src/glpmat.c
changeset 1 c445c931472f
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/glpmat.c	Mon Dec 06 13:09:21 2010 +0100
     1.3 @@ -0,0 +1,924 @@
     1.4 +/* glpmat.c */
     1.5 +
     1.6 +/***********************************************************************
     1.7 +*  This code is part of GLPK (GNU Linear Programming Kit).
     1.8 +*
     1.9 +*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
    1.10 +*  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
    1.11 +*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
    1.12 +*  E-mail: <mao@gnu.org>.
    1.13 +*
    1.14 +*  GLPK is free software: you can redistribute it and/or modify it
    1.15 +*  under the terms of the GNU General Public License as published by
    1.16 +*  the Free Software Foundation, either version 3 of the License, or
    1.17 +*  (at your option) any later version.
    1.18 +*
    1.19 +*  GLPK is distributed in the hope that it will be useful, but WITHOUT
    1.20 +*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    1.21 +*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    1.22 +*  License for more details.
    1.23 +*
    1.24 +*  You should have received a copy of the GNU General Public License
    1.25 +*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    1.26 +***********************************************************************/
    1.27 +
    1.28 +#include "glpenv.h"
    1.29 +#include "glpmat.h"
    1.30 +#include "glpqmd.h"
    1.31 +#include "amd/amd.h"
    1.32 +#include "colamd/colamd.h"
    1.33 +
    1.34 +/*----------------------------------------------------------------------
    1.35 +-- check_fvs - check sparse vector in full-vector storage format.
    1.36 +--
    1.37 +-- SYNOPSIS
    1.38 +--
    1.39 +-- #include "glpmat.h"
    1.40 +-- int check_fvs(int n, int nnz, int ind[], double vec[]);
    1.41 +--
    1.42 +-- DESCRIPTION
    1.43 +--
    1.44 +-- The routine check_fvs checks if a given vector of dimension n in
    1.45 +-- full-vector storage format has correct representation.
    1.46 +--
    1.47 +-- RETURNS
    1.48 +--
    1.49 +-- The routine returns one of the following codes:
    1.50 +--
    1.51 +-- 0 - the vector is correct;
    1.52 +-- 1 - the number of elements (n) is negative;
    1.53 +-- 2 - the number of non-zero elements (nnz) is negative;
    1.54 +-- 3 - some element index is out of range;
    1.55 +-- 4 - some element index is duplicate;
    1.56 +-- 5 - some non-zero element is out of pattern. */
    1.57 +
    1.58 +int check_fvs(int n, int nnz, int ind[], double vec[])
    1.59 +{     int i, t, ret, *flag = NULL;
    1.60 +      /* check the number of elements */
    1.61 +      if (n < 0)
    1.62 +      {  ret = 1;
    1.63 +         goto done;
    1.64 +      }
    1.65 +      /* check the number of non-zero elements */
    1.66 +      if (nnz < 0)
    1.67 +      {  ret = 2;
    1.68 +         goto done;
    1.69 +      }
    1.70 +      /* check vector indices */
    1.71 +      flag = xcalloc(1+n, sizeof(int));
    1.72 +      for (i = 1; i <= n; i++) flag[i] = 0;
    1.73 +      for (t = 1; t <= nnz; t++)
    1.74 +      {  i = ind[t];
    1.75 +         if (!(1 <= i && i <= n))
    1.76 +         {  ret = 3;
    1.77 +            goto done;
    1.78 +         }
    1.79 +         if (flag[i])
    1.80 +         {  ret = 4;
    1.81 +            goto done;
    1.82 +         }
    1.83 +         flag[i] = 1;
    1.84 +      }
    1.85 +      /* check vector elements */
    1.86 +      for (i = 1; i <= n; i++)
    1.87 +      {  if (!flag[i] && vec[i] != 0.0)
    1.88 +         {  ret = 5;
    1.89 +            goto done;
    1.90 +         }
    1.91 +      }
    1.92 +      /* the vector is ok */
    1.93 +      ret = 0;
    1.94 +done: if (flag != NULL) xfree(flag);
    1.95 +      return ret;
    1.96 +}
    1.97 +
    1.98 +/*----------------------------------------------------------------------
    1.99 +-- check_pattern - check pattern of sparse matrix.
   1.100 +--
   1.101 +-- SYNOPSIS
   1.102 +--
   1.103 +-- #include "glpmat.h"
   1.104 +-- int check_pattern(int m, int n, int A_ptr[], int A_ind[]);
   1.105 +--
   1.106 +-- DESCRIPTION
   1.107 +--
   1.108 +-- The routine check_pattern checks the pattern of a given mxn matrix
   1.109 +-- in storage-by-rows format.
   1.110 +--
   1.111 +-- RETURNS
   1.112 +--
   1.113 +-- The routine returns one of the following codes:
   1.114 +--
   1.115 +-- 0 - the pattern is correct;
   1.116 +-- 1 - the number of rows (m) is negative;
   1.117 +-- 2 - the number of columns (n) is negative;
   1.118 +-- 3 - A_ptr[1] is not 1;
   1.119 +-- 4 - some column index is out of range;
   1.120 +-- 5 - some column indices are duplicate. */
   1.121 +
   1.122 +int check_pattern(int m, int n, int A_ptr[], int A_ind[])
   1.123 +{     int i, j, ptr, ret, *flag = NULL;
   1.124 +      /* check the number of rows */
   1.125 +      if (m < 0)
   1.126 +      {  ret = 1;
   1.127 +         goto done;
   1.128 +      }
   1.129 +      /* check the number of columns */
   1.130 +      if (n < 0)
   1.131 +      {  ret = 2;
   1.132 +         goto done;
   1.133 +      }
   1.134 +      /* check location A_ptr[1] */
   1.135 +      if (A_ptr[1] != 1)
   1.136 +      {  ret = 3;
   1.137 +         goto done;
   1.138 +      }
   1.139 +      /* check row patterns */
   1.140 +      flag = xcalloc(1+n, sizeof(int));
   1.141 +      for (j = 1; j <= n; j++) flag[j] = 0;
   1.142 +      for (i = 1; i <= m; i++)
   1.143 +      {  /* check pattern of row i */
   1.144 +         for (ptr = A_ptr[i]; ptr < A_ptr[i+1]; ptr++)
   1.145 +         {  j = A_ind[ptr];
   1.146 +            /* check column index */
   1.147 +            if (!(1 <= j && j <= n))
   1.148 +            {  ret = 4;
   1.149 +               goto done;
   1.150 +            }
   1.151 +            /* check for duplication */
   1.152 +            if (flag[j])
   1.153 +            {  ret = 5;
   1.154 +               goto done;
   1.155 +            }
   1.156 +            flag[j] = 1;
   1.157 +         }
   1.158 +         /* clear flags */
   1.159 +         for (ptr = A_ptr[i]; ptr < A_ptr[i+1]; ptr++)
   1.160 +         {  j = A_ind[ptr];
   1.161 +            flag[j] = 0;
   1.162 +         }
   1.163 +      }
   1.164 +      /* the pattern is ok */
   1.165 +      ret = 0;
   1.166 +done: if (flag != NULL) xfree(flag);
   1.167 +      return ret;
   1.168 +}
   1.169 +
   1.170 +/*----------------------------------------------------------------------
   1.171 +-- transpose - transpose sparse matrix.
   1.172 +--
   1.173 +-- *Synopsis*
   1.174 +--
   1.175 +-- #include "glpmat.h"
   1.176 +-- void transpose(int m, int n, int A_ptr[], int A_ind[],
   1.177 +--    double A_val[], int AT_ptr[], int AT_ind[], double AT_val[]);
   1.178 +--
   1.179 +-- *Description*
   1.180 +--
   1.181 +-- For a given mxn sparse matrix A the routine transpose builds a nxm
   1.182 +-- sparse matrix A' which is a matrix transposed to A.
   1.183 +--
   1.184 +-- The arrays A_ptr, A_ind, and A_val specify a given mxn matrix A to
   1.185 +-- be transposed in storage-by-rows format. The parameter A_val can be
   1.186 +-- NULL, in which case numeric values are not copied. The arrays A_ptr,
   1.187 +-- A_ind, and A_val are not changed on exit.
   1.188 +--
   1.189 +-- On entry the arrays AT_ptr, AT_ind, and AT_val must be allocated,
   1.190 +-- but their content is ignored. On exit the routine stores a resultant
   1.191 +-- nxm matrix A' in these arrays in storage-by-rows format. Note that
   1.192 +-- if the parameter A_val is NULL, the array AT_val is not used.
   1.193 +--
   1.194 +-- The routine transpose has a side effect that elements in rows of the
   1.195 +-- resultant matrix A' follow in ascending their column indices. */
   1.196 +
   1.197 +void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[],
   1.198 +      int AT_ptr[], int AT_ind[], double AT_val[])
   1.199 +{     int i, j, t, beg, end, pos, len;
   1.200 +      /* determine row lengths of resultant matrix */
   1.201 +      for (j = 1; j <= n; j++) AT_ptr[j] = 0;
   1.202 +      for (i = 1; i <= m; i++)
   1.203 +      {  beg = A_ptr[i], end = A_ptr[i+1];
   1.204 +         for (t = beg; t < end; t++) AT_ptr[A_ind[t]]++;
   1.205 +      }
   1.206 +      /* set up row pointers of resultant matrix */
   1.207 +      pos = 1;
   1.208 +      for (j = 1; j <= n; j++)
   1.209 +         len = AT_ptr[j], pos += len, AT_ptr[j] = pos;
   1.210 +      AT_ptr[n+1] = pos;
   1.211 +      /* build resultant matrix */
   1.212 +      for (i = m; i >= 1; i--)
   1.213 +      {  beg = A_ptr[i], end = A_ptr[i+1];
   1.214 +         for (t = beg; t < end; t++)
   1.215 +         {  pos = --AT_ptr[A_ind[t]];
   1.216 +            AT_ind[pos] = i;
   1.217 +            if (A_val != NULL) AT_val[pos] = A_val[t];
   1.218 +         }
   1.219 +      }
   1.220 +      return;
   1.221 +}
   1.222 +
   1.223 +/*----------------------------------------------------------------------
   1.224 +-- adat_symbolic - compute S = P*A*D*A'*P' (symbolic phase).
   1.225 +--
   1.226 +-- *Synopsis*
   1.227 +--
   1.228 +-- #include "glpmat.h"
   1.229 +-- int *adat_symbolic(int m, int n, int P_per[], int A_ptr[],
   1.230 +--    int A_ind[], int S_ptr[]);
   1.231 +--
   1.232 +-- *Description*
   1.233 +--
   1.234 +-- The routine adat_symbolic implements the symbolic phase to compute
   1.235 +-- symmetric matrix S = P*A*D*A'*P', where P is a permutation matrix,
   1.236 +-- A is a given sparse matrix, D is a diagonal matrix, A' is a matrix
   1.237 +-- transposed to A, P' is an inverse of P.
   1.238 +--
   1.239 +-- The parameter m is the number of rows in A and the order of P.
   1.240 +--
   1.241 +-- The parameter n is the number of columns in A and the order of D.
   1.242 +--
   1.243 +-- The array P_per specifies permutation matrix P. It is not changed on
   1.244 +-- exit.
   1.245 +--
   1.246 +-- The arrays A_ptr and A_ind specify the pattern of matrix A. They are
   1.247 +-- not changed on exit.
   1.248 +--
   1.249 +-- On exit the routine stores the pattern of upper triangular part of
   1.250 +-- matrix S without diagonal elements in the arrays S_ptr and S_ind in
   1.251 +-- storage-by-rows format. The array S_ptr should be allocated on entry,
   1.252 +-- however, its content is ignored. The array S_ind is allocated by the
   1.253 +-- routine itself which returns a pointer to it.
   1.254 +--
   1.255 +-- *Returns*
   1.256 +--
   1.257 +-- The routine returns a pointer to the array S_ind. */
   1.258 +
   1.259 +int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[],
   1.260 +      int S_ptr[])
   1.261 +{     int i, j, t, ii, jj, tt, k, size, len;
   1.262 +      int *S_ind, *AT_ptr, *AT_ind, *ind, *map, *temp;
   1.263 +      /* build the pattern of A', which is a matrix transposed to A, to
   1.264 +         efficiently access A in column-wise manner */
   1.265 +      AT_ptr = xcalloc(1+n+1, sizeof(int));
   1.266 +      AT_ind = xcalloc(A_ptr[m+1], sizeof(int));
   1.267 +      transpose(m, n, A_ptr, A_ind, NULL, AT_ptr, AT_ind, NULL);
   1.268 +      /* allocate the array S_ind */
   1.269 +      size = A_ptr[m+1] - 1;
   1.270 +      if (size < m) size = m;
   1.271 +      S_ind = xcalloc(1+size, sizeof(int));
   1.272 +      /* allocate and initialize working arrays */
   1.273 +      ind = xcalloc(1+m, sizeof(int));
   1.274 +      map = xcalloc(1+m, sizeof(int));
   1.275 +      for (jj = 1; jj <= m; jj++) map[jj] = 0;
   1.276 +      /* compute pattern of S; note that symbolically S = B*B', where
   1.277 +         B = P*A, B' is matrix transposed to B */
   1.278 +      S_ptr[1] = 1;
   1.279 +      for (ii = 1; ii <= m; ii++)
   1.280 +      {  /* compute pattern of ii-th row of S */
   1.281 +         len = 0;
   1.282 +         i = P_per[ii]; /* i-th row of A = ii-th row of B */
   1.283 +         for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
   1.284 +         {  k = A_ind[t];
   1.285 +            /* walk through k-th column of A */
   1.286 +            for (tt = AT_ptr[k]; tt < AT_ptr[k+1]; tt++)
   1.287 +            {  j = AT_ind[tt];
   1.288 +               jj = P_per[m+j]; /* j-th row of A = jj-th row of B */
   1.289 +               /* a[i,k] != 0 and a[j,k] != 0 ergo s[ii,jj] != 0 */
   1.290 +               if (ii < jj && !map[jj]) ind[++len] = jj, map[jj] = 1;
   1.291 +            }
   1.292 +         }
   1.293 +         /* now (ind) is pattern of ii-th row of S */
   1.294 +         S_ptr[ii+1] = S_ptr[ii] + len;
   1.295 +         /* at least (S_ptr[ii+1] - 1) locations should be available in
   1.296 +            the array S_ind */
   1.297 +         if (S_ptr[ii+1] - 1 > size)
   1.298 +         {  temp = S_ind;
   1.299 +            size += size;
   1.300 +            S_ind = xcalloc(1+size, sizeof(int));
   1.301 +            memcpy(&S_ind[1], &temp[1], (S_ptr[ii] - 1) * sizeof(int));
   1.302 +            xfree(temp);
   1.303 +         }
   1.304 +         xassert(S_ptr[ii+1] - 1 <= size);
   1.305 +         /* (ii-th row of S) := (ind) */
   1.306 +         memcpy(&S_ind[S_ptr[ii]], &ind[1], len * sizeof(int));
   1.307 +         /* clear the row pattern map */
   1.308 +         for (t = 1; t <= len; t++) map[ind[t]] = 0;
   1.309 +      }
   1.310 +      /* free working arrays */
   1.311 +      xfree(AT_ptr);
   1.312 +      xfree(AT_ind);
   1.313 +      xfree(ind);
   1.314 +      xfree(map);
   1.315 +      /* reallocate the array S_ind to free unused locations */
   1.316 +      temp = S_ind;
   1.317 +      size = S_ptr[m+1] - 1;
   1.318 +      S_ind = xcalloc(1+size, sizeof(int));
   1.319 +      memcpy(&S_ind[1], &temp[1], size * sizeof(int));
   1.320 +      xfree(temp);
   1.321 +      return S_ind;
   1.322 +}
   1.323 +
   1.324 +/*----------------------------------------------------------------------
   1.325 +-- adat_numeric - compute S = P*A*D*A'*P' (numeric phase).
   1.326 +--
   1.327 +-- *Synopsis*
   1.328 +--
   1.329 +-- #include "glpmat.h"
   1.330 +-- void adat_numeric(int m, int n, int P_per[],
   1.331 +--    int A_ptr[], int A_ind[], double A_val[], double D_diag[],
   1.332 +--    int S_ptr[], int S_ind[], double S_val[], double S_diag[]);
   1.333 +--
   1.334 +-- *Description*
   1.335 +--
   1.336 +-- The routine adat_numeric implements the numeric phase to compute
   1.337 +-- symmetric matrix S = P*A*D*A'*P', where P is a permutation matrix,
   1.338 +-- A is a given sparse matrix, D is a diagonal matrix, A' is a matrix
   1.339 +-- transposed to A, P' is an inverse of P.
   1.340 +--
   1.341 +-- The parameter m is the number of rows in A and the order of P.
   1.342 +--
   1.343 +-- The parameter n is the number of columns in A and the order of D.
   1.344 +--
   1.345 +-- The matrix P is specified in the array P_per, which is not changed
   1.346 +-- on exit.
   1.347 +--
   1.348 +-- The matrix A is specified in the arrays A_ptr, A_ind, and A_val in
   1.349 +-- storage-by-rows format. These arrays are not changed on exit.
   1.350 +--
   1.351 +-- Diagonal elements of the matrix D are specified in the array D_diag,
   1.352 +-- where D_diag[0] is not used, D_diag[i] = d[i,i] for i = 1, ..., n.
   1.353 +-- The array D_diag is not changed on exit.
   1.354 +--
   1.355 +-- The pattern of the upper triangular part of the matrix S without
   1.356 +-- diagonal elements (previously computed by the routine adat_symbolic)
   1.357 +-- is specified in the arrays S_ptr and S_ind, which are not changed on
   1.358 +-- exit. Numeric values of non-diagonal elements of S are stored in
   1.359 +-- corresponding locations of the array S_val, and values of diagonal
   1.360 +-- elements of S are stored in locations S_diag[1], ..., S_diag[n]. */
   1.361 +
   1.362 +void adat_numeric(int m, int n, int P_per[],
   1.363 +      int A_ptr[], int A_ind[], double A_val[], double D_diag[],
   1.364 +      int S_ptr[], int S_ind[], double S_val[], double S_diag[])
   1.365 +{     int i, j, t, ii, jj, tt, beg, end, beg1, end1, k;
   1.366 +      double sum, *work;
   1.367 +      work = xcalloc(1+n, sizeof(double));
   1.368 +      for (j = 1; j <= n; j++) work[j] = 0.0;
   1.369 +      /* compute S = B*D*B', where B = P*A, B' is a matrix transposed
   1.370 +         to B */
   1.371 +      for (ii = 1; ii <= m; ii++)
   1.372 +      {  i = P_per[ii]; /* i-th row of A = ii-th row of B */
   1.373 +         /* (work) := (i-th row of A) */
   1.374 +         beg = A_ptr[i], end = A_ptr[i+1];
   1.375 +         for (t = beg; t < end; t++)
   1.376 +            work[A_ind[t]] = A_val[t];
   1.377 +         /* compute ii-th row of S */
   1.378 +         beg = S_ptr[ii], end = S_ptr[ii+1];
   1.379 +         for (t = beg; t < end; t++)
   1.380 +         {  jj = S_ind[t];
   1.381 +            j = P_per[jj]; /* j-th row of A = jj-th row of B */
   1.382 +            /* s[ii,jj] := sum a[i,k] * d[k,k] * a[j,k] */
   1.383 +            sum = 0.0;
   1.384 +            beg1 = A_ptr[j], end1 = A_ptr[j+1];
   1.385 +            for (tt = beg1; tt < end1; tt++)
   1.386 +            {  k = A_ind[tt];
   1.387 +               sum += work[k] * D_diag[k] * A_val[tt];
   1.388 +            }
   1.389 +            S_val[t] = sum;
   1.390 +         }
   1.391 +         /* s[ii,ii] := sum a[i,k] * d[k,k] * a[i,k] */
   1.392 +         sum = 0.0;
   1.393 +         beg = A_ptr[i], end = A_ptr[i+1];
   1.394 +         for (t = beg; t < end; t++)
   1.395 +         {  k = A_ind[t];
   1.396 +            sum += A_val[t] * D_diag[k] * A_val[t];
   1.397 +            work[k] = 0.0;
   1.398 +         }
   1.399 +         S_diag[ii] = sum;
   1.400 +      }
   1.401 +      xfree(work);
   1.402 +      return;
   1.403 +}
   1.404 +
   1.405 +/*----------------------------------------------------------------------
   1.406 +-- min_degree - minimum degree ordering.
   1.407 +--
   1.408 +-- *Synopsis*
   1.409 +--
   1.410 +-- #include "glpmat.h"
   1.411 +-- void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]);
   1.412 +--
   1.413 +-- *Description*
   1.414 +--
   1.415 +-- The routine min_degree uses the minimum degree ordering algorithm
   1.416 +-- to find a permutation matrix P for a given sparse symmetric positive
   1.417 +-- matrix A which minimizes the number of non-zeros in upper triangular
   1.418 +-- factor U for Cholesky factorization P*A*P' = U'*U.
   1.419 +--
   1.420 +-- The parameter n is the order of matrices A and P.
   1.421 +--
   1.422 +-- The pattern of the given matrix A is specified on entry in the arrays
   1.423 +-- A_ptr and A_ind in storage-by-rows format. Only the upper triangular
   1.424 +-- part without diagonal elements (which all are assumed to be non-zero)
   1.425 +-- should be specified as if A were upper triangular. The arrays A_ptr
   1.426 +-- and A_ind are not changed on exit.
   1.427 +--
   1.428 +-- The permutation matrix P is stored by the routine in the array P_per
   1.429 +-- on exit.
   1.430 +--
   1.431 +-- *Algorithm*
   1.432 +--
   1.433 +-- The routine min_degree is based on some subroutines from the package
   1.434 +-- SPARSPAK (see comments in the module glpqmd). */
   1.435 +
   1.436 +void min_degree(int n, int A_ptr[], int A_ind[], int P_per[])
   1.437 +{     int i, j, ne, t, pos, len;
   1.438 +      int *xadj, *adjncy, *deg, *marker, *rchset, *nbrhd, *qsize,
   1.439 +         *qlink, nofsub;
   1.440 +      /* determine number of non-zeros in complete pattern */
   1.441 +      ne = A_ptr[n+1] - 1;
   1.442 +      ne += ne;
   1.443 +      /* allocate working arrays */
   1.444 +      xadj = xcalloc(1+n+1, sizeof(int));
   1.445 +      adjncy = xcalloc(1+ne, sizeof(int));
   1.446 +      deg = xcalloc(1+n, sizeof(int));
   1.447 +      marker = xcalloc(1+n, sizeof(int));
   1.448 +      rchset = xcalloc(1+n, sizeof(int));
   1.449 +      nbrhd = xcalloc(1+n, sizeof(int));
   1.450 +      qsize = xcalloc(1+n, sizeof(int));
   1.451 +      qlink = xcalloc(1+n, sizeof(int));
   1.452 +      /* determine row lengths in complete pattern */
   1.453 +      for (i = 1; i <= n; i++) xadj[i] = 0;
   1.454 +      for (i = 1; i <= n; i++)
   1.455 +      {  for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
   1.456 +         {  j = A_ind[t];
   1.457 +            xassert(i < j && j <= n);
   1.458 +            xadj[i]++, xadj[j]++;
   1.459 +         }
   1.460 +      }
   1.461 +      /* set up row pointers for complete pattern */
   1.462 +      pos = 1;
   1.463 +      for (i = 1; i <= n; i++)
   1.464 +         len = xadj[i], pos += len, xadj[i] = pos;
   1.465 +      xadj[n+1] = pos;
   1.466 +      xassert(pos - 1 == ne);
   1.467 +      /* construct complete pattern */
   1.468 +      for (i = 1; i <= n; i++)
   1.469 +      {  for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
   1.470 +         {  j = A_ind[t];
   1.471 +            adjncy[--xadj[i]] = j, adjncy[--xadj[j]] = i;
   1.472 +         }
   1.473 +      }
   1.474 +      /* call the main minimimum degree ordering routine */
   1.475 +      genqmd(&n, xadj, adjncy, P_per, P_per + n, deg, marker, rchset,
   1.476 +         nbrhd, qsize, qlink, &nofsub);
   1.477 +      /* make sure that permutation matrix P is correct */
   1.478 +      for (i = 1; i <= n; i++)
   1.479 +      {  j = P_per[i];
   1.480 +         xassert(1 <= j && j <= n);
   1.481 +         xassert(P_per[n+j] == i);
   1.482 +      }
   1.483 +      /* free working arrays */
   1.484 +      xfree(xadj);
   1.485 +      xfree(adjncy);
   1.486 +      xfree(deg);
   1.487 +      xfree(marker);
   1.488 +      xfree(rchset);
   1.489 +      xfree(nbrhd);
   1.490 +      xfree(qsize);
   1.491 +      xfree(qlink);
   1.492 +      return;
   1.493 +}
   1.494 +
   1.495 +/**********************************************************************/
   1.496 +
   1.497 +void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[])
   1.498 +{     /* approximate minimum degree ordering (AMD) */
   1.499 +      int k, ret;
   1.500 +      double Control[AMD_CONTROL], Info[AMD_INFO];
   1.501 +      /* get the default parameters */
   1.502 +      amd_defaults(Control);
   1.503 +#if 0
   1.504 +      /* and print them */
   1.505 +      amd_control(Control);
   1.506 +#endif
   1.507 +      /* make all indices 0-based */
   1.508 +      for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]--;
   1.509 +      for (k = 1; k <= n+1; k++) A_ptr[k]--;
   1.510 +      /* call the ordering routine */
   1.511 +      ret = amd_order(n, &A_ptr[1], &A_ind[1], &P_per[1], Control, Info)
   1.512 +         ;
   1.513 +#if 0
   1.514 +      amd_info(Info);
   1.515 +#endif
   1.516 +      xassert(ret == AMD_OK || ret == AMD_OK_BUT_JUMBLED);
   1.517 +      /* retsore 1-based indices */
   1.518 +      for (k = 1; k <= n+1; k++) A_ptr[k]++;
   1.519 +      for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]++;
   1.520 +      /* patch up permutation matrix */
   1.521 +      memset(&P_per[n+1], 0, n * sizeof(int));
   1.522 +      for (k = 1; k <= n; k++)
   1.523 +      {  P_per[k]++;
   1.524 +         xassert(1 <= P_per[k] && P_per[k] <= n);
   1.525 +         xassert(P_per[n+P_per[k]] == 0);
   1.526 +         P_per[n+P_per[k]] = k;
   1.527 +      }
   1.528 +      return;
   1.529 +}
   1.530 +
   1.531 +/**********************************************************************/
   1.532 +
   1.533 +static void *allocate(size_t n, size_t size)
   1.534 +{     void *ptr;
   1.535 +      ptr = xcalloc(n, size);
   1.536 +      memset(ptr, 0, n * size);
   1.537 +      return ptr;
   1.538 +}
   1.539 +
   1.540 +static void release(void *ptr)
   1.541 +{     xfree(ptr);
   1.542 +      return;
   1.543 +}
   1.544 +
   1.545 +void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[])
   1.546 +{     /* approximate minimum degree ordering (SYMAMD) */
   1.547 +      int k, ok;
   1.548 +      int stats[COLAMD_STATS];
   1.549 +      /* make all indices 0-based */
   1.550 +      for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]--;
   1.551 +      for (k = 1; k <= n+1; k++) A_ptr[k]--;
   1.552 +      /* call the ordering routine */
   1.553 +      ok = symamd(n, &A_ind[1], &A_ptr[1], &P_per[1], NULL, stats,
   1.554 +         allocate, release);
   1.555 +#if 0
   1.556 +      symamd_report(stats);
   1.557 +#endif
   1.558 +      xassert(ok);
   1.559 +      /* restore 1-based indices */
   1.560 +      for (k = 1; k <= n+1; k++) A_ptr[k]++;
   1.561 +      for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]++;
   1.562 +      /* patch up permutation matrix */
   1.563 +      memset(&P_per[n+1], 0, n * sizeof(int));
   1.564 +      for (k = 1; k <= n; k++)
   1.565 +      {  P_per[k]++;
   1.566 +         xassert(1 <= P_per[k] && P_per[k] <= n);
   1.567 +         xassert(P_per[n+P_per[k]] == 0);
   1.568 +         P_per[n+P_per[k]] = k;
   1.569 +      }
   1.570 +      return;
   1.571 +}
   1.572 +
   1.573 +/*----------------------------------------------------------------------
   1.574 +-- chol_symbolic - compute Cholesky factorization (symbolic phase).
   1.575 +--
   1.576 +-- *Synopsis*
   1.577 +--
   1.578 +-- #include "glpmat.h"
   1.579 +-- int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]);
   1.580 +--
   1.581 +-- *Description*
   1.582 +--
   1.583 +-- The routine chol_symbolic implements the symbolic phase of Cholesky
   1.584 +-- factorization A = U'*U, where A is a given sparse symmetric positive
   1.585 +-- definite matrix, U is a resultant upper triangular factor, U' is a
   1.586 +-- matrix transposed to U.
   1.587 +--
   1.588 +-- The parameter n is the order of matrices A and U.
   1.589 +--
   1.590 +-- The pattern of the given matrix A is specified on entry in the arrays
   1.591 +-- A_ptr and A_ind in storage-by-rows format. Only the upper triangular
   1.592 +-- part without diagonal elements (which all are assumed to be non-zero)
   1.593 +-- should be specified as if A were upper triangular. The arrays A_ptr
   1.594 +-- and A_ind are not changed on exit.
   1.595 +--
   1.596 +-- The pattern of the matrix U without diagonal elements (which all are
   1.597 +-- assumed to be non-zero) is stored on exit from the routine in the
   1.598 +-- arrays U_ptr and U_ind in storage-by-rows format. The array U_ptr
   1.599 +-- should be allocated on entry, however, its content is ignored. The
   1.600 +-- array U_ind is allocated by the routine which returns a pointer to it
   1.601 +-- on exit.
   1.602 +--
   1.603 +-- *Returns*
   1.604 +--
   1.605 +-- The routine returns a pointer to the array U_ind.
   1.606 +--
   1.607 +-- *Method*
   1.608 +--
   1.609 +-- The routine chol_symbolic computes the pattern of the matrix U in a
   1.610 +-- row-wise manner. No pivoting is used.
   1.611 +--
   1.612 +-- It is known that to compute the pattern of row k of the matrix U we
   1.613 +-- need to merge the pattern of row k of the matrix A and the patterns
   1.614 +-- of each row i of U, where u[i,k] is non-zero (these rows are already
   1.615 +-- computed and placed above row k).
   1.616 +--
   1.617 +-- However, to reduce the number of rows to be merged the routine uses
   1.618 +-- an advanced algorithm proposed in:
   1.619 +--
   1.620 +-- D.J.Rose, R.E.Tarjan, and G.S.Lueker. Algorithmic aspects of vertex
   1.621 +-- elimination on graphs. SIAM J. Comput. 5, 1976, 266-83.
   1.622 +--
   1.623 +-- The authors of the cited paper show that we have the same result if
   1.624 +-- we merge row k of the matrix A and such rows of the matrix U (among
   1.625 +-- rows 1, ..., k-1) whose leftmost non-diagonal non-zero element is
   1.626 +-- placed in k-th column. This feature signficantly reduces the number
   1.627 +-- of rows to be merged, especially on the final steps, where rows of
   1.628 +-- the matrix U become quite dense.
   1.629 +--
   1.630 +-- To determine rows, which should be merged on k-th step, for a fixed
   1.631 +-- time the routine uses linked lists of row numbers of the matrix U.
   1.632 +-- Location head[k] contains the number of a first row, whose leftmost
   1.633 +-- non-diagonal non-zero element is placed in column k, and location
   1.634 +-- next[i] contains the number of a next row with the same property as
   1.635 +-- row i. */
   1.636 +
   1.637 +int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[])
   1.638 +{     int i, j, k, t, len, size, beg, end, min_j, *U_ind, *head, *next,
   1.639 +         *ind, *map, *temp;
   1.640 +      /* initially we assume that on computing the pattern of U fill-in
   1.641 +         will double the number of non-zeros in A */
   1.642 +      size = A_ptr[n+1] - 1;
   1.643 +      if (size < n) size = n;
   1.644 +      size += size;
   1.645 +      U_ind = xcalloc(1+size, sizeof(int));
   1.646 +      /* allocate and initialize working arrays */
   1.647 +      head = xcalloc(1+n, sizeof(int));
   1.648 +      for (i = 1; i <= n; i++) head[i] = 0;
   1.649 +      next = xcalloc(1+n, sizeof(int));
   1.650 +      ind = xcalloc(1+n, sizeof(int));
   1.651 +      map = xcalloc(1+n, sizeof(int));
   1.652 +      for (j = 1; j <= n; j++) map[j] = 0;
   1.653 +      /* compute the pattern of matrix U */
   1.654 +      U_ptr[1] = 1;
   1.655 +      for (k = 1; k <= n; k++)
   1.656 +      {  /* compute the pattern of k-th row of U, which is the union of
   1.657 +            k-th row of A and those rows of U (among 1, ..., k-1) whose
   1.658 +            leftmost non-diagonal non-zero is placed in k-th column */
   1.659 +         /* (ind) := (k-th row of A) */
   1.660 +         len = A_ptr[k+1] - A_ptr[k];
   1.661 +         memcpy(&ind[1], &A_ind[A_ptr[k]], len * sizeof(int));
   1.662 +         for (t = 1; t <= len; t++)
   1.663 +         {  j = ind[t];
   1.664 +            xassert(k < j && j <= n);
   1.665 +            map[j] = 1;
   1.666 +         }
   1.667 +         /* walk through rows of U whose leftmost non-diagonal non-zero
   1.668 +            is placed in k-th column */
   1.669 +         for (i = head[k]; i != 0; i = next[i])
   1.670 +         {  /* (ind) := (ind) union (i-th row of U) */
   1.671 +            beg = U_ptr[i], end = U_ptr[i+1];
   1.672 +            for (t = beg; t < end; t++)
   1.673 +            {  j = U_ind[t];
   1.674 +               if (j > k && !map[j]) ind[++len] = j, map[j] = 1;
   1.675 +            }
   1.676 +         }
   1.677 +         /* now (ind) is the pattern of k-th row of U */
   1.678 +         U_ptr[k+1] = U_ptr[k] + len;
   1.679 +         /* at least (U_ptr[k+1] - 1) locations should be available in
   1.680 +            the array U_ind */
   1.681 +         if (U_ptr[k+1] - 1 > size)
   1.682 +         {  temp = U_ind;
   1.683 +            size += size;
   1.684 +            U_ind = xcalloc(1+size, sizeof(int));
   1.685 +            memcpy(&U_ind[1], &temp[1], (U_ptr[k] - 1) * sizeof(int));
   1.686 +            xfree(temp);
   1.687 +         }
   1.688 +         xassert(U_ptr[k+1] - 1 <= size);
   1.689 +         /* (k-th row of U) := (ind) */
   1.690 +         memcpy(&U_ind[U_ptr[k]], &ind[1], len * sizeof(int));
   1.691 +         /* determine column index of leftmost non-diagonal non-zero in
   1.692 +            k-th row of U and clear the row pattern map */
   1.693 +         min_j = n + 1;
   1.694 +         for (t = 1; t <= len; t++)
   1.695 +         {  j = ind[t], map[j] = 0;
   1.696 +            if (min_j > j) min_j = j;
   1.697 +         }
   1.698 +         /* include k-th row into corresponding linked list */
   1.699 +         if (min_j <= n) next[k] = head[min_j], head[min_j] = k;
   1.700 +      }
   1.701 +      /* free working arrays */
   1.702 +      xfree(head);
   1.703 +      xfree(next);
   1.704 +      xfree(ind);
   1.705 +      xfree(map);
   1.706 +      /* reallocate the array U_ind to free unused locations */
   1.707 +      temp = U_ind;
   1.708 +      size = U_ptr[n+1] - 1;
   1.709 +      U_ind = xcalloc(1+size, sizeof(int));
   1.710 +      memcpy(&U_ind[1], &temp[1], size * sizeof(int));
   1.711 +      xfree(temp);
   1.712 +      return U_ind;
   1.713 +}
   1.714 +
   1.715 +/*----------------------------------------------------------------------
   1.716 +-- chol_numeric - compute Cholesky factorization (numeric phase).
   1.717 +--
   1.718 +-- *Synopsis*
   1.719 +--
   1.720 +-- #include "glpmat.h"
   1.721 +-- int chol_numeric(int n,
   1.722 +--    int A_ptr[], int A_ind[], double A_val[], double A_diag[],
   1.723 +--    int U_ptr[], int U_ind[], double U_val[], double U_diag[]);
   1.724 +--
   1.725 +-- *Description*
   1.726 +--
   1.727 +-- The routine chol_symbolic implements the numeric phase of Cholesky
   1.728 +-- factorization A = U'*U, where A is a given sparse symmetric positive
   1.729 +-- definite matrix, U is a resultant upper triangular factor, U' is a
   1.730 +-- matrix transposed to U.
   1.731 +--
   1.732 +-- The parameter n is the order of matrices A and U.
   1.733 +--
   1.734 +-- Upper triangular part of the matrix A without diagonal elements is
   1.735 +-- specified in the arrays A_ptr, A_ind, and A_val in storage-by-rows
   1.736 +-- format. Diagonal elements of A are specified in the array A_diag,
   1.737 +-- where A_diag[0] is not used, A_diag[i] = a[i,i] for i = 1, ..., n.
   1.738 +-- The arrays A_ptr, A_ind, A_val, and A_diag are not changed on exit.
   1.739 +--
   1.740 +-- The pattern of the matrix U without diagonal elements (previously
   1.741 +-- computed with the routine chol_symbolic) is specified in the arrays
   1.742 +-- U_ptr and U_ind, which are not changed on exit. Numeric values of
   1.743 +-- non-diagonal elements of U are stored in corresponding locations of
   1.744 +-- the array U_val, and values of diagonal elements of U are stored in
   1.745 +-- locations U_diag[1], ..., U_diag[n].
   1.746 +--
   1.747 +-- *Returns*
   1.748 +--
   1.749 +-- The routine returns the number of non-positive diagonal elements of
   1.750 +-- the matrix U which have been replaced by a huge positive number (see
   1.751 +-- the method description below). Zero return code means the matrix A
   1.752 +-- has been successfully factorized.
   1.753 +--
   1.754 +-- *Method*
   1.755 +--
   1.756 +-- The routine chol_numeric computes the matrix U in a row-wise manner
   1.757 +-- using standard gaussian elimination technique. No pivoting is used.
   1.758 +--
   1.759 +-- Initially the routine sets U = A, and before k-th elimination step
   1.760 +-- the matrix U is the following:
   1.761 +--
   1.762 +--       1       k         n
   1.763 +--    1  x x x x x x x x x x
   1.764 +--       . x x x x x x x x x
   1.765 +--       . . x x x x x x x x
   1.766 +--       . . . x x x x x x x
   1.767 +--    k  . . . . * * * * * *
   1.768 +--       . . . . * * * * * *
   1.769 +--       . . . . * * * * * *
   1.770 +--       . . . . * * * * * *
   1.771 +--       . . . . * * * * * *
   1.772 +--    n  . . . . * * * * * *
   1.773 +--
   1.774 +-- where 'x' are elements of already computed rows, '*' are elements of
   1.775 +-- the active submatrix. (Note that the lower triangular part of the
   1.776 +-- active submatrix being symmetric is not stored and diagonal elements
   1.777 +-- are stored separately in the array U_diag.)
   1.778 +--
   1.779 +-- The matrix A is assumed to be positive definite. However, if it is
   1.780 +-- close to semi-definite, on some elimination step a pivot u[k,k] may
   1.781 +-- happen to be non-positive due to round-off errors. In this case the
   1.782 +-- routine uses a technique proposed in:
   1.783 +--
   1.784 +-- S.J.Wright. The Cholesky factorization in interior-point and barrier
   1.785 +-- methods. Preprint MCS-P600-0596, Mathematics and Computer Science
   1.786 +-- Division, Argonne National Laboratory, Argonne, Ill., May 1996.
   1.787 +--
   1.788 +-- The routine just replaces non-positive u[k,k] by a huge positive
   1.789 +-- number. This involves non-diagonal elements in k-th row of U to be
   1.790 +-- close to zero that, in turn, involves k-th component of a solution
   1.791 +-- vector to be close to zero. Note, however, that this technique works
   1.792 +-- only if the system A*x = b is consistent. */
   1.793 +
   1.794 +int chol_numeric(int n,
   1.795 +      int A_ptr[], int A_ind[], double A_val[], double A_diag[],
   1.796 +      int U_ptr[], int U_ind[], double U_val[], double U_diag[])
   1.797 +{     int i, j, k, t, t1, beg, end, beg1, end1, count = 0;
   1.798 +      double ukk, uki, *work;
   1.799 +      work = xcalloc(1+n, sizeof(double));
   1.800 +      for (j = 1; j <= n; j++) work[j] = 0.0;
   1.801 +      /* U := (upper triangle of A) */
   1.802 +      /* note that the upper traingle of A is a subset of U */
   1.803 +      for (i = 1; i <= n; i++)
   1.804 +      {  beg = A_ptr[i], end = A_ptr[i+1];
   1.805 +         for (t = beg; t < end; t++)
   1.806 +            j = A_ind[t], work[j] = A_val[t];
   1.807 +         beg = U_ptr[i], end = U_ptr[i+1];
   1.808 +         for (t = beg; t < end; t++)
   1.809 +            j = U_ind[t], U_val[t] = work[j], work[j] = 0.0;
   1.810 +         U_diag[i] = A_diag[i];
   1.811 +      }
   1.812 +      /* main elimination loop */
   1.813 +      for (k = 1; k <= n; k++)
   1.814 +      {  /* transform k-th row of U */
   1.815 +         ukk = U_diag[k];
   1.816 +         if (ukk > 0.0)
   1.817 +            U_diag[k] = ukk = sqrt(ukk);
   1.818 +         else
   1.819 +            U_diag[k] = ukk = DBL_MAX, count++;
   1.820 +         /* (work) := (transformed k-th row) */
   1.821 +         beg = U_ptr[k], end = U_ptr[k+1];
   1.822 +         for (t = beg; t < end; t++)
   1.823 +            work[U_ind[t]] = (U_val[t] /= ukk);
   1.824 +         /* transform other rows of U */
   1.825 +         for (t = beg; t < end; t++)
   1.826 +         {  i = U_ind[t];
   1.827 +            xassert(i > k);
   1.828 +            /* (i-th row) := (i-th row) - u[k,i] * (k-th row) */
   1.829 +            uki = work[i];
   1.830 +            beg1 = U_ptr[i], end1 = U_ptr[i+1];
   1.831 +            for (t1 = beg1; t1 < end1; t1++)
   1.832 +               U_val[t1] -= uki * work[U_ind[t1]];
   1.833 +            U_diag[i] -= uki * uki;
   1.834 +         }
   1.835 +         /* (work) := 0 */
   1.836 +         for (t = beg; t < end; t++)
   1.837 +            work[U_ind[t]] = 0.0;
   1.838 +      }
   1.839 +      xfree(work);
   1.840 +      return count;
   1.841 +}
   1.842 +
   1.843 +/*----------------------------------------------------------------------
   1.844 +-- u_solve - solve upper triangular system U*x = b.
   1.845 +--
   1.846 +-- *Synopsis*
   1.847 +--
   1.848 +-- #include "glpmat.h"
   1.849 +-- void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
   1.850 +--    double U_diag[], double x[]);
   1.851 +--
   1.852 +-- *Description*
   1.853 +--
   1.854 +-- The routine u_solve solves an linear system U*x = b, where U is an
   1.855 +-- upper triangular matrix.
   1.856 +--
   1.857 +-- The parameter n is the order of matrix U.
   1.858 +--
   1.859 +-- The matrix U without diagonal elements is specified in the arrays
   1.860 +-- U_ptr, U_ind, and U_val in storage-by-rows format. Diagonal elements
   1.861 +-- of U are specified in the array U_diag, where U_diag[0] is not used,
   1.862 +-- U_diag[i] = u[i,i] for i = 1, ..., n. All these four arrays are not
   1.863 +-- changed on exit.
   1.864 +--
   1.865 +-- The right-hand side vector b is specified on entry in the array x,
   1.866 +-- where x[0] is not used, and x[i] = b[i] for i = 1, ..., n. On exit
   1.867 +-- the routine stores computed components of the vector of unknowns x
   1.868 +-- in the array x in the same manner. */
   1.869 +
   1.870 +void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
   1.871 +      double U_diag[], double x[])
   1.872 +{     int i, t, beg, end;
   1.873 +      double temp;
   1.874 +      for (i = n; i >= 1; i--)
   1.875 +      {  temp = x[i];
   1.876 +         beg = U_ptr[i], end = U_ptr[i+1];
   1.877 +         for (t = beg; t < end; t++)
   1.878 +            temp -= U_val[t] * x[U_ind[t]];
   1.879 +         xassert(U_diag[i] != 0.0);
   1.880 +         x[i] = temp / U_diag[i];
   1.881 +      }
   1.882 +      return;
   1.883 +}
   1.884 +
   1.885 +/*----------------------------------------------------------------------
   1.886 +-- ut_solve - solve lower triangular system U'*x = b.
   1.887 +--
   1.888 +-- *Synopsis*
   1.889 +--
   1.890 +-- #include "glpmat.h"
   1.891 +-- void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
   1.892 +--    double U_diag[], double x[]);
   1.893 +--
   1.894 +-- *Description*
   1.895 +--
   1.896 +-- The routine ut_solve solves an linear system U'*x = b, where U is a
   1.897 +-- matrix transposed to an upper triangular matrix.
   1.898 +--
   1.899 +-- The parameter n is the order of matrix U.
   1.900 +--
   1.901 +-- The matrix U without diagonal elements is specified in the arrays
   1.902 +-- U_ptr, U_ind, and U_val in storage-by-rows format. Diagonal elements
   1.903 +-- of U are specified in the array U_diag, where U_diag[0] is not used,
   1.904 +-- U_diag[i] = u[i,i] for i = 1, ..., n. All these four arrays are not
   1.905 +-- changed on exit.
   1.906 +--
   1.907 +-- The right-hand side vector b is specified on entry in the array x,
   1.908 +-- where x[0] is not used, and x[i] = b[i] for i = 1, ..., n. On exit
   1.909 +-- the routine stores computed components of the vector of unknowns x
   1.910 +-- in the array x in the same manner. */
   1.911 +
   1.912 +void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
   1.913 +      double U_diag[], double x[])
   1.914 +{     int i, t, beg, end;
   1.915 +      double temp;
   1.916 +      for (i = 1; i <= n; i++)
   1.917 +      {  xassert(U_diag[i] != 0.0);
   1.918 +         temp = (x[i] /= U_diag[i]);
   1.919 +         if (temp == 0.0) continue;
   1.920 +         beg = U_ptr[i], end = U_ptr[i+1];
   1.921 +         for (t = beg; t < end; t++)
   1.922 +            x[U_ind[t]] -= U_val[t] * temp;
   1.923 +      }
   1.924 +      return;
   1.925 +}
   1.926 +
   1.927 +/* eof */