src/amd/amd_2.c
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* ========================================================================= */
     2 /* === AMD_2 =============================================================== */
     3 /* ========================================================================= */
     4 
     5 /* ------------------------------------------------------------------------- */
     6 /* AMD, Copyright (c) Timothy A. Davis,                                      */
     7 /* Patrick R. Amestoy, and Iain S. Duff.  See ../README.txt for License.     */
     8 /* email: davis at cise.ufl.edu    CISE Department, Univ. of Florida.        */
     9 /* web: http://www.cise.ufl.edu/research/sparse/amd                          */
    10 /* ------------------------------------------------------------------------- */
    11 
    12 /* AMD_2:  performs the AMD ordering on a symmetric sparse matrix A, followed
    13  * by a postordering (via depth-first search) of the assembly tree using the
    14  * AMD_postorder routine.
    15  */
    16 
    17 #include "amd_internal.h"
    18 
    19 /* ========================================================================= */
    20 /* === clear_flag ========================================================== */
    21 /* ========================================================================= */
    22 
    23 static Int clear_flag (Int wflg, Int wbig, Int W [ ], Int n)
    24 {
    25     Int x ;
    26     if (wflg < 2 || wflg >= wbig)
    27     {
    28         for (x = 0 ; x < n ; x++)
    29         {
    30             if (W [x] != 0) W [x] = 1 ;
    31         }
    32         wflg = 2 ;
    33     }
    34     /*  at this point, W [0..n-1] < wflg holds */
    35     return (wflg) ;
    36 }
    37 
    38 
    39 /* ========================================================================= */
    40 /* === AMD_2 =============================================================== */
    41 /* ========================================================================= */
    42 
    43 GLOBAL void AMD_2
    44 (
    45     Int n,              /* A is n-by-n, where n > 0 */
    46     Int Pe [ ],         /* Pe [0..n-1]: index in Iw of row i on input */
    47     Int Iw [ ],         /* workspace of size iwlen. Iw [0..pfree-1]
    48                          * holds the matrix on input */
    49     Int Len [ ],        /* Len [0..n-1]: length for row/column i on input */
    50     Int iwlen,          /* length of Iw. iwlen >= pfree + n */
    51     Int pfree,          /* Iw [pfree ... iwlen-1] is empty on input */
    52 
    53     /* 7 size-n workspaces, not defined on input: */
    54     Int Nv [ ],         /* the size of each supernode on output */
    55     Int Next [ ],       /* the output inverse permutation */
    56     Int Last [ ],       /* the output permutation */
    57     Int Head [ ],
    58     Int Elen [ ],       /* the size columns of L for each supernode */
    59     Int Degree [ ],
    60     Int W [ ],
    61 
    62     /* control parameters and output statistics */
    63     double Control [ ], /* array of size AMD_CONTROL */
    64     double Info [ ]     /* array of size AMD_INFO */
    65 )
    66 {
    67 
    68 /*
    69  * Given a representation of the nonzero pattern of a symmetric matrix, A,
    70  * (excluding the diagonal) perform an approximate minimum (UMFPACK/MA38-style)
    71  * degree ordering to compute a pivot order such that the introduction of
    72  * nonzeros (fill-in) in the Cholesky factors A = LL' is kept low.  At each
    73  * step, the pivot selected is the one with the minimum UMFAPACK/MA38-style
    74  * upper-bound on the external degree.  This routine can optionally perform
    75  * aggresive absorption (as done by MC47B in the Harwell Subroutine
    76  * Library).
    77  *
    78  * The approximate degree algorithm implemented here is the symmetric analog of
    79  * the degree update algorithm in MA38 and UMFPACK (the Unsymmetric-pattern
    80  * MultiFrontal PACKage, both by Davis and Duff).  The routine is based on the
    81  * MA27 minimum degree ordering algorithm by Iain Duff and John Reid.
    82  *
    83  * This routine is a translation of the original AMDBAR and MC47B routines,
    84  * in Fortran, with the following modifications:
    85  *
    86  * (1) dense rows/columns are removed prior to ordering the matrix, and placed
    87  *      last in the output order.  The presence of a dense row/column can
    88  *      increase the ordering time by up to O(n^2), unless they are removed
    89  *      prior to ordering.
    90  *
    91  * (2) the minimum degree ordering is followed by a postordering (depth-first
    92  *      search) of the assembly tree.  Note that mass elimination (discussed
    93  *      below) combined with the approximate degree update can lead to the mass
    94  *      elimination of nodes with lower exact degree than the current pivot
    95  *      element.  No additional fill-in is caused in the representation of the
    96  *      Schur complement.  The mass-eliminated nodes merge with the current
    97  *      pivot element.  They are ordered prior to the current pivot element.
    98  *      Because they can have lower exact degree than the current element, the
    99  *      merger of two or more of these nodes in the current pivot element can
   100  *      lead to a single element that is not a "fundamental supernode".  The
   101  *      diagonal block can have zeros in it.  Thus, the assembly tree used here
   102  *      is not guaranteed to be the precise supernodal elemination tree (with
   103  *      "funadmental" supernodes), and the postordering performed by this
   104  *      routine is not guaranteed to be a precise postordering of the
   105  *      elimination tree.
   106  *
   107  * (3) input parameters are added, to control aggressive absorption and the
   108  *      detection of "dense" rows/columns of A.
   109  *
   110  * (4) additional statistical information is returned, such as the number of
   111  *      nonzeros in L, and the flop counts for subsequent LDL' and LU
   112  *      factorizations.  These are slight upper bounds, because of the mass
   113  *      elimination issue discussed above.
   114  *
   115  * (5) additional routines are added to interface this routine to MATLAB
   116  *      to provide a simple C-callable user-interface, to check inputs for
   117  *      errors, compute the symmetry of the pattern of A and the number of
   118  *      nonzeros in each row/column of A+A', to compute the pattern of A+A',
   119  *      to perform the assembly tree postordering, and to provide debugging
   120  *      ouput.  Many of these functions are also provided by the Fortran
   121  *      Harwell Subroutine Library routine MC47A.
   122  *
   123  * (6) both int and UF_long versions are provided.  In the descriptions below
   124  *      and integer is and int or UF_long depending on which version is
   125  *      being used.
   126 
   127  **********************************************************************
   128  ***** CAUTION:  ARGUMENTS ARE NOT CHECKED FOR ERRORS ON INPUT.  ******
   129  **********************************************************************
   130  ** If you want error checking, a more versatile input format, and a **
   131  ** simpler user interface, use amd_order or amd_l_order instead.    **
   132  ** This routine is not meant to be user-callable.                   **
   133  **********************************************************************
   134 
   135  * ----------------------------------------------------------------------------
   136  * References:
   137  * ----------------------------------------------------------------------------
   138  *
   139  *  [1] Timothy A. Davis and Iain Duff, "An unsymmetric-pattern multifrontal
   140  *      method for sparse LU factorization", SIAM J. Matrix Analysis and
   141  *      Applications, vol. 18, no. 1, pp. 140-158.  Discusses UMFPACK / MA38,
   142  *      which first introduced the approximate minimum degree used by this
   143  *      routine.
   144  *
   145  *  [2] Patrick Amestoy, Timothy A. Davis, and Iain S. Duff, "An approximate
   146  *      minimum degree ordering algorithm," SIAM J. Matrix Analysis and
   147  *      Applications, vol. 17, no. 4, pp. 886-905, 1996.  Discusses AMDBAR and
   148  *      MC47B, which are the Fortran versions of this routine.
   149  *
   150  *  [3] Alan George and Joseph Liu, "The evolution of the minimum degree
   151  *      ordering algorithm," SIAM Review, vol. 31, no. 1, pp. 1-19, 1989.
   152  *      We list below the features mentioned in that paper that this code
   153  *      includes:
   154  *
   155  *      mass elimination:
   156  *          Yes.  MA27 relied on supervariable detection for mass elimination.
   157  *
   158  *      indistinguishable nodes:
   159  *          Yes (we call these "supervariables").  This was also in the MA27
   160  *          code - although we modified the method of detecting them (the
   161  *          previous hash was the true degree, which we no longer keep track
   162  *          of).  A supervariable is a set of rows with identical nonzero
   163  *          pattern.  All variables in a supervariable are eliminated together.
   164  *          Each supervariable has as its numerical name that of one of its
   165  *          variables (its principal variable).
   166  *
   167  *      quotient graph representation:
   168  *          Yes.  We use the term "element" for the cliques formed during
   169  *          elimination.  This was also in the MA27 code.  The algorithm can
   170  *          operate in place, but it will work more efficiently if given some
   171  *          "elbow room."
   172  *
   173  *      element absorption:
   174  *          Yes.  This was also in the MA27 code.
   175  *
   176  *      external degree:
   177  *          Yes.  The MA27 code was based on the true degree.
   178  *
   179  *      incomplete degree update and multiple elimination:
   180  *          No.  This was not in MA27, either.  Our method of degree update
   181  *          within MC47B is element-based, not variable-based.  It is thus
   182  *          not well-suited for use with incomplete degree update or multiple
   183  *          elimination.
   184  *
   185  * Authors, and Copyright (C) 2004 by:
   186  * Timothy A. Davis, Patrick Amestoy, Iain S. Duff, John K. Reid.
   187  *
   188  * Acknowledgements: This work (and the UMFPACK package) was supported by the
   189  * National Science Foundation (ASC-9111263, DMS-9223088, and CCR-0203270).
   190  * The UMFPACK/MA38 approximate degree update algorithm, the unsymmetric analog
   191  * which forms the basis of AMD, was developed while Tim Davis was supported by
   192  * CERFACS (Toulouse, France) in a post-doctoral position.  This C version, and
   193  * the etree postorder, were written while Tim Davis was on sabbatical at
   194  * Stanford University and Lawrence Berkeley National Laboratory.
   195 
   196  * ----------------------------------------------------------------------------
   197  * INPUT ARGUMENTS (unaltered):
   198  * ----------------------------------------------------------------------------
   199 
   200  * n:  The matrix order.  Restriction:  n >= 1.
   201  *
   202  * iwlen:  The size of the Iw array.  On input, the matrix is stored in
   203  *      Iw [0..pfree-1].  However, Iw [0..iwlen-1] should be slightly larger
   204  *      than what is required to hold the matrix, at least iwlen >= pfree + n.
   205  *      Otherwise, excessive compressions will take place.  The recommended
   206  *      value of iwlen is 1.2 * pfree + n, which is the value used in the
   207  *      user-callable interface to this routine (amd_order.c).  The algorithm
   208  *      will not run at all if iwlen < pfree.  Restriction: iwlen >= pfree + n.
   209  *      Note that this is slightly more restrictive than the actual minimum
   210  *      (iwlen >= pfree), but AMD_2 will be very slow with no elbow room.
   211  *      Thus, this routine enforces a bare minimum elbow room of size n.
   212  *
   213  * pfree: On input the tail end of the array, Iw [pfree..iwlen-1], is empty,
   214  *      and the matrix is stored in Iw [0..pfree-1].  During execution,
   215  *      additional data is placed in Iw, and pfree is modified so that
   216  *      Iw [pfree..iwlen-1] is always the unused part of Iw.
   217  *
   218  * Control:  A double array of size AMD_CONTROL containing input parameters
   219  *      that affect how the ordering is computed.  If NULL, then default
   220  *      settings are used.
   221  *
   222  *      Control [AMD_DENSE] is used to determine whether or not a given input
   223  *      row is "dense".  A row is "dense" if the number of entries in the row
   224  *      exceeds Control [AMD_DENSE] times sqrt (n), except that rows with 16 or
   225  *      fewer entries are never considered "dense".  To turn off the detection
   226  *      of dense rows, set Control [AMD_DENSE] to a negative number, or to a
   227  *      number larger than sqrt (n).  The default value of Control [AMD_DENSE]
   228  *      is AMD_DEFAULT_DENSE, which is defined in amd.h as 10.
   229  *
   230  *      Control [AMD_AGGRESSIVE] is used to determine whether or not aggressive
   231  *      absorption is to be performed.  If nonzero, then aggressive absorption
   232  *      is performed (this is the default).
   233 
   234  * ----------------------------------------------------------------------------
   235  * INPUT/OUPUT ARGUMENTS:
   236  * ----------------------------------------------------------------------------
   237  *
   238  * Pe:  An integer array of size n.  On input, Pe [i] is the index in Iw of
   239  *      the start of row i.  Pe [i] is ignored if row i has no off-diagonal
   240  *      entries.  Thus Pe [i] must be in the range 0 to pfree-1 for non-empty
   241  *      rows.
   242  *
   243  *      During execution, it is used for both supervariables and elements:
   244  *
   245  *      Principal supervariable i:  index into Iw of the description of
   246  *          supervariable i.  A supervariable represents one or more rows of
   247  *          the matrix with identical nonzero pattern.  In this case,
   248  *          Pe [i] >= 0.
   249  *
   250  *      Non-principal supervariable i:  if i has been absorbed into another
   251  *          supervariable j, then Pe [i] = FLIP (j), where FLIP (j) is defined
   252  *          as (-(j)-2).  Row j has the same pattern as row i.  Note that j
   253  *          might later be absorbed into another supervariable j2, in which
   254  *          case Pe [i] is still FLIP (j), and Pe [j] = FLIP (j2) which is
   255  *          < EMPTY, where EMPTY is defined as (-1) in amd_internal.h.
   256  *
   257  *      Unabsorbed element e:  the index into Iw of the description of element
   258  *          e, if e has not yet been absorbed by a subsequent element.  Element
   259  *          e is created when the supervariable of the same name is selected as
   260  *          the pivot.  In this case, Pe [i] >= 0.
   261  *
   262  *      Absorbed element e:  if element e is absorbed into element e2, then
   263  *          Pe [e] = FLIP (e2).  This occurs when the pattern of e (which we
   264  *          refer to as Le) is found to be a subset of the pattern of e2 (that
   265  *          is, Le2).  In this case, Pe [i] < EMPTY.  If element e is "null"
   266  *          (it has no nonzeros outside its pivot block), then Pe [e] = EMPTY,
   267  *          and e is the root of an assembly subtree (or the whole tree if
   268  *          there is just one such root).
   269  *
   270  *      Dense variable i:  if i is "dense", then Pe [i] = EMPTY.
   271  *
   272  *      On output, Pe holds the assembly tree/forest, which implicitly
   273  *      represents a pivot order with identical fill-in as the actual order
   274  *      (via a depth-first search of the tree), as follows.  If Nv [i] > 0,
   275  *      then i represents a node in the assembly tree, and the parent of i is
   276  *      Pe [i], or EMPTY if i is a root.  If Nv [i] = 0, then (i, Pe [i])
   277  *      represents an edge in a subtree, the root of which is a node in the
   278  *      assembly tree.  Note that i refers to a row/column in the original
   279  *      matrix, not the permuted matrix.
   280  *
   281  * Info:  A double array of size AMD_INFO.  If present, (that is, not NULL),
   282  *      then statistics about the ordering are returned in the Info array.
   283  *      See amd.h for a description.
   284 
   285  * ----------------------------------------------------------------------------
   286  * INPUT/MODIFIED (undefined on output):
   287  * ----------------------------------------------------------------------------
   288  *
   289  * Len:  An integer array of size n.  On input, Len [i] holds the number of
   290  *      entries in row i of the matrix, excluding the diagonal.  The contents
   291  *      of Len are undefined on output.
   292  *
   293  * Iw:  An integer array of size iwlen.  On input, Iw [0..pfree-1] holds the
   294  *      description of each row i in the matrix.  The matrix must be symmetric,
   295  *      and both upper and lower triangular parts must be present.  The
   296  *      diagonal must not be present.  Row i is held as follows:
   297  *
   298  *          Len [i]:  the length of the row i data structure in the Iw array.
   299  *          Iw [Pe [i] ... Pe [i] + Len [i] - 1]:
   300  *              the list of column indices for nonzeros in row i (simple
   301  *              supervariables), excluding the diagonal.  All supervariables
   302  *              start with one row/column each (supervariable i is just row i).
   303  *              If Len [i] is zero on input, then Pe [i] is ignored on input.
   304  *
   305  *          Note that the rows need not be in any particular order, and there
   306  *          may be empty space between the rows.
   307  *
   308  *      During execution, the supervariable i experiences fill-in.  This is
   309  *      represented by placing in i a list of the elements that cause fill-in
   310  *      in supervariable i:
   311  *
   312  *          Len [i]:  the length of supervariable i in the Iw array.
   313  *          Iw [Pe [i] ... Pe [i] + Elen [i] - 1]:
   314  *              the list of elements that contain i.  This list is kept short
   315  *              by removing absorbed elements.
   316  *          Iw [Pe [i] + Elen [i] ... Pe [i] + Len [i] - 1]:
   317  *              the list of supervariables in i.  This list is kept short by
   318  *              removing nonprincipal variables, and any entry j that is also
   319  *              contained in at least one of the elements (j in Le) in the list
   320  *              for i (e in row i).
   321  *
   322  *      When supervariable i is selected as pivot, we create an element e of
   323  *      the same name (e=i):
   324  *
   325  *          Len [e]:  the length of element e in the Iw array.
   326  *          Iw [Pe [e] ... Pe [e] + Len [e] - 1]:
   327  *              the list of supervariables in element e.
   328  *
   329  *      An element represents the fill-in that occurs when supervariable i is
   330  *      selected as pivot (which represents the selection of row i and all
   331  *      non-principal variables whose principal variable is i).  We use the
   332  *      term Le to denote the set of all supervariables in element e.  Absorbed
   333  *      supervariables and elements are pruned from these lists when
   334  *      computationally convenient.
   335  *
   336  *  CAUTION:  THE INPUT MATRIX IS OVERWRITTEN DURING COMPUTATION.
   337  *  The contents of Iw are undefined on output.
   338 
   339  * ----------------------------------------------------------------------------
   340  * OUTPUT (need not be set on input):
   341  * ----------------------------------------------------------------------------
   342  *
   343  * Nv:  An integer array of size n.  During execution, ABS (Nv [i]) is equal to
   344  *      the number of rows that are represented by the principal supervariable
   345  *      i.  If i is a nonprincipal or dense variable, then Nv [i] = 0.
   346  *      Initially, Nv [i] = 1 for all i.  Nv [i] < 0 signifies that i is a
   347  *      principal variable in the pattern Lme of the current pivot element me.
   348  *      After element me is constructed, Nv [i] is set back to a positive
   349  *      value.
   350  *
   351  *      On output, Nv [i] holds the number of pivots represented by super
   352  *      row/column i of the original matrix, or Nv [i] = 0 for non-principal
   353  *      rows/columns.  Note that i refers to a row/column in the original
   354  *      matrix, not the permuted matrix.
   355  *
   356  * Elen:  An integer array of size n.  See the description of Iw above.  At the
   357  *      start of execution, Elen [i] is set to zero for all rows i.  During
   358  *      execution, Elen [i] is the number of elements in the list for
   359  *      supervariable i.  When e becomes an element, Elen [e] = FLIP (esize) is
   360  *      set, where esize is the size of the element (the number of pivots, plus
   361  *      the number of nonpivotal entries).  Thus Elen [e] < EMPTY.
   362  *      Elen (i) = EMPTY set when variable i becomes nonprincipal.
   363  *
   364  *      For variables, Elen (i) >= EMPTY holds until just before the
   365  *      postordering and permutation vectors are computed.  For elements,
   366  *      Elen [e] < EMPTY holds.
   367  *
   368  *      On output, Elen [i] is the degree of the row/column in the Cholesky
   369  *      factorization of the permuted matrix, corresponding to the original row
   370  *      i, if i is a super row/column.  It is equal to EMPTY if i is
   371  *      non-principal.  Note that i refers to a row/column in the original
   372  *      matrix, not the permuted matrix.
   373  *
   374  *      Note that the contents of Elen on output differ from the Fortran
   375  *      version (Elen holds the inverse permutation in the Fortran version,
   376  *      which is instead returned in the Next array in this C version,
   377  *      described below).
   378  *
   379  * Last: In a degree list, Last [i] is the supervariable preceding i, or EMPTY
   380  *      if i is the head of the list.  In a hash bucket, Last [i] is the hash
   381  *      key for i.
   382  *
   383  *      Last [Head [hash]] is also used as the head of a hash bucket if
   384  *      Head [hash] contains a degree list (see the description of Head,
   385  *      below).
   386  *
   387  *      On output, Last [0..n-1] holds the permutation.  That is, if
   388  *      i = Last [k], then row i is the kth pivot row (where k ranges from 0 to
   389  *      n-1).  Row Last [k] of A is the kth row in the permuted matrix, PAP'.
   390  *
   391  * Next: Next [i] is the supervariable following i in a link list, or EMPTY if
   392  *      i is the last in the list.  Used for two kinds of lists:  degree lists
   393  *      and hash buckets (a supervariable can be in only one kind of list at a
   394  *      time).
   395  *
   396  *      On output Next [0..n-1] holds the inverse permutation.  That is, if
   397  *      k = Next [i], then row i is the kth pivot row. Row i of A appears as
   398  *      the (Next[i])-th row in the permuted matrix, PAP'.
   399  *
   400  *      Note that the contents of Next on output differ from the Fortran
   401  *      version (Next is undefined on output in the Fortran version).
   402 
   403  * ----------------------------------------------------------------------------
   404  * LOCAL WORKSPACE (not input or output - used only during execution):
   405  * ----------------------------------------------------------------------------
   406  *
   407  * Degree:  An integer array of size n.  If i is a supervariable, then
   408  *      Degree [i] holds the current approximation of the external degree of
   409  *      row i (an upper bound).  The external degree is the number of nonzeros
   410  *      in row i, minus ABS (Nv [i]), the diagonal part.  The bound is equal to
   411  *      the exact external degree if Elen [i] is less than or equal to two.
   412  *
   413  *      We also use the term "external degree" for elements e to refer to
   414  *      |Le \ Lme|.  If e is an element, then Degree [e] is |Le|, which is the
   415  *      degree of the off-diagonal part of the element e (not including the
   416  *      diagonal part).
   417  *
   418  * Head:   An integer array of size n.  Head is used for degree lists.
   419  *      Head [deg] is the first supervariable in a degree list.  All
   420  *      supervariables i in a degree list Head [deg] have the same approximate
   421  *      degree, namely, deg = Degree [i].  If the list Head [deg] is empty then
   422  *      Head [deg] = EMPTY.
   423  *
   424  *      During supervariable detection Head [hash] also serves as a pointer to
   425  *      a hash bucket.  If Head [hash] >= 0, there is a degree list of degree
   426  *      hash.  The hash bucket head pointer is Last [Head [hash]].  If
   427  *      Head [hash] = EMPTY, then the degree list and hash bucket are both
   428  *      empty.  If Head [hash] < EMPTY, then the degree list is empty, and
   429  *      FLIP (Head [hash]) is the head of the hash bucket.  After supervariable
   430  *      detection is complete, all hash buckets are empty, and the
   431  *      (Last [Head [hash]] = EMPTY) condition is restored for the non-empty
   432  *      degree lists.
   433  *
   434  * W:  An integer array of size n.  The flag array W determines the status of
   435  *      elements and variables, and the external degree of elements.
   436  *
   437  *      for elements:
   438  *          if W [e] = 0, then the element e is absorbed.
   439  *          if W [e] >= wflg, then W [e] - wflg is the size of the set
   440  *              |Le \ Lme|, in terms of nonzeros (the sum of ABS (Nv [i]) for
   441  *              each principal variable i that is both in the pattern of
   442  *              element e and NOT in the pattern of the current pivot element,
   443  *              me).
   444  *          if wflg > W [e] > 0, then e is not absorbed and has not yet been
   445  *              seen in the scan of the element lists in the computation of
   446  *              |Le\Lme| in Scan 1 below.
   447  *
   448  *      for variables:
   449  *          during supervariable detection, if W [j] != wflg then j is
   450  *          not in the pattern of variable i.
   451  *
   452  *      The W array is initialized by setting W [i] = 1 for all i, and by
   453  *      setting wflg = 2.  It is reinitialized if wflg becomes too large (to
   454  *      ensure that wflg+n does not cause integer overflow).
   455 
   456  * ----------------------------------------------------------------------------
   457  * LOCAL INTEGERS:
   458  * ----------------------------------------------------------------------------
   459  */
   460 
   461     Int deg, degme, dext, lemax, e, elenme, eln, i, ilast, inext, j,
   462         jlast, jnext, k, knt1, knt2, knt3, lenj, ln, me, mindeg, nel, nleft,
   463         nvi, nvj, nvpiv, slenme, wbig, we, wflg, wnvi, ok, ndense, ncmpa,
   464         dense, aggressive ;
   465 
   466     unsigned Int hash ;     /* unsigned, so that hash % n is well defined.*/
   467 
   468 /*
   469  * deg:         the degree of a variable or element
   470  * degme:       size, |Lme|, of the current element, me (= Degree [me])
   471  * dext:        external degree, |Le \ Lme|, of some element e
   472  * lemax:       largest |Le| seen so far (called dmax in Fortran version)
   473  * e:           an element
   474  * elenme:      the length, Elen [me], of element list of pivotal variable
   475  * eln:         the length, Elen [...], of an element list
   476  * hash:        the computed value of the hash function
   477  * i:           a supervariable
   478  * ilast:       the entry in a link list preceding i
   479  * inext:       the entry in a link list following i
   480  * j:           a supervariable
   481  * jlast:       the entry in a link list preceding j
   482  * jnext:       the entry in a link list, or path, following j
   483  * k:           the pivot order of an element or variable
   484  * knt1:        loop counter used during element construction
   485  * knt2:        loop counter used during element construction
   486  * knt3:        loop counter used during compression
   487  * lenj:        Len [j]
   488  * ln:          length of a supervariable list
   489  * me:          current supervariable being eliminated, and the current
   490  *                  element created by eliminating that supervariable
   491  * mindeg:      current minimum degree
   492  * nel:         number of pivots selected so far
   493  * nleft:       n - nel, the number of nonpivotal rows/columns remaining
   494  * nvi:         the number of variables in a supervariable i (= Nv [i])
   495  * nvj:         the number of variables in a supervariable j (= Nv [j])
   496  * nvpiv:       number of pivots in current element
   497  * slenme:      number of variables in variable list of pivotal variable
   498  * wbig:        = INT_MAX - n for the int version, UF_long_max - n for the
   499  *                  UF_long version.  wflg is not allowed to be >= wbig.
   500  * we:          W [e]
   501  * wflg:        used for flagging the W array.  See description of Iw.
   502  * wnvi:        wflg - Nv [i]
   503  * x:           either a supervariable or an element
   504  *
   505  * ok:          true if supervariable j can be absorbed into i
   506  * ndense:      number of "dense" rows/columns
   507  * dense:       rows/columns with initial degree > dense are considered "dense"
   508  * aggressive:  true if aggressive absorption is being performed
   509  * ncmpa:       number of garbage collections
   510 
   511  * ----------------------------------------------------------------------------
   512  * LOCAL DOUBLES, used for statistical output only (except for alpha):
   513  * ----------------------------------------------------------------------------
   514  */
   515 
   516     double f, r, ndiv, s, nms_lu, nms_ldl, dmax, alpha, lnz, lnzme ;
   517 
   518 /*
   519  * f:           nvpiv
   520  * r:           degme + nvpiv
   521  * ndiv:        number of divisions for LU or LDL' factorizations
   522  * s:           number of multiply-subtract pairs for LU factorization, for the
   523  *                  current element me
   524  * nms_lu       number of multiply-subtract pairs for LU factorization
   525  * nms_ldl      number of multiply-subtract pairs for LDL' factorization
   526  * dmax:        the largest number of entries in any column of L, including the
   527  *                  diagonal
   528  * alpha:       "dense" degree ratio
   529  * lnz:         the number of nonzeros in L (excluding the diagonal)
   530  * lnzme:       the number of nonzeros in L (excl. the diagonal) for the
   531  *                  current element me
   532 
   533  * ----------------------------------------------------------------------------
   534  * LOCAL "POINTERS" (indices into the Iw array)
   535  * ----------------------------------------------------------------------------
   536 */
   537 
   538     Int p, p1, p2, p3, p4, pdst, pend, pj, pme, pme1, pme2, pn, psrc ;
   539 
   540 /*
   541  * Any parameter (Pe [...] or pfree) or local variable starting with "p" (for
   542  * Pointer) is an index into Iw, and all indices into Iw use variables starting
   543  * with "p."  The only exception to this rule is the iwlen input argument.
   544  *
   545  * p:           pointer into lots of things
   546  * p1:          Pe [i] for some variable i (start of element list)
   547  * p2:          Pe [i] + Elen [i] -  1 for some variable i
   548  * p3:          index of first supervariable in clean list
   549  * p4:          
   550  * pdst:        destination pointer, for compression
   551  * pend:        end of memory to compress
   552  * pj:          pointer into an element or variable
   553  * pme:         pointer into the current element (pme1...pme2)
   554  * pme1:        the current element, me, is stored in Iw [pme1...pme2]
   555  * pme2:        the end of the current element
   556  * pn:          pointer into a "clean" variable, also used to compress
   557  * psrc:        source pointer, for compression
   558 */
   559 
   560 /* ========================================================================= */
   561 /*  INITIALIZATIONS */
   562 /* ========================================================================= */
   563 
   564     /* Note that this restriction on iwlen is slightly more restrictive than
   565      * what is actually required in AMD_2.  AMD_2 can operate with no elbow
   566      * room at all, but it will be slow.  For better performance, at least
   567      * size-n elbow room is enforced. */
   568     ASSERT (iwlen >= pfree + n) ;
   569     ASSERT (n > 0) ;
   570 
   571     /* initialize output statistics */
   572     lnz = 0 ;
   573     ndiv = 0 ;
   574     nms_lu = 0 ;
   575     nms_ldl = 0 ;
   576     dmax = 1 ;
   577     me = EMPTY ;
   578 
   579     mindeg = 0 ;
   580     ncmpa = 0 ;
   581     nel = 0 ;
   582     lemax = 0 ;
   583 
   584     /* get control parameters */
   585     if (Control != (double *) NULL)
   586     {
   587         alpha = Control [AMD_DENSE] ;
   588         aggressive = (Control [AMD_AGGRESSIVE] != 0) ;
   589     }
   590     else
   591     {
   592         alpha = AMD_DEFAULT_DENSE ;
   593         aggressive = AMD_DEFAULT_AGGRESSIVE ;
   594     }
   595     /* Note: if alpha is NaN, this is undefined: */
   596     if (alpha < 0)
   597     {
   598         /* only remove completely dense rows/columns */
   599         dense = n-2 ;
   600     }
   601     else
   602     {
   603         dense = alpha * sqrt ((double) n) ;
   604     }
   605     dense = MAX (16, dense) ;
   606     dense = MIN (n,  dense) ;
   607     AMD_DEBUG1 (("\n\nAMD (debug), alpha %g, aggr. "ID"\n",
   608         alpha, aggressive)) ;
   609 
   610     for (i = 0 ; i < n ; i++)
   611     {
   612         Last [i] = EMPTY ;
   613         Head [i] = EMPTY ;
   614         Next [i] = EMPTY ;
   615         /* if separate Hhead array is used for hash buckets: *
   616         Hhead [i] = EMPTY ;
   617         */
   618         Nv [i] = 1 ;
   619         W [i] = 1 ;
   620         Elen [i] = 0 ;
   621         Degree [i] = Len [i] ;
   622     }
   623 
   624 #ifndef NDEBUG
   625     AMD_DEBUG1 (("\n======Nel "ID" initial\n", nel)) ;
   626     AMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next, Last,
   627                 Head, Elen, Degree, W, -1) ;
   628 #endif
   629 
   630     /* initialize wflg */
   631     wbig = Int_MAX - n ;
   632     wflg = clear_flag (0, wbig, W, n) ;
   633 
   634     /* --------------------------------------------------------------------- */
   635     /* initialize degree lists and eliminate dense and empty rows */
   636     /* --------------------------------------------------------------------- */
   637 
   638     ndense = 0 ;
   639 
   640     for (i = 0 ; i < n ; i++)
   641     {
   642         deg = Degree [i] ;
   643         ASSERT (deg >= 0 && deg < n) ;
   644         if (deg == 0)
   645         {
   646 
   647             /* -------------------------------------------------------------
   648              * we have a variable that can be eliminated at once because
   649              * there is no off-diagonal non-zero in its row.  Note that
   650              * Nv [i] = 1 for an empty variable i.  It is treated just
   651              * the same as an eliminated element i.
   652              * ------------------------------------------------------------- */
   653 
   654             Elen [i] = FLIP (1) ;
   655             nel++ ;
   656             Pe [i] = EMPTY ;
   657             W [i] = 0 ;
   658 
   659         }
   660         else if (deg > dense)
   661         {
   662 
   663             /* -------------------------------------------------------------
   664              * Dense variables are not treated as elements, but as unordered,
   665              * non-principal variables that have no parent.  They do not take
   666              * part in the postorder, since Nv [i] = 0.  Note that the Fortran
   667              * version does not have this option.
   668              * ------------------------------------------------------------- */
   669 
   670             AMD_DEBUG1 (("Dense node "ID" degree "ID"\n", i, deg)) ;
   671             ndense++ ;
   672             Nv [i] = 0 ;                /* do not postorder this node */
   673             Elen [i] = EMPTY ;
   674             nel++ ;
   675             Pe [i] = EMPTY ;
   676 
   677         }
   678         else
   679         {
   680 
   681             /* -------------------------------------------------------------
   682              * place i in the degree list corresponding to its degree
   683              * ------------------------------------------------------------- */
   684 
   685             inext = Head [deg] ;
   686             ASSERT (inext >= EMPTY && inext < n) ;
   687             if (inext != EMPTY) Last [inext] = i ;
   688             Next [i] = inext ;
   689             Head [deg] = i ;
   690 
   691         }
   692     }
   693 
   694 /* ========================================================================= */
   695 /* WHILE (selecting pivots) DO */
   696 /* ========================================================================= */
   697 
   698     while (nel < n)
   699     {
   700 
   701 #ifndef NDEBUG
   702         AMD_DEBUG1 (("\n======Nel "ID"\n", nel)) ;
   703         if (AMD_debug >= 2)
   704         {
   705             AMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next,
   706                     Last, Head, Elen, Degree, W, nel) ;
   707         }
   708 #endif
   709 
   710 /* ========================================================================= */
   711 /* GET PIVOT OF MINIMUM DEGREE */
   712 /* ========================================================================= */
   713 
   714         /* ----------------------------------------------------------------- */
   715         /* find next supervariable for elimination */
   716         /* ----------------------------------------------------------------- */
   717 
   718         ASSERT (mindeg >= 0 && mindeg < n) ;
   719         for (deg = mindeg ; deg < n ; deg++)
   720         {
   721             me = Head [deg] ;
   722             if (me != EMPTY) break ;
   723         }
   724         mindeg = deg ;
   725         ASSERT (me >= 0 && me < n) ;
   726         AMD_DEBUG1 (("=================me: "ID"\n", me)) ;
   727 
   728         /* ----------------------------------------------------------------- */
   729         /* remove chosen variable from link list */
   730         /* ----------------------------------------------------------------- */
   731 
   732         inext = Next [me] ;
   733         ASSERT (inext >= EMPTY && inext < n) ;
   734         if (inext != EMPTY) Last [inext] = EMPTY ;
   735         Head [deg] = inext ;
   736 
   737         /* ----------------------------------------------------------------- */
   738         /* me represents the elimination of pivots nel to nel+Nv[me]-1. */
   739         /* place me itself as the first in this set. */
   740         /* ----------------------------------------------------------------- */
   741 
   742         elenme = Elen [me] ;
   743         nvpiv = Nv [me] ;
   744         ASSERT (nvpiv > 0) ;
   745         nel += nvpiv ;
   746 
   747 /* ========================================================================= */
   748 /* CONSTRUCT NEW ELEMENT */
   749 /* ========================================================================= */
   750 
   751         /* -----------------------------------------------------------------
   752          * At this point, me is the pivotal supervariable.  It will be
   753          * converted into the current element.  Scan list of the pivotal
   754          * supervariable, me, setting tree pointers and constructing new list
   755          * of supervariables for the new element, me.  p is a pointer to the
   756          * current position in the old list.
   757          * ----------------------------------------------------------------- */
   758 
   759         /* flag the variable "me" as being in Lme by negating Nv [me] */
   760         Nv [me] = -nvpiv ;
   761         degme = 0 ;
   762         ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ;
   763 
   764         if (elenme == 0)
   765         {
   766 
   767             /* ------------------------------------------------------------- */
   768             /* construct the new element in place */
   769             /* ------------------------------------------------------------- */
   770 
   771             pme1 = Pe [me] ;
   772             pme2 = pme1 - 1 ;
   773 
   774             for (p = pme1 ; p <= pme1 + Len [me] - 1 ; p++)
   775             {
   776                 i = Iw [p] ;
   777                 ASSERT (i >= 0 && i < n && Nv [i] >= 0) ;
   778                 nvi = Nv [i] ;
   779                 if (nvi > 0)
   780                 {
   781 
   782                     /* ----------------------------------------------------- */
   783                     /* i is a principal variable not yet placed in Lme. */
   784                     /* store i in new list */
   785                     /* ----------------------------------------------------- */
   786 
   787                     /* flag i as being in Lme by negating Nv [i] */
   788                     degme += nvi ;
   789                     Nv [i] = -nvi ;
   790                     Iw [++pme2] = i ;
   791 
   792                     /* ----------------------------------------------------- */
   793                     /* remove variable i from degree list. */
   794                     /* ----------------------------------------------------- */
   795 
   796                     ilast = Last [i] ;
   797                     inext = Next [i] ;
   798                     ASSERT (ilast >= EMPTY && ilast < n) ;
   799                     ASSERT (inext >= EMPTY && inext < n) ;
   800                     if (inext != EMPTY) Last [inext] = ilast ;
   801                     if (ilast != EMPTY)
   802                     {
   803                         Next [ilast] = inext ;
   804                     }
   805                     else
   806                     {
   807                         /* i is at the head of the degree list */
   808                         ASSERT (Degree [i] >= 0 && Degree [i] < n) ;
   809                         Head [Degree [i]] = inext ;
   810                     }
   811                 }
   812             }
   813         }
   814         else
   815         {
   816 
   817             /* ------------------------------------------------------------- */
   818             /* construct the new element in empty space, Iw [pfree ...] */
   819             /* ------------------------------------------------------------- */
   820 
   821             p = Pe [me] ;
   822             pme1 = pfree ;
   823             slenme = Len [me] - elenme ;
   824 
   825             for (knt1 = 1 ; knt1 <= elenme + 1 ; knt1++)
   826             {
   827 
   828                 if (knt1 > elenme)
   829                 {
   830                     /* search the supervariables in me. */
   831                     e = me ;
   832                     pj = p ;
   833                     ln = slenme ;
   834                     AMD_DEBUG2 (("Search sv: "ID" "ID" "ID"\n", me,pj,ln)) ;
   835                 }
   836                 else
   837                 {
   838                     /* search the elements in me. */
   839                     e = Iw [p++] ;
   840                     ASSERT (e >= 0 && e < n) ;
   841                     pj = Pe [e] ;
   842                     ln = Len [e] ;
   843                     AMD_DEBUG2 (("Search element e "ID" in me "ID"\n", e,me)) ;
   844                     ASSERT (Elen [e] < EMPTY && W [e] > 0 && pj >= 0) ;
   845                 }
   846                 ASSERT (ln >= 0 && (ln == 0 || (pj >= 0 && pj < iwlen))) ;
   847 
   848                 /* ---------------------------------------------------------
   849                  * search for different supervariables and add them to the
   850                  * new list, compressing when necessary. this loop is
   851                  * executed once for each element in the list and once for
   852                  * all the supervariables in the list.
   853                  * --------------------------------------------------------- */
   854 
   855                 for (knt2 = 1 ; knt2 <= ln ; knt2++)
   856                 {
   857                     i = Iw [pj++] ;
   858                     ASSERT (i >= 0 && i < n && (i == me || Elen [i] >= EMPTY));
   859                     nvi = Nv [i] ;
   860                     AMD_DEBUG2 ((": "ID" "ID" "ID" "ID"\n",
   861                                 i, Elen [i], Nv [i], wflg)) ;
   862 
   863                     if (nvi > 0)
   864                     {
   865 
   866                         /* ------------------------------------------------- */
   867                         /* compress Iw, if necessary */
   868                         /* ------------------------------------------------- */
   869 
   870                         if (pfree >= iwlen)
   871                         {
   872 
   873                             AMD_DEBUG1 (("GARBAGE COLLECTION\n")) ;
   874 
   875                             /* prepare for compressing Iw by adjusting pointers
   876                              * and lengths so that the lists being searched in
   877                              * the inner and outer loops contain only the
   878                              * remaining entries. */
   879 
   880                             Pe [me] = p ;
   881                             Len [me] -= knt1 ;
   882                             /* check if nothing left of supervariable me */
   883                             if (Len [me] == 0) Pe [me] = EMPTY ;
   884                             Pe [e] = pj ;
   885                             Len [e] = ln - knt2 ;
   886                             /* nothing left of element e */
   887                             if (Len [e] == 0) Pe [e] = EMPTY ;
   888 
   889                             ncmpa++ ;   /* one more garbage collection */
   890 
   891                             /* store first entry of each object in Pe */
   892                             /* FLIP the first entry in each object */
   893                             for (j = 0 ; j < n ; j++)
   894                             {
   895                                 pn = Pe [j] ;
   896                                 if (pn >= 0)
   897                                 {
   898                                     ASSERT (pn >= 0 && pn < iwlen) ;
   899                                     Pe [j] = Iw [pn] ;
   900                                     Iw [pn] = FLIP (j) ;
   901                                 }
   902                             }
   903 
   904                             /* psrc/pdst point to source/destination */
   905                             psrc = 0 ;
   906                             pdst = 0 ;
   907                             pend = pme1 - 1 ;
   908 
   909                             while (psrc <= pend)
   910                             {
   911                                 /* search for next FLIP'd entry */
   912                                 j = FLIP (Iw [psrc++]) ;
   913                                 if (j >= 0)
   914                                 {
   915                                     AMD_DEBUG2 (("Got object j: "ID"\n", j)) ;
   916                                     Iw [pdst] = Pe [j] ;
   917                                     Pe [j] = pdst++ ;
   918                                     lenj = Len [j] ;
   919                                     /* copy from source to destination */
   920                                     for (knt3 = 0 ; knt3 <= lenj - 2 ; knt3++)
   921                                     {
   922                                         Iw [pdst++] = Iw [psrc++] ;
   923                                     }
   924                                 }
   925                             }
   926 
   927                             /* move the new partially-constructed element */
   928                             p1 = pdst ;
   929                             for (psrc = pme1 ; psrc <= pfree-1 ; psrc++)
   930                             {
   931                                 Iw [pdst++] = Iw [psrc] ;
   932                             }
   933                             pme1 = p1 ;
   934                             pfree = pdst ;
   935                             pj = Pe [e] ;
   936                             p = Pe [me] ;
   937 
   938                         }
   939 
   940                         /* ------------------------------------------------- */
   941                         /* i is a principal variable not yet placed in Lme */
   942                         /* store i in new list */
   943                         /* ------------------------------------------------- */
   944 
   945                         /* flag i as being in Lme by negating Nv [i] */
   946                         degme += nvi ;
   947                         Nv [i] = -nvi ;
   948                         Iw [pfree++] = i ;
   949                         AMD_DEBUG2 (("     s: "ID"     nv "ID"\n", i, Nv [i]));
   950 
   951                         /* ------------------------------------------------- */
   952                         /* remove variable i from degree link list */
   953                         /* ------------------------------------------------- */
   954 
   955                         ilast = Last [i] ;
   956                         inext = Next [i] ;
   957                         ASSERT (ilast >= EMPTY && ilast < n) ;
   958                         ASSERT (inext >= EMPTY && inext < n) ;
   959                         if (inext != EMPTY) Last [inext] = ilast ;
   960                         if (ilast != EMPTY)
   961                         {
   962                             Next [ilast] = inext ;
   963                         }
   964                         else
   965                         {
   966                             /* i is at the head of the degree list */
   967                             ASSERT (Degree [i] >= 0 && Degree [i] < n) ;
   968                             Head [Degree [i]] = inext ;
   969                         }
   970                     }
   971                 }
   972 
   973                 if (e != me)
   974                 {
   975                     /* set tree pointer and flag to indicate element e is
   976                      * absorbed into new element me (the parent of e is me) */
   977                     AMD_DEBUG1 ((" Element "ID" => "ID"\n", e, me)) ;
   978                     Pe [e] = FLIP (me) ;
   979                     W [e] = 0 ;
   980                 }
   981             }
   982 
   983             pme2 = pfree - 1 ;
   984         }
   985 
   986         /* ----------------------------------------------------------------- */
   987         /* me has now been converted into an element in Iw [pme1..pme2] */
   988         /* ----------------------------------------------------------------- */
   989 
   990         /* degme holds the external degree of new element */
   991         Degree [me] = degme ;
   992         Pe [me] = pme1 ;
   993         Len [me] = pme2 - pme1 + 1 ;
   994         ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ;
   995 
   996         Elen [me] = FLIP (nvpiv + degme) ;
   997         /* FLIP (Elen (me)) is now the degree of pivot (including
   998          * diagonal part). */
   999 
  1000 #ifndef NDEBUG
  1001         AMD_DEBUG2 (("New element structure: length= "ID"\n", pme2-pme1+1)) ;
  1002         for (pme = pme1 ; pme <= pme2 ; pme++) AMD_DEBUG3 ((" "ID"", Iw[pme]));
  1003         AMD_DEBUG3 (("\n")) ;
  1004 #endif
  1005 
  1006         /* ----------------------------------------------------------------- */
  1007         /* make sure that wflg is not too large. */
  1008         /* ----------------------------------------------------------------- */
  1009 
  1010         /* With the current value of wflg, wflg+n must not cause integer
  1011          * overflow */
  1012 
  1013         wflg = clear_flag (wflg, wbig, W, n) ;
  1014 
  1015 /* ========================================================================= */
  1016 /* COMPUTE (W [e] - wflg) = |Le\Lme| FOR ALL ELEMENTS */
  1017 /* ========================================================================= */
  1018 
  1019         /* -----------------------------------------------------------------
  1020          * Scan 1:  compute the external degrees of previous elements with
  1021          * respect to the current element.  That is:
  1022          *       (W [e] - wflg) = |Le \ Lme|
  1023          * for each element e that appears in any supervariable in Lme.  The
  1024          * notation Le refers to the pattern (list of supervariables) of a
  1025          * previous element e, where e is not yet absorbed, stored in
  1026          * Iw [Pe [e] + 1 ... Pe [e] + Len [e]].  The notation Lme
  1027          * refers to the pattern of the current element (stored in
  1028          * Iw [pme1..pme2]).   If aggressive absorption is enabled, and
  1029          * (W [e] - wflg) becomes zero, then the element e will be absorbed
  1030          * in Scan 2.
  1031          * ----------------------------------------------------------------- */
  1032 
  1033         AMD_DEBUG2 (("me: ")) ;
  1034         for (pme = pme1 ; pme <= pme2 ; pme++)
  1035         {
  1036             i = Iw [pme] ;
  1037             ASSERT (i >= 0 && i < n) ;
  1038             eln = Elen [i] ;
  1039             AMD_DEBUG3 ((""ID" Elen "ID": \n", i, eln)) ;
  1040             if (eln > 0)
  1041             {
  1042                 /* note that Nv [i] has been negated to denote i in Lme: */
  1043                 nvi = -Nv [i] ;
  1044                 ASSERT (nvi > 0 && Pe [i] >= 0 && Pe [i] < iwlen) ;
  1045                 wnvi = wflg - nvi ;
  1046                 for (p = Pe [i] ; p <= Pe [i] + eln - 1 ; p++)
  1047                 {
  1048                     e = Iw [p] ;
  1049                     ASSERT (e >= 0 && e < n) ;
  1050                     we = W [e] ;
  1051                     AMD_DEBUG4 (("    e "ID" we "ID" ", e, we)) ;
  1052                     if (we >= wflg)
  1053                     {
  1054                         /* unabsorbed element e has been seen in this loop */
  1055                         AMD_DEBUG4 (("    unabsorbed, first time seen")) ;
  1056                         we -= nvi ;
  1057                     }
  1058                     else if (we != 0)
  1059                     {
  1060                         /* e is an unabsorbed element */
  1061                         /* this is the first we have seen e in all of Scan 1 */
  1062                         AMD_DEBUG4 (("    unabsorbed")) ;
  1063                         we = Degree [e] + wnvi ;
  1064                     }
  1065                     AMD_DEBUG4 (("\n")) ;
  1066                     W [e] = we ;
  1067                 }
  1068             }
  1069         }
  1070         AMD_DEBUG2 (("\n")) ;
  1071 
  1072 /* ========================================================================= */
  1073 /* DEGREE UPDATE AND ELEMENT ABSORPTION */
  1074 /* ========================================================================= */
  1075 
  1076         /* -----------------------------------------------------------------
  1077          * Scan 2:  for each i in Lme, sum up the degree of Lme (which is
  1078          * degme), plus the sum of the external degrees of each Le for the
  1079          * elements e appearing within i, plus the supervariables in i.
  1080          * Place i in hash list.
  1081          * ----------------------------------------------------------------- */
  1082 
  1083         for (pme = pme1 ; pme <= pme2 ; pme++)
  1084         {
  1085             i = Iw [pme] ;
  1086             ASSERT (i >= 0 && i < n && Nv [i] < 0 && Elen [i] >= 0) ;
  1087             AMD_DEBUG2 (("Updating: i "ID" "ID" "ID"\n", i, Elen[i], Len [i]));
  1088             p1 = Pe [i] ;
  1089             p2 = p1 + Elen [i] - 1 ;
  1090             pn = p1 ;
  1091             hash = 0 ;
  1092             deg = 0 ;
  1093             ASSERT (p1 >= 0 && p1 < iwlen && p2 >= -1 && p2 < iwlen) ;
  1094 
  1095             /* ------------------------------------------------------------- */
  1096             /* scan the element list associated with supervariable i */
  1097             /* ------------------------------------------------------------- */
  1098 
  1099             /* UMFPACK/MA38-style approximate degree: */
  1100             if (aggressive)
  1101             {
  1102                 for (p = p1 ; p <= p2 ; p++)
  1103                 {
  1104                     e = Iw [p] ;
  1105                     ASSERT (e >= 0 && e < n) ;
  1106                     we = W [e] ;
  1107                     if (we != 0)
  1108                     {
  1109                         /* e is an unabsorbed element */
  1110                         /* dext = | Le \ Lme | */
  1111                         dext = we - wflg ;
  1112                         if (dext > 0)
  1113                         {
  1114                             deg += dext ;
  1115                             Iw [pn++] = e ;
  1116                             hash += e ;
  1117                             AMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ;
  1118                         }
  1119                         else
  1120                         {
  1121                             /* external degree of e is zero, absorb e into me*/
  1122                             AMD_DEBUG1 ((" Element "ID" =>"ID" (aggressive)\n",
  1123                                 e, me)) ;
  1124                             ASSERT (dext == 0) ;
  1125                             Pe [e] = FLIP (me) ;
  1126                             W [e] = 0 ;
  1127                         }
  1128                     }
  1129                 }
  1130             }
  1131             else
  1132             {
  1133                 for (p = p1 ; p <= p2 ; p++)
  1134                 {
  1135                     e = Iw [p] ;
  1136                     ASSERT (e >= 0 && e < n) ;
  1137                     we = W [e] ;
  1138                     if (we != 0)
  1139                     {
  1140                         /* e is an unabsorbed element */
  1141                         dext = we - wflg ;
  1142                         ASSERT (dext >= 0) ;
  1143                         deg += dext ;
  1144                         Iw [pn++] = e ;
  1145                         hash += e ;
  1146                         AMD_DEBUG4 (("  e: "ID" hash = "ID"\n",e,hash)) ;
  1147                     }
  1148                 }
  1149             }
  1150 
  1151             /* count the number of elements in i (including me): */
  1152             Elen [i] = pn - p1 + 1 ;
  1153 
  1154             /* ------------------------------------------------------------- */
  1155             /* scan the supervariables in the list associated with i */
  1156             /* ------------------------------------------------------------- */
  1157 
  1158             /* The bulk of the AMD run time is typically spent in this loop,
  1159              * particularly if the matrix has many dense rows that are not
  1160              * removed prior to ordering. */
  1161             p3 = pn ;
  1162             p4 = p1 + Len [i] ;
  1163             for (p = p2 + 1 ; p < p4 ; p++)
  1164             {
  1165                 j = Iw [p] ;
  1166                 ASSERT (j >= 0 && j < n) ;
  1167                 nvj = Nv [j] ;
  1168                 if (nvj > 0)
  1169                 {
  1170                     /* j is unabsorbed, and not in Lme. */
  1171                     /* add to degree and add to new list */
  1172                     deg += nvj ;
  1173                     Iw [pn++] = j ;
  1174                     hash += j ;
  1175                     AMD_DEBUG4 (("  s: "ID" hash "ID" Nv[j]= "ID"\n",
  1176                                 j, hash, nvj)) ;
  1177                 }
  1178             }
  1179 
  1180             /* ------------------------------------------------------------- */
  1181             /* update the degree and check for mass elimination */
  1182             /* ------------------------------------------------------------- */
  1183 
  1184             /* with aggressive absorption, deg==0 is identical to the
  1185              * Elen [i] == 1 && p3 == pn test, below. */
  1186             ASSERT (IMPLIES (aggressive, (deg==0) == (Elen[i]==1 && p3==pn))) ;
  1187 
  1188             if (Elen [i] == 1 && p3 == pn)
  1189             {
  1190 
  1191                 /* --------------------------------------------------------- */
  1192                 /* mass elimination */
  1193                 /* --------------------------------------------------------- */
  1194 
  1195                 /* There is nothing left of this node except for an edge to
  1196                  * the current pivot element.  Elen [i] is 1, and there are
  1197                  * no variables adjacent to node i.  Absorb i into the
  1198                  * current pivot element, me.  Note that if there are two or
  1199                  * more mass eliminations, fillin due to mass elimination is
  1200                  * possible within the nvpiv-by-nvpiv pivot block.  It is this
  1201                  * step that causes AMD's analysis to be an upper bound.
  1202                  *
  1203                  * The reason is that the selected pivot has a lower
  1204                  * approximate degree than the true degree of the two mass
  1205                  * eliminated nodes.  There is no edge between the two mass
  1206                  * eliminated nodes.  They are merged with the current pivot
  1207                  * anyway.
  1208                  *
  1209                  * No fillin occurs in the Schur complement, in any case,
  1210                  * and this effect does not decrease the quality of the
  1211                  * ordering itself, just the quality of the nonzero and
  1212                  * flop count analysis.  It also means that the post-ordering
  1213                  * is not an exact elimination tree post-ordering. */
  1214 
  1215                 AMD_DEBUG1 (("  MASS i "ID" => parent e "ID"\n", i, me)) ;
  1216                 Pe [i] = FLIP (me) ;
  1217                 nvi = -Nv [i] ;
  1218                 degme -= nvi ;
  1219                 nvpiv += nvi ;
  1220                 nel += nvi ;
  1221                 Nv [i] = 0 ;
  1222                 Elen [i] = EMPTY ;
  1223 
  1224             }
  1225             else
  1226             {
  1227 
  1228                 /* --------------------------------------------------------- */
  1229                 /* update the upper-bound degree of i */
  1230                 /* --------------------------------------------------------- */
  1231 
  1232                 /* the following degree does not yet include the size
  1233                  * of the current element, which is added later: */
  1234 
  1235                 Degree [i] = MIN (Degree [i], deg) ;
  1236 
  1237                 /* --------------------------------------------------------- */
  1238                 /* add me to the list for i */
  1239                 /* --------------------------------------------------------- */
  1240 
  1241                 /* move first supervariable to end of list */
  1242                 Iw [pn] = Iw [p3] ;
  1243                 /* move first element to end of element part of list */
  1244                 Iw [p3] = Iw [p1] ;
  1245                 /* add new element, me, to front of list. */
  1246                 Iw [p1] = me ;
  1247                 /* store the new length of the list in Len [i] */
  1248                 Len [i] = pn - p1 + 1 ;
  1249 
  1250                 /* --------------------------------------------------------- */
  1251                 /* place in hash bucket.  Save hash key of i in Last [i]. */
  1252                 /* --------------------------------------------------------- */
  1253 
  1254                 /* NOTE: this can fail if hash is negative, because the ANSI C
  1255                  * standard does not define a % b when a and/or b are negative.
  1256                  * That's why hash is defined as an unsigned Int, to avoid this
  1257                  * problem. */
  1258                 hash = hash % n ;
  1259                 ASSERT (((Int) hash) >= 0 && ((Int) hash) < n) ;
  1260 
  1261                 /* if the Hhead array is not used: */
  1262                 j = Head [hash] ;
  1263                 if (j <= EMPTY)
  1264                 {
  1265                     /* degree list is empty, hash head is FLIP (j) */
  1266                     Next [i] = FLIP (j) ;
  1267                     Head [hash] = FLIP (i) ;
  1268                 }
  1269                 else
  1270                 {
  1271                     /* degree list is not empty, use Last [Head [hash]] as
  1272                      * hash head. */
  1273                     Next [i] = Last [j] ;
  1274                     Last [j] = i ;
  1275                 }
  1276 
  1277                 /* if a separate Hhead array is used: *
  1278                 Next [i] = Hhead [hash] ;
  1279                 Hhead [hash] = i ;
  1280                 */
  1281 
  1282                 Last [i] = hash ;
  1283             }
  1284         }
  1285 
  1286         Degree [me] = degme ;
  1287 
  1288         /* ----------------------------------------------------------------- */
  1289         /* Clear the counter array, W [...], by incrementing wflg. */
  1290         /* ----------------------------------------------------------------- */
  1291 
  1292         /* make sure that wflg+n does not cause integer overflow */
  1293         lemax =  MAX (lemax, degme) ;
  1294         wflg += lemax ;
  1295         wflg = clear_flag (wflg, wbig, W, n) ;
  1296         /*  at this point, W [0..n-1] < wflg holds */
  1297 
  1298 /* ========================================================================= */
  1299 /* SUPERVARIABLE DETECTION */
  1300 /* ========================================================================= */
  1301 
  1302         AMD_DEBUG1 (("Detecting supervariables:\n")) ;
  1303         for (pme = pme1 ; pme <= pme2 ; pme++)
  1304         {
  1305             i = Iw [pme] ;
  1306             ASSERT (i >= 0 && i < n) ;
  1307             AMD_DEBUG2 (("Consider i "ID" nv "ID"\n", i, Nv [i])) ;
  1308             if (Nv [i] < 0)
  1309             {
  1310                 /* i is a principal variable in Lme */
  1311 
  1312                 /* ---------------------------------------------------------
  1313                  * examine all hash buckets with 2 or more variables.  We do
  1314                  * this by examing all unique hash keys for supervariables in
  1315                  * the pattern Lme of the current element, me
  1316                  * --------------------------------------------------------- */
  1317 
  1318                 /* let i = head of hash bucket, and empty the hash bucket */
  1319                 ASSERT (Last [i] >= 0 && Last [i] < n) ;
  1320                 hash = Last [i] ;
  1321 
  1322                 /* if Hhead array is not used: */
  1323                 j = Head [hash] ;
  1324                 if (j == EMPTY)
  1325                 {
  1326                     /* hash bucket and degree list are both empty */
  1327                     i = EMPTY ;
  1328                 }
  1329                 else if (j < EMPTY)
  1330                 {
  1331                     /* degree list is empty */
  1332                     i = FLIP (j) ;
  1333                     Head [hash] = EMPTY ;
  1334                 }
  1335                 else
  1336                 {
  1337                     /* degree list is not empty, restore Last [j] of head j */
  1338                     i = Last [j] ;
  1339                     Last [j] = EMPTY ;
  1340                 }
  1341 
  1342                 /* if separate Hhead array is used: *
  1343                 i = Hhead [hash] ;
  1344                 Hhead [hash] = EMPTY ;
  1345                 */
  1346 
  1347                 ASSERT (i >= EMPTY && i < n) ;
  1348                 AMD_DEBUG2 (("----i "ID" hash "ID"\n", i, hash)) ;
  1349 
  1350                 while (i != EMPTY && Next [i] != EMPTY)
  1351                 {
  1352 
  1353                     /* -----------------------------------------------------
  1354                      * this bucket has one or more variables following i.
  1355                      * scan all of them to see if i can absorb any entries
  1356                      * that follow i in hash bucket.  Scatter i into w.
  1357                      * ----------------------------------------------------- */
  1358 
  1359                     ln = Len [i] ;
  1360                     eln = Elen [i] ;
  1361                     ASSERT (ln >= 0 && eln >= 0) ;
  1362                     ASSERT (Pe [i] >= 0 && Pe [i] < iwlen) ;
  1363                     /* do not flag the first element in the list (me) */
  1364                     for (p = Pe [i] + 1 ; p <= Pe [i] + ln - 1 ; p++)
  1365                     {
  1366                         ASSERT (Iw [p] >= 0 && Iw [p] < n) ;
  1367                         W [Iw [p]] = wflg ;
  1368                     }
  1369 
  1370                     /* ----------------------------------------------------- */
  1371                     /* scan every other entry j following i in bucket */
  1372                     /* ----------------------------------------------------- */
  1373 
  1374                     jlast = i ;
  1375                     j = Next [i] ;
  1376                     ASSERT (j >= EMPTY && j < n) ;
  1377 
  1378                     while (j != EMPTY)
  1379                     {
  1380                         /* ------------------------------------------------- */
  1381                         /* check if j and i have identical nonzero pattern */
  1382                         /* ------------------------------------------------- */
  1383 
  1384                         AMD_DEBUG3 (("compare i "ID" and j "ID"\n", i,j)) ;
  1385 
  1386                         /* check if i and j have the same Len and Elen */
  1387                         ASSERT (Len [j] >= 0 && Elen [j] >= 0) ;
  1388                         ASSERT (Pe [j] >= 0 && Pe [j] < iwlen) ;
  1389                         ok = (Len [j] == ln) && (Elen [j] == eln) ;
  1390                         /* skip the first element in the list (me) */
  1391                         for (p = Pe [j] + 1 ; ok && p <= Pe [j] + ln - 1 ; p++)
  1392                         {
  1393                             ASSERT (Iw [p] >= 0 && Iw [p] < n) ;
  1394                             if (W [Iw [p]] != wflg) ok = 0 ;
  1395                         }
  1396                         if (ok)
  1397                         {
  1398                             /* --------------------------------------------- */
  1399                             /* found it!  j can be absorbed into i */
  1400                             /* --------------------------------------------- */
  1401 
  1402                             AMD_DEBUG1 (("found it! j "ID" => i "ID"\n", j,i));
  1403                             Pe [j] = FLIP (i) ;
  1404                             /* both Nv [i] and Nv [j] are negated since they */
  1405                             /* are in Lme, and the absolute values of each */
  1406                             /* are the number of variables in i and j: */
  1407                             Nv [i] += Nv [j] ;
  1408                             Nv [j] = 0 ;
  1409                             Elen [j] = EMPTY ;
  1410                             /* delete j from hash bucket */
  1411                             ASSERT (j != Next [j]) ;
  1412                             j = Next [j] ;
  1413                             Next [jlast] = j ;
  1414 
  1415                         }
  1416                         else
  1417                         {
  1418                             /* j cannot be absorbed into i */
  1419                             jlast = j ;
  1420                             ASSERT (j != Next [j]) ;
  1421                             j = Next [j] ;
  1422                         }
  1423                         ASSERT (j >= EMPTY && j < n) ;
  1424                     }
  1425 
  1426                     /* -----------------------------------------------------
  1427                      * no more variables can be absorbed into i
  1428                      * go to next i in bucket and clear flag array
  1429                      * ----------------------------------------------------- */
  1430 
  1431                     wflg++ ;
  1432                     i = Next [i] ;
  1433                     ASSERT (i >= EMPTY && i < n) ;
  1434 
  1435                 }
  1436             }
  1437         }
  1438         AMD_DEBUG2 (("detect done\n")) ;
  1439 
  1440 /* ========================================================================= */
  1441 /* RESTORE DEGREE LISTS AND REMOVE NONPRINCIPAL SUPERVARIABLES FROM ELEMENT */
  1442 /* ========================================================================= */
  1443 
  1444         p = pme1 ;
  1445         nleft = n - nel ;
  1446         for (pme = pme1 ; pme <= pme2 ; pme++)
  1447         {
  1448             i = Iw [pme] ;
  1449             ASSERT (i >= 0 && i < n) ;
  1450             nvi = -Nv [i] ;
  1451             AMD_DEBUG3 (("Restore i "ID" "ID"\n", i, nvi)) ;
  1452             if (nvi > 0)
  1453             {
  1454                 /* i is a principal variable in Lme */
  1455                 /* restore Nv [i] to signify that i is principal */
  1456                 Nv [i] = nvi ;
  1457 
  1458                 /* --------------------------------------------------------- */
  1459                 /* compute the external degree (add size of current element) */
  1460                 /* --------------------------------------------------------- */
  1461 
  1462                 deg = Degree [i] + degme - nvi ;
  1463                 deg = MIN (deg, nleft - nvi) ;
  1464                 ASSERT (IMPLIES (aggressive, deg > 0) && deg >= 0 && deg < n) ;
  1465 
  1466                 /* --------------------------------------------------------- */
  1467                 /* place the supervariable at the head of the degree list */
  1468                 /* --------------------------------------------------------- */
  1469 
  1470                 inext = Head [deg] ;
  1471                 ASSERT (inext >= EMPTY && inext < n) ;
  1472                 if (inext != EMPTY) Last [inext] = i ;
  1473                 Next [i] = inext ;
  1474                 Last [i] = EMPTY ;
  1475                 Head [deg] = i ;
  1476 
  1477                 /* --------------------------------------------------------- */
  1478                 /* save the new degree, and find the minimum degree */
  1479                 /* --------------------------------------------------------- */
  1480 
  1481                 mindeg = MIN (mindeg, deg) ;
  1482                 Degree [i] = deg ;
  1483 
  1484                 /* --------------------------------------------------------- */
  1485                 /* place the supervariable in the element pattern */
  1486                 /* --------------------------------------------------------- */
  1487 
  1488                 Iw [p++] = i ;
  1489 
  1490             }
  1491         }
  1492         AMD_DEBUG2 (("restore done\n")) ;
  1493 
  1494 /* ========================================================================= */
  1495 /* FINALIZE THE NEW ELEMENT */
  1496 /* ========================================================================= */
  1497 
  1498         AMD_DEBUG2 (("ME = "ID" DONE\n", me)) ;
  1499         Nv [me] = nvpiv ;
  1500         /* save the length of the list for the new element me */
  1501         Len [me] = p - pme1 ;
  1502         if (Len [me] == 0)
  1503         {
  1504             /* there is nothing left of the current pivot element */
  1505             /* it is a root of the assembly tree */
  1506             Pe [me] = EMPTY ;
  1507             W [me] = 0 ;
  1508         }
  1509         if (elenme != 0)
  1510         {
  1511             /* element was not constructed in place: deallocate part of */
  1512             /* it since newly nonprincipal variables may have been removed */
  1513             pfree = p ;
  1514         }
  1515 
  1516         /* The new element has nvpiv pivots and the size of the contribution
  1517          * block for a multifrontal method is degme-by-degme, not including
  1518          * the "dense" rows/columns.  If the "dense" rows/columns are included,
  1519          * the frontal matrix is no larger than
  1520          * (degme+ndense)-by-(degme+ndense).
  1521          */
  1522 
  1523         if (Info != (double *) NULL)
  1524         {
  1525             f = nvpiv ;
  1526             r = degme + ndense ;
  1527             dmax = MAX (dmax, f + r) ;
  1528 
  1529             /* number of nonzeros in L (excluding the diagonal) */
  1530             lnzme = f*r + (f-1)*f/2 ;
  1531             lnz += lnzme ;
  1532 
  1533             /* number of divide operations for LDL' and for LU */
  1534             ndiv += lnzme ;
  1535 
  1536             /* number of multiply-subtract pairs for LU */
  1537             s = f*r*r + r*(f-1)*f + (f-1)*f*(2*f-1)/6 ;
  1538             nms_lu += s ;
  1539 
  1540             /* number of multiply-subtract pairs for LDL' */
  1541             nms_ldl += (s + lnzme)/2 ;
  1542         }
  1543 
  1544 #ifndef NDEBUG
  1545         AMD_DEBUG2 (("finalize done nel "ID" n "ID"\n   ::::\n", nel, n)) ;
  1546         for (pme = Pe [me] ; pme <= Pe [me] + Len [me] - 1 ; pme++)
  1547         {
  1548               AMD_DEBUG3 ((" "ID"", Iw [pme])) ;
  1549         }
  1550         AMD_DEBUG3 (("\n")) ;
  1551 #endif
  1552 
  1553     }
  1554 
  1555 /* ========================================================================= */
  1556 /* DONE SELECTING PIVOTS */
  1557 /* ========================================================================= */
  1558 
  1559     if (Info != (double *) NULL)
  1560     {
  1561 
  1562         /* count the work to factorize the ndense-by-ndense submatrix */
  1563         f = ndense ;
  1564         dmax = MAX (dmax, (double) ndense) ;
  1565 
  1566         /* number of nonzeros in L (excluding the diagonal) */
  1567         lnzme = (f-1)*f/2 ;
  1568         lnz += lnzme ;
  1569 
  1570         /* number of divide operations for LDL' and for LU */
  1571         ndiv += lnzme ;
  1572 
  1573         /* number of multiply-subtract pairs for LU */
  1574         s = (f-1)*f*(2*f-1)/6 ;
  1575         nms_lu += s ;
  1576 
  1577         /* number of multiply-subtract pairs for LDL' */
  1578         nms_ldl += (s + lnzme)/2 ;
  1579 
  1580         /* number of nz's in L (excl. diagonal) */
  1581         Info [AMD_LNZ] = lnz ;
  1582 
  1583         /* number of divide ops for LU and LDL' */
  1584         Info [AMD_NDIV] = ndiv ;
  1585 
  1586         /* number of multiply-subtract pairs for LDL' */
  1587         Info [AMD_NMULTSUBS_LDL] = nms_ldl ;
  1588 
  1589         /* number of multiply-subtract pairs for LU */
  1590         Info [AMD_NMULTSUBS_LU] = nms_lu ;
  1591 
  1592         /* number of "dense" rows/columns */
  1593         Info [AMD_NDENSE] = ndense ;
  1594 
  1595         /* largest front is dmax-by-dmax */
  1596         Info [AMD_DMAX] = dmax ;
  1597 
  1598         /* number of garbage collections in AMD */
  1599         Info [AMD_NCMPA] = ncmpa ;
  1600 
  1601         /* successful ordering */
  1602         Info [AMD_STATUS] = AMD_OK ;
  1603     }
  1604 
  1605 /* ========================================================================= */
  1606 /* POST-ORDERING */
  1607 /* ========================================================================= */
  1608 
  1609 /* -------------------------------------------------------------------------
  1610  * Variables at this point:
  1611  *
  1612  * Pe: holds the elimination tree.  The parent of j is FLIP (Pe [j]),
  1613  *      or EMPTY if j is a root.  The tree holds both elements and
  1614  *      non-principal (unordered) variables absorbed into them.
  1615  *      Dense variables are non-principal and unordered.
  1616  *
  1617  * Elen: holds the size of each element, including the diagonal part.
  1618  *      FLIP (Elen [e]) > 0 if e is an element.  For unordered
  1619  *      variables i, Elen [i] is EMPTY.
  1620  *
  1621  * Nv: Nv [e] > 0 is the number of pivots represented by the element e.
  1622  *      For unordered variables i, Nv [i] is zero.
  1623  *
  1624  * Contents no longer needed:
  1625  *      W, Iw, Len, Degree, Head, Next, Last.
  1626  *
  1627  * The matrix itself has been destroyed.
  1628  *
  1629  * n: the size of the matrix.
  1630  * No other scalars needed (pfree, iwlen, etc.)
  1631  * ------------------------------------------------------------------------- */
  1632 
  1633     /* restore Pe */
  1634     for (i = 0 ; i < n ; i++)
  1635     {
  1636         Pe [i] = FLIP (Pe [i]) ;
  1637     }
  1638 
  1639     /* restore Elen, for output information, and for postordering */
  1640     for (i = 0 ; i < n ; i++)
  1641     {
  1642         Elen [i] = FLIP (Elen [i]) ;
  1643     }
  1644 
  1645 /* Now the parent of j is Pe [j], or EMPTY if j is a root.  Elen [e] > 0
  1646  * is the size of element e.  Elen [i] is EMPTY for unordered variable i. */
  1647 
  1648 #ifndef NDEBUG
  1649     AMD_DEBUG2 (("\nTree:\n")) ;
  1650     for (i = 0 ; i < n ; i++)
  1651     {
  1652         AMD_DEBUG2 ((" "ID" parent: "ID"   ", i, Pe [i])) ;
  1653         ASSERT (Pe [i] >= EMPTY && Pe [i] < n) ;
  1654         if (Nv [i] > 0)
  1655         {
  1656             /* this is an element */
  1657             e = i ;
  1658             AMD_DEBUG2 ((" element, size is "ID"\n", Elen [i])) ;
  1659             ASSERT (Elen [e] > 0) ;
  1660         }
  1661         AMD_DEBUG2 (("\n")) ;
  1662     }
  1663     AMD_DEBUG2 (("\nelements:\n")) ;
  1664     for (e = 0 ; e < n ; e++)
  1665     {
  1666         if (Nv [e] > 0)
  1667         {
  1668             AMD_DEBUG3 (("Element e= "ID" size "ID" nv "ID" \n", e,
  1669                 Elen [e], Nv [e])) ;
  1670         }
  1671     }
  1672     AMD_DEBUG2 (("\nvariables:\n")) ;
  1673     for (i = 0 ; i < n ; i++)
  1674     {
  1675         Int cnt ;
  1676         if (Nv [i] == 0)
  1677         {
  1678             AMD_DEBUG3 (("i unordered: "ID"\n", i)) ;
  1679             j = Pe [i] ;
  1680             cnt = 0 ;
  1681             AMD_DEBUG3 (("  j: "ID"\n", j)) ;
  1682             if (j == EMPTY)
  1683             {
  1684                 AMD_DEBUG3 (("  i is a dense variable\n")) ;
  1685             }
  1686             else
  1687             {
  1688                 ASSERT (j >= 0 && j < n) ;
  1689                 while (Nv [j] == 0)
  1690                 {
  1691                     AMD_DEBUG3 (("      j : "ID"\n", j)) ;
  1692                     j = Pe [j] ;
  1693                     AMD_DEBUG3 (("      j:: "ID"\n", j)) ;
  1694                     cnt++ ;
  1695                     if (cnt > n) break ;
  1696                 }
  1697                 e = j ;
  1698                 AMD_DEBUG3 (("  got to e: "ID"\n", e)) ;
  1699             }
  1700         }
  1701     }
  1702 #endif
  1703 
  1704 /* ========================================================================= */
  1705 /* compress the paths of the variables */
  1706 /* ========================================================================= */
  1707 
  1708     for (i = 0 ; i < n ; i++)
  1709     {
  1710         if (Nv [i] == 0)
  1711         {
  1712 
  1713             /* -------------------------------------------------------------
  1714              * i is an un-ordered row.  Traverse the tree from i until
  1715              * reaching an element, e.  The element, e, was the principal
  1716              * supervariable of i and all nodes in the path from i to when e
  1717              * was selected as pivot.
  1718              * ------------------------------------------------------------- */
  1719 
  1720             AMD_DEBUG1 (("Path compression, i unordered: "ID"\n", i)) ;
  1721             j = Pe [i] ;
  1722             ASSERT (j >= EMPTY && j < n) ;
  1723             AMD_DEBUG3 (("      j: "ID"\n", j)) ;
  1724             if (j == EMPTY)
  1725             {
  1726                 /* Skip a dense variable.  It has no parent. */
  1727                 AMD_DEBUG3 (("      i is a dense variable\n")) ;
  1728                 continue ;
  1729             }
  1730 
  1731             /* while (j is a variable) */
  1732             while (Nv [j] == 0)
  1733             {
  1734                 AMD_DEBUG3 (("          j : "ID"\n", j)) ;
  1735                 j = Pe [j] ;
  1736                 AMD_DEBUG3 (("          j:: "ID"\n", j)) ;
  1737                 ASSERT (j >= 0 && j < n) ;
  1738             }
  1739             /* got to an element e */
  1740             e = j ;
  1741             AMD_DEBUG3 (("got to e: "ID"\n", e)) ;
  1742 
  1743             /* -------------------------------------------------------------
  1744              * traverse the path again from i to e, and compress the path
  1745              * (all nodes point to e).  Path compression allows this code to
  1746              * compute in O(n) time.
  1747              * ------------------------------------------------------------- */
  1748 
  1749             j = i ;
  1750             /* while (j is a variable) */
  1751             while (Nv [j] == 0)
  1752             {
  1753                 jnext = Pe [j] ;
  1754                 AMD_DEBUG3 (("j "ID" jnext "ID"\n", j, jnext)) ;
  1755                 Pe [j] = e ;
  1756                 j = jnext ;
  1757                 ASSERT (j >= 0 && j < n) ;
  1758             }
  1759         }
  1760     }
  1761 
  1762 /* ========================================================================= */
  1763 /* postorder the assembly tree */
  1764 /* ========================================================================= */
  1765 
  1766     AMD_postorder (n, Pe, Nv, Elen,
  1767         W,                      /* output order */
  1768         Head, Next, Last) ;     /* workspace */
  1769 
  1770 /* ========================================================================= */
  1771 /* compute output permutation and inverse permutation */
  1772 /* ========================================================================= */
  1773 
  1774     /* W [e] = k means that element e is the kth element in the new
  1775      * order.  e is in the range 0 to n-1, and k is in the range 0 to
  1776      * the number of elements.  Use Head for inverse order. */
  1777 
  1778     for (k = 0 ; k < n ; k++)
  1779     {
  1780         Head [k] = EMPTY ;
  1781         Next [k] = EMPTY ;
  1782     }
  1783     for (e = 0 ; e < n ; e++)
  1784     {
  1785         k = W [e] ;
  1786         ASSERT ((k == EMPTY) == (Nv [e] == 0)) ;
  1787         if (k != EMPTY)
  1788         {
  1789             ASSERT (k >= 0 && k < n) ;
  1790             Head [k] = e ;
  1791         }
  1792     }
  1793 
  1794     /* construct output inverse permutation in Next,
  1795      * and permutation in Last */
  1796     nel = 0 ;
  1797     for (k = 0 ; k < n ; k++)
  1798     {
  1799         e = Head [k] ;
  1800         if (e == EMPTY) break ;
  1801         ASSERT (e >= 0 && e < n && Nv [e] > 0) ;
  1802         Next [e] = nel ;
  1803         nel += Nv [e] ;
  1804     }
  1805     ASSERT (nel == n - ndense) ;
  1806 
  1807     /* order non-principal variables (dense, & those merged into supervar's) */
  1808     for (i = 0 ; i < n ; i++)
  1809     {
  1810         if (Nv [i] == 0)
  1811         {
  1812             e = Pe [i] ;
  1813             ASSERT (e >= EMPTY && e < n) ;
  1814             if (e != EMPTY)
  1815             {
  1816                 /* This is an unordered variable that was merged
  1817                  * into element e via supernode detection or mass
  1818                  * elimination of i when e became the pivot element.
  1819                  * Place i in order just before e. */
  1820                 ASSERT (Next [i] == EMPTY && Nv [e] > 0) ;
  1821                 Next [i] = Next [e] ;
  1822                 Next [e]++ ;
  1823             }
  1824             else
  1825             {
  1826                 /* This is a dense unordered variable, with no parent.
  1827                  * Place it last in the output order. */
  1828                 Next [i] = nel++ ;
  1829             }
  1830         }
  1831     }
  1832     ASSERT (nel == n) ;
  1833 
  1834     AMD_DEBUG2 (("\n\nPerm:\n")) ;
  1835     for (i = 0 ; i < n ; i++)
  1836     {
  1837         k = Next [i] ;
  1838         ASSERT (k >= 0 && k < n) ;
  1839         Last [k] = i ;
  1840         AMD_DEBUG2 (("   perm ["ID"] = "ID"\n", k, i)) ;
  1841     }
  1842 }