|
1094 |
|
alpar@1
|
1095 |
/* ------------------------------------------------------------- */
|
alpar@1
|
1096 |
/* scan the element list associated with supervariable i */
|
alpar@1
|
1097 |
/* ------------------------------------------------------------- */
|
alpar@1
|
1098 |
|
alpar@1
|
1099 |
/* UMFPACK/MA38-style approximate degree: */
|
alpar@1
|
1100 |
if (aggressive)
|
alpar@1
|
1101 |
{
|
alpar@1
|
1102 |
for (p = p1 ; p <= p2 ; p++)
|
alpar@1
|
1103 |
{
|
alpar@1
|
1104 |
e = Iw [p] ;
|
alpar@1
|
1105 |
ASSERT (e >= 0 && e < n) ;
|
alpar@1
|
1106 |
we = W [e] ;
|
alpar@1
|
1107 |
if (we != 0)
|
alpar@1
|
1108 |
{
|
alpar@1
|
1109 |
/* e is an unabsorbed element */
|
alpar@1
|
1110 |
/* dext = | Le \ Lme | */
|
alpar@1
|
1111 |
dext = we - wflg ;
|
alpar@1
|
1112 |
if (dext > 0)
|
alpar@1
|
1113 |
{
|
alpar@1
|
1114 |
deg += dext ;
|
alpar@1
|
1115 |
Iw [pn++] = e ;
|
alpar@1
|
1116 |
hash += e ;
|
alpar@1
|
1117 |
AMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ;
|
alpar@1
|
1118 |
}
|
alpar@1
|
1119 |
else
|
alpar@1
|
1120 |
{
|
alpar@1
|
1121 |
/* external degree of e is zero, absorb e into me*/
|
alpar@1
|
1122 |
AMD_DEBUG1 ((" Element "ID" =>"ID" (aggressive)\n",
|
alpar@1
|
1123 |
e, me)) ;
|
alpar@1
|
1124 |
ASSERT (dext == 0) ;
|
alpar@1
|
1125 |
Pe [e] = FLIP (me) ;
|
alpar@1
|
1126 |
W [e] = 0 ;
|
alpar@1
|
1127 |
}
|
alpar@1
|
1128 |
}
|
alpar@1
|
1129 |
}
|
alpar@1
|
1130 |
}
|
alpar@1
|
1131 |
else
|
alpar@1
|
1132 |
{
|
alpar@1
|
1133 |
for (p = p1 ; p <= p2 ; p++)
|
alpar@1
|
1134 |
{
|
alpar@1
|
1135 |
e = Iw [p] ;
|
alpar@1
|
1136 |
ASSERT (e >= 0 && e < n) ;
|
alpar@1
|
1137 |
we = W [e] ;
|
alpar@1
|
1138 |
if (we != 0)
|
alpar@1
|
1139 |
{
|
alpar@1
|
1140 |
/* e is an unabsorbed element */
|
alpar@1
|
1141 |
dext = we - wflg ;
|
alpar@1
|
1142 |
ASSERT (dext >= 0) ;
|
alpar@1
|
1143 |
deg += dext ;
|
alpar@1
|
1144 |
Iw [pn++] = e ;
|
alpar@1
|
1145 |
hash += e ;
|
alpar@1
|
1146 |
AMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ;
|
alpar@1
|
1147 |
}
|
alpar@1
|
1148 |
}
|
alpar@1
|
1149 |
}
|
alpar@1
|
1150 |
|
alpar@1
|
1151 |
/* count the number of elements in i (including me): */
|
alpar@1
|
1152 |
Elen [i] = pn - p1 + 1 ;
|
alpar@1
|
1153 |
|
alpar@1
|
1154 |
/* ------------------------------------------------------------- */
|
alpar@1
|
1155 |
/* scan the supervariables in the list associated with i */
|
alpar@1
|
1156 |
/* ------------------------------------------------------------- */
|
alpar@1
|
1157 |
|
alpar@1
|
1158 |
/* The bulk of the AMD run time is typically spent in this loop,
|
alpar@1
|
1159 |
* particularly if the matrix has many dense rows that are not
|
alpar@1
|
1160 |
* removed prior to ordering. */
|
alpar@1
|
1161 |
p3 = pn ;
|
alpar@1
|
1162 |
p4 = p1 + Len [i] ;
|
alpar@1
|
1163 |
for (p = p2 + 1 ; p < p4 ; p++)
|
alpar@1
|
1164 |
{
|
alpar@1
|
1165 |
j = Iw [p] ;
|
alpar@1
|
1166 |
ASSERT (j >= 0 && j < n) ;
|
alpar@1
|
1167 |
nvj = Nv [j] ;
|
alpar@1
|
1168 |
if (nvj > 0)
|
alpar@1
|
1169 |
{
|
alpar@1
|
1170 |
/* j is unabsorbed, and not in Lme. */
|
alpar@1
|
1171 |
/* add to degree and add to new list */
|
alpar@1
|
1172 |
deg += nvj ;
|
alpar@1
|
1173 |
Iw [pn++] = j ;
|
alpar@1
|
1174 |
hash += j ;
|
alpar@1
|
1175 |
AMD_DEBUG4 ((" s: "ID" hash "ID" Nv[j]= "ID"\n",
|
alpar@1
|
1176 |
j, hash, nvj)) ;
|
alpar@1
|
1177 |
}
|
alpar@1
|
1178 |
}
|
alpar@1
|
1179 |
|
alpar@1
|
1180 |
/* ------------------------------------------------------------- */
|
alpar@1
|
1181 |
/* update the degree and check for mass elimination */
|
alpar@1
|
1182 |
/* ------------------------------------------------------------- */
|
alpar@1
|
1183 |
|
alpar@1
|
1184 |
/* with aggressive absorption, deg==0 is identical to the
|
alpar@1
|
1185 |
* Elen [i] == 1 && p3 == pn test, below. */
|
alpar@1
|
1186 |
ASSERT (IMPLIES (aggressive, (deg==0) == (Elen[i]==1 && p3==pn))) ;
|
alpar@1
|
1187 |
|
alpar@1
|
1188 |
if (Elen [i] == 1 && p3 == pn)
|
alpar@1
|
1189 |
{
|
alpar@1
|
1190 |
|
alpar@1
|
1191 |
/* --------------------------------------------------------- */
|
alpar@1
|
1192 |
/* mass elimination */
|
alpar@1
|
1193 |
/* --------------------------------------------------------- */
|
alpar@1
|
1194 |
|
alpar@1
|
1195 |
/* There is nothing left of this node except for an edge to
|
alpar@1
|
1196 |
* the current pivot element. Elen [i] is 1, and there are
|
alpar@1
|
1197 |
* no variables adjacent to node i. Absorb i into the
|
alpar@1
|
1198 |
* current pivot element, me. Note that if there are two or
|
alpar@1
|
1199 |
* more mass eliminations, fillin due to mass elimination is
|
alpar@1
|
1200 |
* possible within the nvpiv-by-nvpiv pivot block. It is this
|
alpar@1
|
1201 |
* step that causes AMD's analysis to be an upper bound.
|
alpar@1
|
1202 |
*
|
alpar@1
|
1203 |
* The reason is that the selected pivot has a lower
|
alpar@1
|
1204 |
* approximate degree than the true degree of the two mass
|
alpar@1
|
1205 |
* eliminated nodes. There is no edge between the two mass
|
alpar@1
|
1206 |
* eliminated nodes. They are merged with the current pivot
|
alpar@1
|
1207 |
* anyway.
|
alpar@1
|
1208 |
*
|
alpar@1
|
1209 |
* No fillin occurs in the Schur complement, in any case,
|
alpar@1
|
1210 |
* and this effect does not decrease the quality of the
|
alpar@1
|
1211 |
* ordering itself, just the quality of the nonzero and
|
alpar@1
|
1212 |
* flop count analysis. It also means that the post-ordering
|
alpar@1
|
1213 |
* is not an exact elimination tree post-ordering. */
|
alpar@1
|
1214 |
|
alpar@1
|
1215 |
AMD_DEBUG1 ((" MASS i "ID" => parent e "ID"\n", i, me)) ;
|
alpar@1
|
1216 |
Pe [i] = FLIP (me) ;
|
alpar@1
|
1217 |
nvi = -Nv [i] ;
|
alpar@1
|
1218 |
degme -= nvi ;
|
alpar@1
|
1219 |
nvpiv += nvi ;
|
alpar@1
|
1220 |
nel += nvi ;
|
alpar@1
|
1221 |
Nv [i] = 0 ;
|
alpar@1
|
1222 |
Elen [i] = EMPTY ;
|
alpar@1
|
1223 |
|
alpar@1
|
1224 |
}
|
alpar@1
|
1225 |
else
|
alpar@1
|
1226 |
{
|
alpar@1
|
1227 |
|
alpar@1
|
1228 |
/* --------------------------------------------------------- */
|
alpar@1
|
1229 |
/* update the upper-bound degree of i */
|
alpar@1
|
1230 |
/* --------------------------------------------------------- */
|
alpar@1
|
1231 |
|
alpar@1
|
1232 |
/* the following degree does not yet include the size
|
alpar@1
|
1233 |
* of the current element, which is added later: */
|
alpar@1
|
1234 |
|
alpar@1
|
1235 |
Degree [i] = MIN (Degree [i], deg) ;
|
alpar@1
|
1236 |
|
alpar@1
|
1237 |
/* --------------------------------------------------------- */
|
alpar@1
|
1238 |
/* add me to the list for i */
|
alpar@1
|
1239 |
/* --------------------------------------------------------- */
|
alpar@1
|
1240 |
|
alpar@1
|
1241 |
/* move first supervariable to end of list */
|
alpar@1
|
1242 |
Iw [pn] = Iw [p3] ;
|
alpar@1
|
1243 |
/* move first element to end of element part of list */
|
alpar@1
|
1244 |
Iw [p3] = Iw [p1] ;
|
alpar@1
|
1245 |
/* add new element, me, to front of list. */
|
alpar@1
|
1246 |
Iw [p1] = me ;
|
alpar@1
|
1247 |
/* store the new length of the list in Len [i] */
|
alpar@1
|
1248 |
Len [i] = pn - p1 + 1 ;
|
alpar@1
|
1249 |
|
alpar@1
|
1250 |
/* --------------------------------------------------------- */
|
alpar@1
|
1251 |
/* place in hash bucket. Save hash key of i in Last [i]. */
|
alpar@1
|
1252 |
/* --------------------------------------------------------- */
|
alpar@1
|
1253 |
|
alpar@1
|
1254 |
/* NOTE: this can fail if hash is negative, because the ANSI C
|
alpar@1
|
1255 |
* standard does not define a % b when a and/or b are negative.
|
alpar@1
|
1256 |
* That's why hash is defined as an unsigned Int, to avoid this
|
alpar@1
|
1257 |
* problem. */
|
alpar@1
|
1258 |
hash = hash % n ;
|
alpar@1
|
1259 |
ASSERT (((Int) hash) >= 0 && ((Int) hash) < n) ;
|
alpar@1
|
1260 |
|
alpar@1
|
1261 |
/* if the Hhead array is not used: */
|
alpar@1
|
1262 |
j = Head [hash] ;
|
alpar@1
|
1263 |
if (j <= EMPTY)
|
alpar@1
|
1264 |
{
|
alpar@1
|
1265 |
/* degree list is empty, hash head is FLIP (j) */
|
alpar@1
|
1266 |
Next [i] = FLIP (j) ;
|
alpar@1
|
1267 |
Head [hash] = FLIP (i) ;
|
alpar@1
|
1268 |
}
|
alpar@1
|
1269 |
else
|
alpar@1
|
1270 |
{
|
alpar@1
|
1271 |
/* degree list is not empty, use Last [Head [hash]] as
|
alpar@1
|
1272 |
* hash head. */
|
alpar@1
|
1273 |
Next [i] = Last [j] ;
|
alpar@1
|
1274 |
Last [j] = i ;
|
alpar@1
|
1275 |
}
|
alpar@1
|
1276 |
|
alpar@1
|
1277 |
/* if a separate Hhead array is used: *
|
alpar@1
|
1278 |
Next [i] = Hhead [hash] ;
|
alpar@1
|
1279 |
Hhead [hash] = i ;
|
alpar@1
|
1280 |
*/
|
alpar@1
|
1281 |
|
alpar@1
|
1282 |
Last [i] = hash ;
|
alpar@1
|
1283 |
}
|
alpar@1
|
1284 |
}
|
alpar@1
|
1285 |
|
alpar@1
|
1286 |
Degree [me] = degme ;
|
alpar@1
|
1287 |
|
alpar@1
|
1288 |
/* ----------------------------------------------------------------- */
|
alpar@1
|
1289 |
/* Clear the counter array, W [...], by incrementing wflg. */
|
alpar@1
|
1290 |
/* ----------------------------------------------------------------- */
|
alpar@1
|
1291 |
|
alpar@1
|
1292 |
/* make sure that wflg+n does not cause integer overflow */
|
alpar@1
|
1293 |
lemax = MAX (lemax, degme) ;
|
alpar@1
|
1294 |
wflg += lemax ;
|
alpar@1
|
1295 |
wflg = clear_flag (wflg, wbig, W, n) ;
|
alpar@1
|
1296 |
/* at this point, W [0..n-1] < wflg holds */
|
alpar@1
|
1297 |
|
alpar@1
|
1298 |
/* ========================================================================= */
|
alpar@1
|
1299 |
/* SUPERVARIABLE DETECTION */
|
alpar@1
|
1300 |
/* ========================================================================= */
|
alpar@1
|
1301 |
|
alpar@1
|
1302 |
AMD_DEBUG1 (("Detecting supervariables:\n")) ;
|
alpar@1
|
1303 |
for (pme = pme1 ; pme <= pme2 ; pme++)
|
alpar@1
|
1304 |
{
|
alpar@1
|
1305 |
i = Iw [pme] ;
|
alpar@1
|
1306 |
ASSERT (i >= 0 && i < n) ;
|
alpar@1
|
1307 |
AMD_DEBUG2 (("Consider i "ID" nv "ID"\n", i, Nv [i])) ;
|
alpar@1
|
1308 |
if (Nv [i] < 0)
|
alpar@1
|
1309 |
{
|
alpar@1
|
1310 |
/* i is a principal variable in Lme */
|
alpar@1
|
1311 |
|
alpar@1
|
1312 |
/* ---------------------------------------------------------
|
alpar@1
|
1313 |
* examine all hash buckets with 2 or more variables. We do
|
alpar@1
|
1314 |
* this by examing all unique hash keys for supervariables in
|
alpar@1
|
1315 |
* the pattern Lme of the current element, me
|
alpar@1
|
1316 |
* --------------------------------------------------------- */
|
alpar@1
|
1317 |
|
alpar@1
|
1318 |
/* let i = head of hash bucket, and empty the hash bucket */
|
alpar@1
|
1319 |
ASSERT (Last [i] >= 0 && Last [i] < n) ;
|
alpar@1
|
1320 |
hash = Last [i] ;
|
alpar@1
|
1321 |
|
alpar@1
|
1322 |
/* if Hhead array is not used: */
|
alpar@1
|
1323 |
j = Head [hash] ;
|
alpar@1
|
1324 |
if (j == EMPTY)
|
alpar@1
|
1325 |
{
|
alpar@1
|
1326 |
/* hash bucket and degree list are both empty */
|
alpar@1
|
1327 |
i = EMPTY ;
|
alpar@1
|
1328 |
}
|
alpar@1
|
1329 |
else if (j < EMPTY)
|
alpar@1
|
1330 |
{
|
alpar@1
|
1331 |
/* degree list is empty */
|
alpar@1
|
1332 |
i = FLIP (j) ;
|
alpar@1
|
1333 |
Head [hash] = EMPTY ;
|
alpar@1
|
1334 |
}
|
alpar@1
|
1335 |
else
|
alpar@1
|
1336 |
{
|
alpar@1
|
1337 |
/* degree list is not empty, restore Last [j] of head j */
|
alpar@1
|
1338 |
i = Last [j] ;
|
alpar@1
|
1339 |
Last [j] = EMPTY ;
|
alpar@1
|
1340 |
}
|
alpar@1
|
1341 |
|
alpar@1
|
1342 |
/* if separate Hhead array is used: *
|
alpar@1
|
1343 |
i = Hhead [hash] ;
|
alpar@1
|
1344 |
Hhead [hash] = EMPTY ;
|
alpar@1
|
1345 |
*/
|
alpar@1
|
1346 |
|
alpar@1
|
1347 |
ASSERT (i >= EMPTY && i < n) ;
|
alpar@1
|
1348 |
AMD_DEBUG2 (("----i "ID" hash "ID"\n", i, hash)) ;
|
alpar@1
|
1349 |
|
alpar@1
|
1350 |
while (i != EMPTY && Next [i] != EMPTY)
|
alpar@1
|
1351 |
{
|
alpar@1
|
1352 |
|
alpar@1
|
1353 |
/* -----------------------------------------------------
|
alpar@1
|
1354 |
* this bucket has one or more variables following i.
|
alpar@1
|
1355 |
* scan all of them to see if i can absorb any entries
|
alpar@1
|
1356 |
* that follow i in hash bucket. Scatter i into w.
|
alpar@1
|
1357 |
* ----------------------------------------------------- */
|
alpar@1
|
1358 |
|
alpar@1
|
1359 |
ln = Len [i] ;
|
alpar@1
|
1360 |
eln = Elen [i] ;
|
alpar@1
|
1361 |
ASSERT (ln >= 0 && eln >= 0) ;
|
alpar@1
|
1362 |
ASSERT (Pe [i] >= 0 && Pe [i] < iwlen) ;
|
alpar@1
|
1363 |
/* do not flag the first element in the list (me) */
|
alpar@1
|
1364 |
for (p = Pe [i] + 1 ; p <= Pe [i] + ln - 1 ; p++)
|
alpar@1
|
1365 |
{
|
alpar@1
|
1366 |
ASSERT (Iw [p] >= 0 && Iw [p] < n) ;
|
alpar@1
|
1367 |
W [Iw [p]] = wflg ;
|
alpar@1
|
1368 |
}
|
alpar@1
|
1369 |
|
alpar@1
|
1370 |
/* ----------------------------------------------------- */
|
alpar@1
|
1371 |
/* scan every other entry j following i in bucket */
|
alpar@1
|
1372 |
/* ----------------------------------------------------- */
|
alpar@1
|
1373 |
|
alpar@1
|
1374 |
jlast = i ;
|
alpar@1
|
1375 |
j = Next [i] ;
|
alpar@1
|
1376 |
ASSERT (j >= EMPTY && j < n) ;
|
alpar@1
|
1377 |
|
alpar@1
|
1378 |
while (j != EMPTY)
|
alpar@1
|
1379 |
{
|
alpar@1
|
1380 |
/* ------------------------------------------------- */
|
alpar@1
|
1381 |
/* check if j and i have identical nonzero pattern */
|
alpar@1
|
1382 |
/* ------------------------------------------------- */
|
alpar@1
|
1383 |
|
alpar@1
|
1384 |
AMD_DEBUG3 (("compare i "ID" and j "ID"\n", i,j)) ;
|
alpar@1
|
1385 |
|
alpar@1
|
1386 |
/* check if i and j have the same Len and Elen */
|
alpar@1
|
1387 |
ASSERT (Len [j] >= 0 && Elen [j] >= 0) ;
|
alpar@1
|
1388 |
ASSERT (Pe [j] >= 0 && Pe [j] < iwlen) ;
|
alpar@1
|
1389 |
ok = (Len [j] == ln) && (Elen [j] == eln) ;
|
alpar@1
|
1390 |
/* skip the first element in the list (me) */
|
alpar@1
|
1391 |
for (p = Pe [j] + 1 ; ok && p <= Pe [j] + ln - 1 ; p++)
|
alpar@1
|
1392 |
{
|
alpar@1
|
1393 |
ASSERT (Iw [p] >= 0 && Iw [p] < n) ;
|
alpar@1
|
1394 |
if (W [Iw [p]] != wflg) ok = 0 ;
|
alpar@1
|
1395 |
}
|
alpar@1
|
1396 |
if (ok)
|
alpar@1
|
1397 |
{
|
alpar@1
|
1398 |
/* --------------------------------------------- */
|
alpar@1
|
1399 |
/* found it! j can be absorbed into i */
|
alpar@1
|
1400 |
/* --------------------------------------------- */
|
alpar@1
|
1401 |
|
alpar@1
|
1402 |
AMD_DEBUG1 (("found it! j "ID" => i "ID"\n", j,i));
|
alpar@1
|
1403 |
Pe [j] = FLIP (i) ;
|
alpar@1
|
1404 |
/* both Nv [i] and Nv [j] are negated since they */
|
alpar@1
|
1405 |
/* are in Lme, and the absolute values of each */
|
alpar@1
|
1406 |
/* are the number of variables in i and j: */
|
alpar@1
|
1407 |
Nv [i] += Nv [j] ;
|
alpar@1
|
1408 |
Nv [j] = 0 ;
|
alpar@1
|
1409 |
Elen [j] = EMPTY ;
|
alpar@1
|
1410 |
/* delete j from hash bucket */
|
alpar@1
|
1411 |
ASSERT (j != Next [j]) ;
|
alpar@1
|
1412 |
j = Next [j] ;
|
alpar@1
|
1413 |
Next [jlast] = j ;
|
alpar@1
|
1414 |
|
alpar@1
|
1415 |
}
|
alpar@1
|
1416 |
else
|
alpar@1
|
1417 |
{
|
alpar@1
|
1418 |
/* j cannot be absorbed into i */
|
alpar@1
|
1419 |
jlast = j ;
|
alpar@1
|
1420 |
ASSERT (j != Next [j]) ;
|
alpar@1
|
1421 |
j = Next [j] ;
|
alpar@1
|
1422 |
}
|
alpar@1
|
1423 |
ASSERT (j >= EMPTY && j < n) ;
|
alpar@1
|
1424 |
}
|
alpar@1
|
1425 |
|
alpar@1
|
1426 |
/* -----------------------------------------------------
|
alpar@1
|
1427 |
* no more variables can be absorbed into i
|
alpar@1
|
1428 |
* go to next i in bucket and clear flag array
|
alpar@1
|
1429 |
* ----------------------------------------------------- */
|
alpar@1
|
1430 |
|
alpar@1
|
1431 |
wflg++ ;
|
alpar@1
|
1432 |
i = Next [i] ;
|
alpar@1
|
1433 |
ASSERT (i >= EMPTY && i < n) ;
|
alpar@1
|
1434 |
|
alpar@1
|
1435 |
}
|
alpar@1
|
1436 |
}
|
alpar@1
|
1437 |
}
|
alpar@1
|
1438 |
AMD_DEBUG2 (("detect done\n")) ;
|
alpar@1
|
1439 |
|
alpar@1
|
1440 |
/* ========================================================================= */
|
alpar@1
|
1441 |
/* RESTORE DEGREE LISTS AND REMOVE NONPRINCIPAL SUPERVARIABLES FROM ELEMENT */
|
alpar@1
|
1442 |
/* ========================================================================= */
|
alpar@1
|
1443 |
|
alpar@1
|
1444 |
p = pme1 ;
|
alpar@1
|
1445 |
nleft = n - nel ;
|
alpar@1
|
1446 |
for (pme = pme1 ; pme <= pme2 ; pme++)
|
alpar@1
|
1447 |
{
|
alpar@1
|
1448 |
i = Iw [pme] ;
|
alpar@1
|
1449 |
ASSERT (i >= 0 && i < n) ;
|
alpar@1
|
1450 |
nvi = -Nv [i] ;
|
alpar@1
|
1451 |
AMD_DEBUG3 (("Restore i "ID" "ID"\n", i, nvi)) ;
|
alpar@1
|
1452 |
if (nvi > 0)
|
alpar@1
|
1453 |
{
|
alpar@1
|
1454 |
/* i is a principal variable in Lme */
|
alpar@1
|
1455 |
/* restore Nv [i] to signify that i is principal */
|
alpar@1
|
1456 |
Nv [i] = nvi ;
|
alpar@1
|
1457 |
|
alpar@1
|
1458 |
/* --------------------------------------------------------- */
|
alpar@1
|
1459 |
/* compute the external degree (add size of current element) */
|
alpar@1
|
1460 |
/* --------------------------------------------------------- */
|
alpar@1
|
1461 |
|
alpar@1
|
1462 |
deg = Degree [i] + degme - nvi ;
|
alpar@1
|
1463 |
deg = MIN (deg, nleft - nvi) ;
|
alpar@1
|
1464 |
ASSERT (IMPLIES (aggressive, deg > 0) && deg >= 0 && deg < n) ;
|
alpar@1
|
1465 |
|
alpar@1
|
1466 |
/* --------------------------------------------------------- */
|
alpar@1
|
1467 |
/* place the supervariable at the head of the degree list */
|
alpar@1
|
1468 |
/* --------------------------------------------------------- */
|
alpar@1
|
1469 |
|
alpar@1
|
1470 |
inext = Head [deg] ;
|
alpar@1
|
1471 |
ASSERT (inext >= EMPTY && inext < n) ;
|
alpar@1
|
1472 |
if (inext != EMPTY) Last [inext] = i ;
|
alpar@1
|
1473 |
Next [i] = inext ;
|
alpar@1
|
1474 |
Last [i] = EMPTY ;
|
alpar@1
|
1475 |
Head [deg] = i ;
|
alpar@1
|
1476 |
|
alpar@1
|
1477 |
/* --------------------------------------------------------- */
|
alpar@1
|
1478 |
/* save the new degree, and find the minimum degree */
|
alpar@1
|
1479 |
/* --------------------------------------------------------- */
|
alpar@1
|
1480 |
|
alpar@1
|
1481 |
mindeg = MIN (mindeg, deg) ;
|
alpar@1
|
1482 |
Degree [i] = deg ;
|
alpar@1
|
1483 |
|
alpar@1
|
1484 |
/* --------------------------------------------------------- */
|
alpar@1
|
1485 |
/* place the supervariable in the element pattern */
|
alpar@1
|
1486 |
/* --------------------------------------------------------- */
|
alpar@1
|
1487 |
|
alpar@1
|
1488 |
Iw [p++] = i ;
|
alpar@1
|
1489 |
|
alpar@1
|
1490 |
}
|
alpar@1
|
1491 |
}
|
alpar@1
|
1492 |
AMD_DEBUG2 (("restore done\n")) ;
|
alpar@1
|
1493 |
|
alpar@1
|
1494 |
/* ========================================================================= */
|
alpar@1
|
1495 |
/* FINALIZE THE NEW ELEMENT */
|
alpar@1
|
1496 |
/* ========================================================================= */
|
alpar@1
|
1497 |
|
alpar@1
|
1498 |
AMD_DEBUG2 (("ME = "ID" DONE\n", me)) ;
|
alpar@1
|
1499 |
Nv [me] = nvpiv ;
|
alpar@1
|
1500 |
/* save the length of the list for the new element me */
|
alpar@1
|
1501 |
Len [me] = p - pme1 ;
|
alpar@1
|
1502 |
if (Len [me] == 0)
|
alpar@1
|
1503 |
{
|
alpar@1
|
1504 |
/* there is nothing left of the current pivot element */
|
alpar@1
|
1505 |
/* it is a root of the assembly tree */
|
alpar@1
|
1506 |
Pe [me] = EMPTY ;
|
alpar@1
|
1507 |
W [me] = 0 ;
|
alpar@1
|
1508 |
}
|
alpar@1
|
1509 |
if (elenme != 0)
|
alpar@1
|
1510 |
{
|
alpar@1
|
1511 |
/* element was not constructed in place: deallocate part of */
|
alpar@1
|
1512 |
/* it since newly nonprincipal variables may have been removed */
|
alpar@1
|
1513 |
pfree = p ;
|
alpar@1
|
1514 |
}
|
alpar@1
|
1515 |
|
alpar@1
|
1516 |
/* The new element has nvpiv pivots and the size of the contribution
|
alpar@1
|
1517 |
* block for a multifrontal method is degme-by-degme, not including
|
alpar@1
|
1518 |
* the "dense" rows/columns. If the "dense" rows/columns are included,
|
alpar@1
|
1519 |
* the frontal matrix is no larger than
|
alpar@1
|
1520 |
* (degme+ndense)-by-(degme+ndense).
|
alpar@1
|
1521 |
*/
|
alpar@1
|
1522 |
|
alpar@1
|
1523 |
if (Info != (double *) NULL)
|
alpar@1
|
1524 |
{
|
alpar@1
|
1525 |
f = nvpiv ;
|
alpar@1
|
1526 |
r = degme + ndense ;
|
alpar@1
|
1527 |
dmax = MAX (dmax, f + r) ;
|
alpar@1
|
1528 |
|
alpar@1
|
1529 |
/* number of nonzeros in L (excluding the diagonal) */
|
alpar@1
|
1530 |
lnzme = f*r + (f-1)*f/2 ;
|
alpar@1
|
1531 |
lnz += lnzme ;
|
alpar@1
|
1532 |
|
alpar@1
|
1533 |
/* number of divide operations for LDL' and for LU */
|
alpar@1
|
1534 |
ndiv += lnzme ;
|
alpar@1
|
1535 |
|
alpar@1
|
1536 |
/* number of multiply-subtract pairs for LU */
|
alpar@1
|
1537 |
s = f*r*r + r*(f-1)*f + (f-1)*f*(2*f-1)/6 ;
|
alpar@1
|
1538 |
nms_lu += s ;
|
alpar@1
|
1539 |
|
alpar@1
|
1540 |
/* number of multiply-subtract pairs for LDL' */
|
alpar@1
|
1541 |
nms_ldl += (s + lnzme)/2 ;
|
alpar@1
|
1542 |
}
|
alpar@1
|
1543 |
|
alpar@1
|
1544 |
#ifndef NDEBUG
|
alpar@1
|
1545 |
AMD_DEBUG2 (("finalize done nel "ID" n "ID"\n ::::\n", nel, n)) ;
|
alpar@1
|
1546 |
for (pme = Pe [me] ; pme <= Pe [me] + Len [me] - 1 ; pme++)
|
alpar@1
|
1547 |
{
|
alpar@1
|
1548 |
AMD_DEBUG3 ((" "ID"", Iw [pme])) ;
|
alpar@1
|
1549 |
}
|
alpar@1
|
1550 |
AMD_DEBUG3 (("\n")) ;
|
alpar@1
|
1551 |
#endif
|
alpar@1
|
1552 |
|
alpar@1
|
1553 |
}
|
alpar@1
|
1554 |
|
alpar@1
|
1555 |
/* ========================================================================= */
|
alpar@1
|
1556 |
/* DONE SELECTING PIVOTS */
|
alpar@1
|
1557 |
/* ========================================================================= */
|
alpar@1
|
1558 |
|
alpar@1
|
1559 |
if (Info != (double *) NULL)
|
alpar@1
|
1560 |
{
|
alpar@1
|
1561 |
|
alpar@1
|
1562 |
/* count the work to factorize the ndense-by-ndense submatrix */
|
alpar@1
|
1563 |
f = ndense ;
|
alpar@1
|
1564 |
dmax = MAX (dmax, (double) ndense) ;
|
alpar@1
|
1565 |
|
alpar@1
|
1566 |
/* number of nonzeros in L (excluding the diagonal) */
|
alpar@1
|
1567 |
lnzme = (f-1)*f/2 ;
|
alpar@1
|
1568 |
lnz += lnzme ;
|
alpar@1
|
1569 |
|
alpar@1
|
1570 |
/* number of divide operations for LDL' and for LU */
|
alpar@1
|
1571 |
ndiv += lnzme ;
|
alpar@1
|
1572 |
|
alpar@1
|
1573 |
/* number of multiply-subtract pairs for LU */
|
alpar@1
|
1574 |
s = (f-1)*f*(2*f-1)/6 ;
|
alpar@1
|
1575 |
nms_lu += s ;
|
alpar@1
|
1576 |
|
alpar@1
|
1577 |
/* number of multiply-subtract pairs for LDL' */
|
alpar@1
|
1578 |
nms_ldl += (s + lnzme)/2 ;
|
alpar@1
|
1579 |
|
alpar@1
|
1580 |
/* number of nz's in L (excl. diagonal) */
|
alpar@1
|
1581 |
Info [AMD_LNZ] = lnz ;
|
alpar@1
|
1582 |
|
alpar@1
|
1583 |
/* number of divide ops for LU and LDL' */
|
alpar@1
|
1584 |
Info [AMD_NDIV] = ndiv ;
|
alpar@1
|
1585 |
|
alpar@1
|
1586 |
/* number of multiply-subtract pairs for LDL' */
|
alpar@1
|
1587 |
Info [AMD_NMULTSUBS_LDL] = nms_ldl ;
|
alpar@1
|
1588 |
|
alpar@1
|
1589 |
/* number of multiply-subtract pairs for LU */
|
alpar@1
|
1590 |
Info [AMD_NMULTSUBS_LU] = nms_lu ;
|
alpar@1
|
1591 |
|
alpar@1
|
1592 |
/* number of "dense" rows/columns */
|
alpar@1
|
1593 |
Info [AMD_NDENSE] = ndense ;
|
alpar@1
|
1594 |
|
alpar@1
|
1595 |
/* largest front is dmax-by-dmax */
|
alpar@1
|
1596 |
Info [AMD_DMAX] = dmax ;
|
alpar@1
|
1597 |
|
alpar@1
|
1598 |
/* number of garbage collections in AMD */
|
alpar@1
|
1599 |
Info [AMD_NCMPA] = ncmpa ;
|
alpar@1
|
1600 |
|
alpar@1
|
1601 |
/* successful ordering */
|
alpar@1
|
1602 |
Info [AMD_STATUS] = AMD_OK ;
|
alpar@1
|
1603 |
}
|
alpar@1
|
1604 |
|
alpar@1
|
1605 |
/* ========================================================================= */
|
alpar@1
|
1606 |
/* POST-ORDERING */
|
alpar@1
|
1607 |
/* ========================================================================= */
|
alpar@1
|
1608 |
|
alpar@1
|
1609 |
/* -------------------------------------------------------------------------
|
alpar@1
|
1610 |
* Variables at this point:
|
alpar@1
|
1611 |
*
|
alpar@1
|
1612 |
* Pe: holds the elimination tree. The parent of j is FLIP (Pe [j]),
|
alpar@1
|
1613 |
* or EMPTY if j is a root. The tree holds both elements and
|
alpar@1
|
1614 |
* non-principal (unordered) variables absorbed into them.
|
alpar@1
|
1615 |
* Dense variables are non-principal and unordered.
|
alpar@1
|
1616 |
*
|
alpar@1
|
1617 |
* Elen: holds the size of each element, including the diagonal part.
|
alpar@1
|
1618 |
* FLIP (Elen [e]) > 0 if e is an element. For unordered
|
alpar@1
|
1619 |
* variables i, Elen [i] is EMPTY.
|
alpar@1
|
1620 |
*
|
alpar@1
|
1621 |
* Nv: Nv [e] > 0 is the number of pivots represented by the element e.
|
alpar@1
|
1622 |
* For unordered variables i, Nv [i] is zero.
|
alpar@1
|
1623 |
*
|
alpar@1
|
1624 |
* Contents no longer needed:
|
alpar@1
|
1625 |
* W, Iw, Len, Degree, Head, Next, Last.
|
alpar@1
|
1626 |
*
|
alpar@1
|
1627 |
* The matrix itself has been destroyed.
|
alpar@1
|
1628 |
*
|
alpar@1
|
1629 |
* n: the size of the matrix.
|
alpar@1
|
1630 |
* No other scalars needed (pfree, iwlen, etc.)
|
alpar@1
|
1631 |
* ------------------------------------------------------------------------- */
|
alpar@1
|
1632 |
|
alpar@1
|
1633 |
/* restore Pe */
|
alpar@1
|
1634 |
for (i = 0 ; i < n ; i++)
|
alpar@1
|
1635 |
{
|
alpar@1
|
1636 |
Pe [i] = FLIP (Pe [i]) ;
|
alpar@1
|
1637 |
}
|
alpar@1
|
1638 |
|
alpar@1
|
1639 |
/* restore Elen, for output information, and for postordering */
|
alpar@1
|
1640 |
for (i = 0 ; i < n ; i++)
|
alpar@1
|
1641 |
{
|
alpar@1
|
1642 |
Elen [i] = FLIP (Elen [i]) ;
|
alpar@1
|
1643 |
}
|
alpar@1
|
1644 |
|
alpar@1
|
1645 |
/* Now the parent of j is Pe [j], or EMPTY if j is a root. Elen [e] > 0
|
alpar@1
|
1646 |
* is the size of element e. Elen [i] is EMPTY for unordered variable i. */
|
alpar@1
|
1647 |
|
alpar@1
|
1648 |
#ifndef NDEBUG
|
alpar@1
|
1649 |
AMD_DEBUG2 (("\nTree:\n")) ;
|
alpar@1
|
1650 |
for (i = 0 ; i < n ; i++)
|
alpar@1
|
1651 |
{
|
alpar@1
|
1652 |
AMD_DEBUG2 ((" "ID" parent: "ID" ", i, Pe [i])) ;
|
alpar@1
|
1653 |
ASSERT (Pe [i] >= EMPTY && Pe [i] < n) ;
|
alpar@1
|
1654 |
if (Nv [i] > 0)
|
alpar@1
|
1655 |
{
|
alpar@1
|
1656 |
/* this is an element */
|
alpar@1
|
1657 |
e = i ;
|
alpar@1
|
1658 |
AMD_DEBUG2 ((" element, size is "ID"\n", Elen [i])) ;
|
alpar@1
|
1659 |
ASSERT (Elen [e] > 0) ;
|
alpar@1
|
1660 |
}
|
alpar@1
|
1661 |
AMD_DEBUG2 (("\n")) ;
|
alpar@1
|
1662 |
}
|
alpar@1
|
1663 |
AMD_DEBUG2 (("\nelements:\n")) ;
|
alpar@1
|
1664 |
for (e = 0 ; e < n ; e++)
|
alpar@1
|
1665 |
{
|
alpar@1
|
1666 |
if (Nv [e] > 0)
|
alpar@1
|
1667 |
{
|
alpar@1
|
1668 |
AMD_DEBUG3 (("Element e= "ID" size "ID" nv "ID" \n", e,
|
alpar@1
|
1669 |
Elen [e], Nv [e])) ;
|
alpar@1
|
1670 |
}
|
alpar@1
|
1671 |
}
|
alpar@1
|
1672 |
AMD_DEBUG2 (("\nvariables:\n")) ;
|
alpar@1
|
1673 |
for (i = 0 ; i < n ; i++)
|
alpar@1
|
1674 |
{
|
alpar@1
|
1675 |
Int cnt ;
|
alpar@1
|
1676 |
if (Nv [i] == 0)
|
alpar@1
|
1677 |
{
|
alpar@1
|
1678 |
AMD_DEBUG3 (("i unordered: "ID"\n", i)) ;
|
alpar@1
|
1679 |
j = Pe [i] ;
|
alpar@1
|
1680 |
cnt = 0 ;
|
alpar@1
|
1681 |
AMD_DEBUG3 ((" j: "ID"\n", j)) ;
|
alpar@1
|
1682 |
if (j == EMPTY)
|
alpar@1
|
1683 |
{
|
alpar@1
|
1684 |
AMD_DEBUG3 ((" i is a dense variable\n")) ;
|
alpar@1
|
1685 |
}
|
alpar@1
|
1686 |
else
|
alpar@1
|
1687 |
{
|
alpar@1
|
1688 |
ASSERT (j >= 0 && j < n) ;
|
alpar@1
|
1689 |
while (Nv [j] == 0)
|
alpar@1
|
1690 |
{
|
alpar@1
|
1691 |
AMD_DEBUG3 ((" j : "ID"\n", j)) ;
|
alpar@1
|
1692 |
j = Pe [j] ;
|
alpar@1
|
1693 |
AMD_DEBUG3 ((" j:: "ID"\n", j)) ;
|
alpar@1
|
1694 |
cnt++ ;
|
alpar@1
|
1695 |
if (cnt > n) break ;
|
alpar@1
|
1696 |
}
|
alpar@1
|
1697 |
e = j ;
|
alpar@1
|
1698 |
AMD_DEBUG3 ((" got to e: "ID"\n", e)) ;
|
alpar@1
|
1699 |
}
|
alpar@1
|
1700 |
}
|
alpar@1
|
1701 |
}
|
alpar@1
|
1702 |
#endif
|
alpar@1
|
1703 |
|
alpar@1
|
1704 |
/* ========================================================================= */
|
alpar@1
|
1705 |
/* compress the paths of the variables */
|
alpar@1
|
1706 |
/* ========================================================================= */
|
alpar@1
|
1707 |
|
alpar@1
|
1708 |
for (i = 0 ; i < n ; i++)
|
alpar@1
|
1709 |
{
|
alpar@1
|
1710 |
if (Nv [i] == 0)
|
alpar@1
|
1711 |
{
|
alpar@1
|
1712 |
|
alpar@1
|
1713 |
/* -------------------------------------------------------------
|
alpar@1
|
1714 |
* i is an un-ordered row. Traverse the tree from i until
|
alpar@1
|
1715 |
* reaching an element, e. The element, e, was the principal
|
alpar@1
|
1716 |
* supervariable of i and all nodes in the path from i to when e
|
alpar@1
|
1717 |
* was selected as pivot.
|
alpar@1
|
1718 |
* ------------------------------------------------------------- */
|
alpar@1
|
1719 |
|
alpar@1
|
1720 |
AMD_DEBUG1 (("Path compression, i unordered: "ID"\n", i)) ;
|
alpar@1
|
1721 |
j = Pe [i] ;
|
alpar@1
|
1722 |
ASSERT (j >= EMPTY && j < n) ;
|
alpar@1
|
1723 |
AMD_DEBUG3 ((" j: "ID"\n", j)) ;
|
alpar@1
|
1724 |
if (j == EMPTY)
|
alpar@1
|
1725 |
{
|
alpar@1
|
1726 |
/* Skip a dense variable. It has no parent. */
|
alpar@1
|
1727 |
AMD_DEBUG3 ((" i is a dense variable\n")) ;
|
alpar@1
|
1728 |
continue ;
|
alpar@1
|
1729 |
}
|
alpar@1
|
1730 |
|
alpar@1
|
1731 |
/* while (j is a variable) */
|
alpar@1
|
1732 |
while (Nv [j] == 0)
|
alpar@1
|
1733 |
{
|
alpar@1
|
1734 |
AMD_DEBUG3 ((" j : "ID"\n", j)) ;
|
alpar@1
|
1735 |
j = Pe [j] ;
|
alpar@1
|
1736 |
AMD_DEBUG3 ((" j:: "ID"\n", j)) ;
|
alpar@1
|
1737 |
ASSERT (j >= 0 && j < n) ;
|
alpar@1
|
1738 |
}
|
alpar@1
|
1739 |
/* got to an element e */
|
alpar@1
|
1740 |
e = j ;
|
alpar@1
|
1741 |
AMD_DEBUG3 (("got to e: "ID"\n", e)) ;
|
alpar@1
|
1742 |
|
alpar@1
|
1743 |
/* -------------------------------------------------------------
|
alpar@1
|
1744 |
* traverse the path again from i to e, and compress the path
|
alpar@1
|
1745 |
* (all nodes point to e). Path compression allows this code to
|
alpar@1
|
1746 |
* compute in O(n) time.
|
alpar@1
|
1747 |
* ------------------------------------------------------------- */
|
alpar@1
|
1748 |
|
alpar@1
|
1749 |
j = i ;
|
alpar@1
|
1750 |
/* while (j is a variable) */
|
alpar@1
|
1751 |
while (Nv [j] == 0)
|
alpar@1
|
1752 |
{
|
alpar@1
|
1753 |
jnext = Pe [j] ;
|
alpar@1
|
1754 |
AMD_DEBUG3 (("j "ID" jnext "ID"\n", j, jnext)) ;
|
alpar@1
|
1755 |
Pe [j] = e ;
|
alpar@1
|
1756 |
j = jnext ;
|
alpar@1
|
1757 |
ASSERT (j >= 0 && j < n) ;
|
alpar@1
|
1758 |
}
|
alpar@1
|
1759 |
}
|
alpar@1
|
1760 |
}
|
alpar@1
|
1761 |
|
alpar@1
|
1762 |
/* ========================================================================= */
|
alpar@1
|
1763 |
/* postorder the assembly tree */
|
alpar@1
|
1764 |
/* ========================================================================= */
|
alpar@1
|
1765 |
|
alpar@1
|
1766 |
AMD_postorder (n, Pe, Nv, Elen,
|
alpar@1
|
1767 |
W, /* output order */
|
alpar@1
|
1768 |
Head, Next, Last) ; /* workspace */
|
alpar@1
|
1769 |
|
alpar@1
|
1770 |
/* ========================================================================= */
|
alpar@1
|
1771 |
/* compute output permutation and inverse permutation */
|
alpar@1
|
1772 |
/* ========================================================================= */
|
alpar@1
|
1773 |
|
alpar@1
|
1774 |
/* W [e] = k means that element e is the kth element in the new
|
alpar@1
|
1775 |
* order. e is in the range 0 to n-1, and k is in the range 0 to
|
alpar@1
|
1776 |
* the number of elements. Use Head for inverse order. */
|
alpar@1
|
1777 |
|
alpar@1
|
1778 |
for (k = 0 ; k < n ; k++)
|
alpar@1
|
1779 |
{
|
alpar@1
|
1780 |
Head [k] = EMPTY ;
|
alpar@1
|
1781 |
Next [k] = EMPTY ;
|
alpar@1
|
1782 |
}
|
alpar@1
|
1783 |
for (e = 0 ; e < n ; e++)
|
alpar@1
|
1784 |
{
|
alpar@1
|
1785 |
k = W [e] ;
|
alpar@1
|
1786 |
ASSERT ((k == EMPTY) == (Nv [e] == 0)) ;
|
alpar@1
|
1787 |
if (k != EMPTY)
|
alpar@1
|
1788 |
{
|
alpar@1
|
1789 |
ASSERT (k >= 0 && k < n) ;
|
alpar@1
|
1790 |
Head [k] = e ;
|
alpar@1
|
1791 |
}
|
alpar@1
|
1792 |
}
|
alpar@1
|
1793 |
|
alpar@1
|
1794 |
/* construct output inverse permutation in Next,
|
alpar@1
|
1795 |
* and permutation in Last */
|
alpar@1
|
1796 |
nel = 0 ;
|
alpar@1
|
1797 |
for (k = 0 ; k < n ; k++)
|
alpar@1
|
1798 |
{
|
alpar@1
|
1799 |
e = Head [k] ;
|
alpar@1
|
1800 |
if (e == EMPTY) break ;
|
alpar@1
|
1801 |
ASSERT (e >= 0 && e < n && Nv [e] > 0) ;
|
alpar@1
|
1802 |
Next [e] = nel ;
|
alpar@1
|
1803 |
nel += Nv [e] ;
|
alpar@1
|
1804 |
}
|
alpar@1
|
1805 |
ASSERT (nel == n - ndense) ;
|
alpar@1
|
1806 |
|
alpar@1
|
1807 |
/* order non-principal variables (dense, & those merged into supervar's) */
|
alpar@1
|
1808 |
for (i = 0 ; i < n ; i++)
|
alpar@1
|
1809 |
{
|
alpar@1
|
1810 |
if (Nv [i] == 0)
|
alpar@1
|
1811 |
{
|
alpar@1
|
1812 |
e = Pe [i] ;
|
alpar@1
|
1813 |
ASSERT (e >= EMPTY && e < n) ;
|
alpar@1
|
1814 |
if (e != EMPTY)
|
alpar@1
|
1815 |
{
|
alpar@1
|
1816 |
/* This is an unordered variable that was merged
|
alpar@1
|
1817 |
* into element e via supernode detection or mass
|
alpar@1
|
1818 |
* elimination of i when e became the pivot element.
|
alpar@1
|
1819 |
* Place i in order just before e. */
|
alpar@1
|
1820 |
ASSERT (Next [i] == EMPTY && Nv [e] > 0) ;
|
alpar@1
|
1821 |
Next [i] = Next [e] ;
|
alpar@1
|
1822 |
Next [e]++ ;
|
alpar@1
|
1823 |
}
|
alpar@1
|
1824 |
else
|
alpar@1
|
1825 |
{
|
alpar@1
|
1826 |
/* This is a dense unordered variable, with no parent.
|
alpar@1
|
1827 |
* Place it last in the output order. */
|
alpar@1
|
1828 |
Next [i] = nel++ ;
|
alpar@1
|
1829 |
}
|
alpar@1
|
1830 |
}
|
alpar@1
|
1831 |
}
|
alpar@1
|
1832 |
ASSERT (nel == n) ;
|
alpar@1
|
1833 |
|
alpar@1
|
1834 |
AMD_DEBUG2 (("\n\nPerm:\n")) ;
|
alpar@1
|
1835 |
for (i = 0 ; i < n ; i++)
|
alpar@1
|
1836 |
{
|
alpar@1
|
1837 |
k = Next [i] ;
|
alpar@1
|
1838 |
ASSERT (k >= 0 && k < n) ;
|
alpar@1
|
1839 |
Last [k] = i ;
|
alpar@1
|
1840 |
AMD_DEBUG2 ((" perm ["ID"] = "ID"\n", k, i)) ;
|
alpar@1
|
1841 |
}
|
alpar@1
|
1842 |
}
|