alpar@1
|
1 |
/* glpmat.c */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#include "glpenv.h"
|
alpar@1
|
26 |
#include "glpmat.h"
|
alpar@1
|
27 |
#include "glpqmd.h"
|
alpar@1
|
28 |
#include "amd/amd.h"
|
alpar@1
|
29 |
#include "colamd/colamd.h"
|
alpar@1
|
30 |
|
alpar@1
|
31 |
/*----------------------------------------------------------------------
|
alpar@1
|
32 |
-- check_fvs - check sparse vector in full-vector storage format.
|
alpar@1
|
33 |
--
|
alpar@1
|
34 |
-- SYNOPSIS
|
alpar@1
|
35 |
--
|
alpar@1
|
36 |
-- #include "glpmat.h"
|
alpar@1
|
37 |
-- int check_fvs(int n, int nnz, int ind[], double vec[]);
|
alpar@1
|
38 |
--
|
alpar@1
|
39 |
-- DESCRIPTION
|
alpar@1
|
40 |
--
|
alpar@1
|
41 |
-- The routine check_fvs checks if a given vector of dimension n in
|
alpar@1
|
42 |
-- full-vector storage format has correct representation.
|
alpar@1
|
43 |
--
|
alpar@1
|
44 |
-- RETURNS
|
alpar@1
|
45 |
--
|
alpar@1
|
46 |
-- The routine returns one of the following codes:
|
alpar@1
|
47 |
--
|
alpar@1
|
48 |
-- 0 - the vector is correct;
|
alpar@1
|
49 |
-- 1 - the number of elements (n) is negative;
|
alpar@1
|
50 |
-- 2 - the number of non-zero elements (nnz) is negative;
|
alpar@1
|
51 |
-- 3 - some element index is out of range;
|
alpar@1
|
52 |
-- 4 - some element index is duplicate;
|
alpar@1
|
53 |
-- 5 - some non-zero element is out of pattern. */
|
alpar@1
|
54 |
|
alpar@1
|
55 |
int check_fvs(int n, int nnz, int ind[], double vec[])
|
alpar@1
|
56 |
{ int i, t, ret, *flag = NULL;
|
alpar@1
|
57 |
/* check the number of elements */
|
alpar@1
|
58 |
if (n < 0)
|
alpar@1
|
59 |
{ ret = 1;
|
alpar@1
|
60 |
goto done;
|
alpar@1
|
61 |
}
|
alpar@1
|
62 |
/* check the number of non-zero elements */
|
alpar@1
|
63 |
if (nnz < 0)
|
alpar@1
|
64 |
{ ret = 2;
|
alpar@1
|
65 |
goto done;
|
alpar@1
|
66 |
}
|
alpar@1
|
67 |
/* check vector indices */
|
alpar@1
|
68 |
flag = xcalloc(1+n, sizeof(int));
|
alpar@1
|
69 |
for (i = 1; i <= n; i++) flag[i] = 0;
|
alpar@1
|
70 |
for (t = 1; t <= nnz; t++)
|
alpar@1
|
71 |
{ i = ind[t];
|
alpar@1
|
72 |
if (!(1 <= i && i <= n))
|
alpar@1
|
73 |
{ ret = 3;
|
alpar@1
|
74 |
goto done;
|
alpar@1
|
75 |
}
|
alpar@1
|
76 |
if (flag[i])
|
alpar@1
|
77 |
{ ret = 4;
|
alpar@1
|
78 |
goto done;
|
alpar@1
|
79 |
}
|
alpar@1
|
80 |
flag[i] = 1;
|
alpar@1
|
81 |
}
|
alpar@1
|
82 |
/* check vector elements */
|
alpar@1
|
83 |
for (i = 1; i <= n; i++)
|
alpar@1
|
84 |
{ if (!flag[i] && vec[i] != 0.0)
|
alpar@1
|
85 |
{ ret = 5;
|
alpar@1
|
86 |
goto done;
|
alpar@1
|
87 |
}
|
alpar@1
|
88 |
}
|
alpar@1
|
89 |
/* the vector is ok */
|
alpar@1
|
90 |
ret = 0;
|
alpar@1
|
91 |
done: if (flag != NULL) xfree(flag);
|
alpar@1
|
92 |
return ret;
|
alpar@1
|
93 |
}
|
alpar@1
|
94 |
|
alpar@1
|
95 |
/*----------------------------------------------------------------------
|
alpar@1
|
96 |
-- check_pattern - check pattern of sparse matrix.
|
alpar@1
|
97 |
--
|
alpar@1
|
98 |
-- SYNOPSIS
|
alpar@1
|
99 |
--
|
alpar@1
|
100 |
-- #include "glpmat.h"
|
alpar@1
|
101 |
-- int check_pattern(int m, int n, int A_ptr[], int A_ind[]);
|
alpar@1
|
102 |
--
|
alpar@1
|
103 |
-- DESCRIPTION
|
alpar@1
|
104 |
--
|
alpar@1
|
105 |
-- The routine check_pattern checks the pattern of a given mxn matrix
|
alpar@1
|
106 |
-- in storage-by-rows format.
|
alpar@1
|
107 |
--
|
alpar@1
|
108 |
-- RETURNS
|
alpar@1
|
109 |
--
|
alpar@1
|
110 |
-- The routine returns one of the following codes:
|
alpar@1
|
111 |
--
|
alpar@1
|
112 |
-- 0 - the pattern is correct;
|
alpar@1
|
113 |
-- 1 - the number of rows (m) is negative;
|
alpar@1
|
114 |
-- 2 - the number of columns (n) is negative;
|
alpar@1
|
115 |
-- 3 - A_ptr[1] is not 1;
|
alpar@1
|
116 |
-- 4 - some column index is out of range;
|
alpar@1
|
117 |
-- 5 - some column indices are duplicate. */
|
alpar@1
|
118 |
|
alpar@1
|
119 |
int check_pattern(int m, int n, int A_ptr[], int A_ind[])
|
alpar@1
|
120 |
{ int i, j, ptr, ret, *flag = NULL;
|
alpar@1
|
121 |
/* check the number of rows */
|
alpar@1
|
122 |
if (m < 0)
|
alpar@1
|
123 |
{ ret = 1;
|
alpar@1
|
124 |
goto done;
|
alpar@1
|
125 |
}
|
alpar@1
|
126 |
/* check the number of columns */
|
alpar@1
|
127 |
if (n < 0)
|
alpar@1
|
128 |
{ ret = 2;
|
alpar@1
|
129 |
goto done;
|
alpar@1
|
130 |
}
|
alpar@1
|
131 |
/* check location A_ptr[1] */
|
alpar@1
|
132 |
if (A_ptr[1] != 1)
|
alpar@1
|
133 |
{ ret = 3;
|
alpar@1
|
134 |
goto done;
|
alpar@1
|
135 |
}
|
alpar@1
|
136 |
/* check row patterns */
|
alpar@1
|
137 |
flag = xcalloc(1+n, sizeof(int));
|
alpar@1
|
138 |
for (j = 1; j <= n; j++) flag[j] = 0;
|
alpar@1
|
139 |
for (i = 1; i <= m; i++)
|
alpar@1
|
140 |
{ /* check pattern of row i */
|
alpar@1
|
141 |
for (ptr = A_ptr[i]; ptr < A_ptr[i+1]; ptr++)
|
alpar@1
|
142 |
{ j = A_ind[ptr];
|
alpar@1
|
143 |
/* check column index */
|
alpar@1
|
144 |
if (!(1 <= j && j <= n))
|
alpar@1
|
145 |
{ ret = 4;
|
alpar@1
|
146 |
goto done;
|
alpar@1
|
147 |
}
|
alpar@1
|
148 |
/* check for duplication */
|
alpar@1
|
149 |
if (flag[j])
|
alpar@1
|
150 |
{ ret = 5;
|
alpar@1
|
151 |
goto done;
|
alpar@1
|
152 |
}
|
alpar@1
|
153 |
flag[j] = 1;
|
alpar@1
|
154 |
}
|
alpar@1
|
155 |
/* clear flags */
|
alpar@1
|
156 |
for (ptr = A_ptr[i]; ptr < A_ptr[i+1]; ptr++)
|
alpar@1
|
157 |
{ j = A_ind[ptr];
|
alpar@1
|
158 |
flag[j] = 0;
|
alpar@1
|
159 |
}
|
alpar@1
|
160 |
}
|
alpar@1
|
161 |
/* the pattern is ok */
|
alpar@1
|
162 |
ret = 0;
|
alpar@1
|
163 |
done: if (flag != NULL) xfree(flag);
|
alpar@1
|
164 |
return ret;
|
alpar@1
|
165 |
}
|
alpar@1
|
166 |
|
alpar@1
|
167 |
/*----------------------------------------------------------------------
|
alpar@1
|
168 |
-- transpose - transpose sparse matrix.
|
alpar@1
|
169 |
--
|
alpar@1
|
170 |
-- *Synopsis*
|
alpar@1
|
171 |
--
|
alpar@1
|
172 |
-- #include "glpmat.h"
|
alpar@1
|
173 |
-- void transpose(int m, int n, int A_ptr[], int A_ind[],
|
alpar@1
|
174 |
-- double A_val[], int AT_ptr[], int AT_ind[], double AT_val[]);
|
alpar@1
|
175 |
--
|
alpar@1
|
176 |
-- *Description*
|
alpar@1
|
177 |
--
|
alpar@1
|
178 |
-- For a given mxn sparse matrix A the routine transpose builds a nxm
|
alpar@1
|
179 |
-- sparse matrix A' which is a matrix transposed to A.
|
alpar@1
|
180 |
--
|
alpar@1
|
181 |
-- The arrays A_ptr, A_ind, and A_val specify a given mxn matrix A to
|
alpar@1
|
182 |
-- be transposed in storage-by-rows format. The parameter A_val can be
|
alpar@1
|
183 |
-- NULL, in which case numeric values are not copied. The arrays A_ptr,
|
alpar@1
|
184 |
-- A_ind, and A_val are not changed on exit.
|
alpar@1
|
185 |
--
|
alpar@1
|
186 |
-- On entry the arrays AT_ptr, AT_ind, and AT_val must be allocated,
|
alpar@1
|
187 |
-- but their content is ignored. On exit the routine stores a resultant
|
alpar@1
|
188 |
-- nxm matrix A' in these arrays in storage-by-rows format. Note that
|
alpar@1
|
189 |
-- if the parameter A_val is NULL, the array AT_val is not used.
|
alpar@1
|
190 |
--
|
alpar@1
|
191 |
-- The routine transpose has a side effect that elements in rows of the
|
alpar@1
|
192 |
-- resultant matrix A' follow in ascending their column indices. */
|
alpar@1
|
193 |
|
alpar@1
|
194 |
void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[],
|
alpar@1
|
195 |
int AT_ptr[], int AT_ind[], double AT_val[])
|
alpar@1
|
196 |
{ int i, j, t, beg, end, pos, len;
|
alpar@1
|
197 |
/* determine row lengths of resultant matrix */
|
alpar@1
|
198 |
for (j = 1; j <= n; j++) AT_ptr[j] = 0;
|
alpar@1
|
199 |
for (i = 1; i <= m; i++)
|
alpar@1
|
200 |
{ beg = A_ptr[i], end = A_ptr[i+1];
|
alpar@1
|
201 |
for (t = beg; t < end; t++) AT_ptr[A_ind[t]]++;
|
alpar@1
|
202 |
}
|
alpar@1
|
203 |
/* set up row pointers of resultant matrix */
|
alpar@1
|
204 |
pos = 1;
|
alpar@1
|
205 |
for (j = 1; j <= n; j++)
|
alpar@1
|
206 |
len = AT_ptr[j], pos += len, AT_ptr[j] = pos;
|
alpar@1
|
207 |
AT_ptr[n+1] = pos;
|
alpar@1
|
208 |
/* build resultant matrix */
|
alpar@1
|
209 |
for (i = m; i >= 1; i--)
|
alpar@1
|
210 |
{ beg = A_ptr[i], end = A_ptr[i+1];
|
alpar@1
|
211 |
for (t = beg; t < end; t++)
|
alpar@1
|
212 |
{ pos = --AT_ptr[A_ind[t]];
|
alpar@1
|
213 |
AT_ind[pos] = i;
|
alpar@1
|
214 |
if (A_val != NULL) AT_val[pos] = A_val[t];
|
alpar@1
|
215 |
}
|
alpar@1
|
216 |
}
|
alpar@1
|
217 |
return;
|
alpar@1
|
218 |
}
|
alpar@1
|
219 |
|
alpar@1
|
220 |
/*----------------------------------------------------------------------
|
alpar@1
|
221 |
-- adat_symbolic - compute S = P*A*D*A'*P' (symbolic phase).
|
alpar@1
|
222 |
--
|
alpar@1
|
223 |
-- *Synopsis*
|
alpar@1
|
224 |
--
|
alpar@1
|
225 |
-- #include "glpmat.h"
|
alpar@1
|
226 |
-- int *adat_symbolic(int m, int n, int P_per[], int A_ptr[],
|
alpar@1
|
227 |
-- int A_ind[], int S_ptr[]);
|
alpar@1
|
228 |
--
|
alpar@1
|
229 |
-- *Description*
|
alpar@1
|
230 |
--
|
alpar@1
|
231 |
-- The routine adat_symbolic implements the symbolic phase to compute
|
alpar@1
|
232 |
-- symmetric matrix S = P*A*D*A'*P', where P is a permutation matrix,
|
alpar@1
|
233 |
-- A is a given sparse matrix, D is a diagonal matrix, A' is a matrix
|
alpar@1
|
234 |
-- transposed to A, P' is an inverse of P.
|
alpar@1
|
235 |
--
|
alpar@1
|
236 |
-- The parameter m is the number of rows in A and the order of P.
|
alpar@1
|
237 |
--
|
alpar@1
|
238 |
-- The parameter n is the number of columns in A and the order of D.
|
alpar@1
|
239 |
--
|
alpar@1
|
240 |
-- The array P_per specifies permutation matrix P. It is not changed on
|
alpar@1
|
241 |
-- exit.
|
alpar@1
|
242 |
--
|
alpar@1
|
243 |
-- The arrays A_ptr and A_ind specify the pattern of matrix A. They are
|
alpar@1
|
244 |
-- not changed on exit.
|
alpar@1
|
245 |
--
|
alpar@1
|
246 |
-- On exit the routine stores the pattern of upper triangular part of
|
alpar@1
|
247 |
-- matrix S without diagonal elements in the arrays S_ptr and S_ind in
|
alpar@1
|
248 |
-- storage-by-rows format. The array S_ptr should be allocated on entry,
|
alpar@1
|
249 |
-- however, its content is ignored. The array S_ind is allocated by the
|
alpar@1
|
250 |
-- routine itself which returns a pointer to it.
|
alpar@1
|
251 |
--
|
alpar@1
|
252 |
-- *Returns*
|
alpar@1
|
253 |
--
|
alpar@1
|
254 |
-- The routine returns a pointer to the array S_ind. */
|
alpar@1
|
255 |
|
alpar@1
|
256 |
int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[],
|
alpar@1
|
257 |
int S_ptr[])
|
alpar@1
|
258 |
{ int i, j, t, ii, jj, tt, k, size, len;
|
alpar@1
|
259 |
int *S_ind, *AT_ptr, *AT_ind, *ind, *map, *temp;
|
alpar@1
|
260 |
/* build the pattern of A', which is a matrix transposed to A, to
|
alpar@1
|
261 |
efficiently access A in column-wise manner */
|
alpar@1
|
262 |
AT_ptr = xcalloc(1+n+1, sizeof(int));
|
alpar@1
|
263 |
AT_ind = xcalloc(A_ptr[m+1], sizeof(int));
|
alpar@1
|
264 |
transpose(m, n, A_ptr, A_ind, NULL, AT_ptr, AT_ind, NULL);
|
alpar@1
|
265 |
/* allocate the array S_ind */
|
alpar@1
|
266 |
size = A_ptr[m+1] - 1;
|
alpar@1
|
267 |
if (size < m) size = m;
|
alpar@1
|
268 |
S_ind = xcalloc(1+size, sizeof(int));
|
alpar@1
|
269 |
/* allocate and initialize working arrays */
|
alpar@1
|
270 |
ind = xcalloc(1+m, sizeof(int));
|
alpar@1
|
271 |
map = xcalloc(1+m, sizeof(int));
|
alpar@1
|
272 |
for (jj = 1; jj <= m; jj++) map[jj] = 0;
|
alpar@1
|
273 |
/* compute pattern of S; note that symbolically S = B*B', where
|
alpar@1
|
274 |
B = P*A, B' is matrix transposed to B */
|
alpar@1
|
275 |
S_ptr[1] = 1;
|
alpar@1
|
276 |
for (ii = 1; ii <= m; ii++)
|
alpar@1
|
277 |
{ /* compute pattern of ii-th row of S */
|
alpar@1
|
278 |
len = 0;
|
alpar@1
|
279 |
i = P_per[ii]; /* i-th row of A = ii-th row of B */
|
alpar@1
|
280 |
for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
|
alpar@1
|
281 |
{ k = A_ind[t];
|
alpar@1
|
282 |
/* walk through k-th column of A */
|
alpar@1
|
283 |
for (tt = AT_ptr[k]; tt < AT_ptr[k+1]; tt++)
|
alpar@1
|
284 |
{ j = AT_ind[tt];
|
alpar@1
|
285 |
jj = P_per[m+j]; /* j-th row of A = jj-th row of B */
|
alpar@1
|
286 |
/* a[i,k] != 0 and a[j,k] != 0 ergo s[ii,jj] != 0 */
|
alpar@1
|
287 |
if (ii < jj && !map[jj]) ind[++len] = jj, map[jj] = 1;
|
alpar@1
|
288 |
}
|
alpar@1
|
289 |
}
|
alpar@1
|
290 |
/* now (ind) is pattern of ii-th row of S */
|
alpar@1
|
291 |
S_ptr[ii+1] = S_ptr[ii] + len;
|
alpar@1
|
292 |
/* at least (S_ptr[ii+1] - 1) locations should be available in
|
alpar@1
|
293 |
the array S_ind */
|
alpar@1
|
294 |
if (S_ptr[ii+1] - 1 > size)
|
alpar@1
|
295 |
{ temp = S_ind;
|
alpar@1
|
296 |
size += size;
|
alpar@1
|
297 |
S_ind = xcalloc(1+size, sizeof(int));
|
alpar@1
|
298 |
memcpy(&S_ind[1], &temp[1], (S_ptr[ii] - 1) * sizeof(int));
|
alpar@1
|
299 |
xfree(temp);
|
alpar@1
|
300 |
}
|
alpar@1
|
301 |
xassert(S_ptr[ii+1] - 1 <= size);
|
alpar@1
|
302 |
/* (ii-th row of S) := (ind) */
|
alpar@1
|
303 |
memcpy(&S_ind[S_ptr[ii]], &ind[1], len * sizeof(int));
|
alpar@1
|
304 |
/* clear the row pattern map */
|
alpar@1
|
305 |
for (t = 1; t <= len; t++) map[ind[t]] = 0;
|
alpar@1
|
306 |
}
|
alpar@1
|
307 |
/* free working arrays */
|
alpar@1
|
308 |
xfree(AT_ptr);
|
alpar@1
|
309 |
xfree(AT_ind);
|
alpar@1
|
310 |
xfree(ind);
|
alpar@1
|
311 |
xfree(map);
|
alpar@1
|
312 |
/* reallocate the array S_ind to free unused locations */
|
alpar@1
|
313 |
temp = S_ind;
|
alpar@1
|
314 |
size = S_ptr[m+1] - 1;
|
alpar@1
|
315 |
S_ind = xcalloc(1+size, sizeof(int));
|
alpar@1
|
316 |
memcpy(&S_ind[1], &temp[1], size * sizeof(int));
|
alpar@1
|
317 |
xfree(temp);
|
alpar@1
|
318 |
return S_ind;
|
alpar@1
|
319 |
}
|
alpar@1
|
320 |
|
alpar@1
|
321 |
/*----------------------------------------------------------------------
|
alpar@1
|
322 |
-- adat_numeric - compute S = P*A*D*A'*P' (numeric phase).
|
alpar@1
|
323 |
--
|
alpar@1
|
324 |
-- *Synopsis*
|
alpar@1
|
325 |
--
|
alpar@1
|
326 |
-- #include "glpmat.h"
|
alpar@1
|
327 |
-- void adat_numeric(int m, int n, int P_per[],
|
alpar@1
|
328 |
-- int A_ptr[], int A_ind[], double A_val[], double D_diag[],
|
alpar@1
|
329 |
-- int S_ptr[], int S_ind[], double S_val[], double S_diag[]);
|
alpar@1
|
330 |
--
|
alpar@1
|
331 |
-- *Description*
|
alpar@1
|
332 |
--
|
alpar@1
|
333 |
-- The routine adat_numeric implements the numeric phase to compute
|
alpar@1
|
334 |
-- symmetric matrix S = P*A*D*A'*P', where P is a permutation matrix,
|
alpar@1
|
335 |
-- A is a given sparse matrix, D is a diagonal matrix, A' is a matrix
|
alpar@1
|
336 |
-- transposed to A, P' is an inverse of P.
|
alpar@1
|
337 |
--
|
alpar@1
|
338 |
-- The parameter m is the number of rows in A and the order of P.
|
alpar@1
|
339 |
--
|
alpar@1
|
340 |
-- The parameter n is the number of columns in A and the order of D.
|
alpar@1
|
341 |
--
|
alpar@1
|
342 |
-- The matrix P is specified in the array P_per, which is not changed
|
alpar@1
|
343 |
-- on exit.
|
alpar@1
|
344 |
--
|
alpar@1
|
345 |
-- The matrix A is specified in the arrays A_ptr, A_ind, and A_val in
|
alpar@1
|
346 |
-- storage-by-rows format. These arrays are not changed on exit.
|
alpar@1
|
347 |
--
|
alpar@1
|
348 |
-- Diagonal elements of the matrix D are specified in the array D_diag,
|
alpar@1
|
349 |
-- where D_diag[0] is not used, D_diag[i] = d[i,i] for i = 1, ..., n.
|
alpar@1
|
350 |
-- The array D_diag is not changed on exit.
|
alpar@1
|
351 |
--
|
alpar@1
|
352 |
-- The pattern of the upper triangular part of the matrix S without
|
alpar@1
|
353 |
-- diagonal elements (previously computed by the routine adat_symbolic)
|
alpar@1
|
354 |
-- is specified in the arrays S_ptr and S_ind, which are not changed on
|
alpar@1
|
355 |
-- exit. Numeric values of non-diagonal elements of S are stored in
|
alpar@1
|
356 |
-- corresponding locations of the array S_val, and values of diagonal
|
alpar@1
|
357 |
-- elements of S are stored in locations S_diag[1], ..., S_diag[n]. */
|
alpar@1
|
358 |
|
alpar@1
|
359 |
void adat_numeric(int m, int n, int P_per[],
|
alpar@1
|
360 |
int A_ptr[], int A_ind[], double A_val[], double D_diag[],
|
alpar@1
|
361 |
int S_ptr[], int S_ind[], double S_val[], double S_diag[])
|
alpar@1
|
362 |
{ int i, j, t, ii, jj, tt, beg, end, beg1, end1, k;
|
alpar@1
|
363 |
double sum, *work;
|
alpar@1
|
364 |
work = xcalloc(1+n, sizeof(double));
|
alpar@1
|
365 |
for (j = 1; j <= n; j++) work[j] = 0.0;
|
alpar@1
|
366 |
/* compute S = B*D*B', where B = P*A, B' is a matrix transposed
|
alpar@1
|
367 |
to B */
|
alpar@1
|
368 |
for (ii = 1; ii <= m; ii++)
|
alpar@1
|
369 |
{ i = P_per[ii]; /* i-th row of A = ii-th row of B */
|
alpar@1
|
370 |
/* (work) := (i-th row of A) */
|
alpar@1
|
371 |
beg = A_ptr[i], end = A_ptr[i+1];
|
alpar@1
|
372 |
for (t = beg; t < end; t++)
|
alpar@1
|
373 |
work[A_ind[t]] = A_val[t];
|
alpar@1
|
374 |
/* compute ii-th row of S */
|
alpar@1
|
375 |
beg = S_ptr[ii], end = S_ptr[ii+1];
|
alpar@1
|
376 |
for (t = beg; t < end; t++)
|
alpar@1
|
377 |
{ jj = S_ind[t];
|
alpar@1
|
378 |
j = P_per[jj]; /* j-th row of A = jj-th row of B */
|
alpar@1
|
379 |
/* s[ii,jj] := sum a[i,k] * d[k,k] * a[j,k] */
|
alpar@1
|
380 |
sum = 0.0;
|
alpar@1
|
381 |
beg1 = A_ptr[j], end1 = A_ptr[j+1];
|
alpar@1
|
382 |
for (tt = beg1; tt < end1; tt++)
|
alpar@1
|
383 |
{ k = A_ind[tt];
|
alpar@1
|
384 |
sum += work[k] * D_diag[k] * A_val[tt];
|
alpar@1
|
385 |
}
|
alpar@1
|
386 |
S_val[t] = sum;
|
alpar@1
|
387 |
}
|
alpar@1
|
388 |
/* s[ii,ii] := sum a[i,k] * d[k,k] * a[i,k] */
|
alpar@1
|
389 |
sum = 0.0;
|
alpar@1
|
390 |
beg = A_ptr[i], end = A_ptr[i+1];
|
alpar@1
|
391 |
for (t = beg; t < end; t++)
|
alpar@1
|
392 |
{ k = A_ind[t];
|
alpar@1
|
393 |
sum += A_val[t] * D_diag[k] * A_val[t];
|
alpar@1
|
394 |
work[k] = 0.0;
|
alpar@1
|
395 |
}
|
alpar@1
|
396 |
S_diag[ii] = sum;
|
alpar@1
|
397 |
}
|
alpar@1
|
398 |
xfree(work);
|
alpar@1
|
399 |
return;
|
alpar@1
|
400 |
}
|
alpar@1
|
401 |
|
alpar@1
|
402 |
/*----------------------------------------------------------------------
|
alpar@1
|
403 |
-- min_degree - minimum degree ordering.
|
alpar@1
|
404 |
--
|
alpar@1
|
405 |
-- *Synopsis*
|
alpar@1
|
406 |
--
|
alpar@1
|
407 |
-- #include "glpmat.h"
|
alpar@1
|
408 |
-- void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]);
|
alpar@1
|
409 |
--
|
alpar@1
|
410 |
-- *Description*
|
alpar@1
|
411 |
--
|
alpar@1
|
412 |
-- The routine min_degree uses the minimum degree ordering algorithm
|
alpar@1
|
413 |
-- to find a permutation matrix P for a given sparse symmetric positive
|
alpar@1
|
414 |
-- matrix A which minimizes the number of non-zeros in upper triangular
|
alpar@1
|
415 |
-- factor U for Cholesky factorization P*A*P' = U'*U.
|
alpar@1
|
416 |
--
|
alpar@1
|
417 |
-- The parameter n is the order of matrices A and P.
|
alpar@1
|
418 |
--
|
alpar@1
|
419 |
-- The pattern of the given matrix A is specified on entry in the arrays
|
alpar@1
|
420 |
-- A_ptr and A_ind in storage-by-rows format. Only the upper triangular
|
alpar@1
|
421 |
-- part without diagonal elements (which all are assumed to be non-zero)
|
alpar@1
|
422 |
-- should be specified as if A were upper triangular. The arrays A_ptr
|
alpar@1
|
423 |
-- and A_ind are not changed on exit.
|
alpar@1
|
424 |
--
|
alpar@1
|
425 |
-- The permutation matrix P is stored by the routine in the array P_per
|
alpar@1
|
426 |
-- on exit.
|
alpar@1
|
427 |
--
|
alpar@1
|
428 |
-- *Algorithm*
|
alpar@1
|
429 |
--
|
alpar@1
|
430 |
-- The routine min_degree is based on some subroutines from the package
|
alpar@1
|
431 |
-- SPARSPAK (see comments in the module glpqmd). */
|
alpar@1
|
432 |
|
alpar@1
|
433 |
void min_degree(int n, int A_ptr[], int A_ind[], int P_per[])
|
alpar@1
|
434 |
{ int i, j, ne, t, pos, len;
|
alpar@1
|
435 |
int *xadj, *adjncy, *deg, *marker, *rchset, *nbrhd, *qsize,
|
alpar@1
|
436 |
*qlink, nofsub;
|
alpar@1
|
437 |
/* determine number of non-zeros in complete pattern */
|
alpar@1
|
438 |
ne = A_ptr[n+1] - 1;
|
alpar@1
|
439 |
ne += ne;
|
alpar@1
|
440 |
/* allocate working arrays */
|
alpar@1
|
441 |
xadj = xcalloc(1+n+1, sizeof(int));
|
alpar@1
|
442 |
adjncy = xcalloc(1+ne, sizeof(int));
|
alpar@1
|
443 |
deg = xcalloc(1+n, sizeof(int));
|
alpar@1
|
444 |
marker = xcalloc(1+n, sizeof(int));
|
alpar@1
|
445 |
rchset = xcalloc(1+n, sizeof(int));
|
alpar@1
|
446 |
nbrhd = xcalloc(1+n, sizeof(int));
|
alpar@1
|
447 |
qsize = xcalloc(1+n, sizeof(int));
|
alpar@1
|
448 |
qlink = xcalloc(1+n, sizeof(int));
|
alpar@1
|
449 |
/* determine row lengths in complete pattern */
|
alpar@1
|
450 |
for (i = 1; i <= n; i++) xadj[i] = 0;
|
alpar@1
|
451 |
for (i = 1; i <= n; i++)
|
alpar@1
|
452 |
{ for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
|
alpar@1
|
453 |
{ j = A_ind[t];
|
alpar@1
|
454 |
xassert(i < j && j <= n);
|
alpar@1
|
455 |
xadj[i]++, xadj[j]++;
|
alpar@1
|
456 |
}
|
alpar@1
|
457 |
}
|
alpar@1
|
458 |
/* set up row pointers for complete pattern */
|
alpar@1
|
459 |
pos = 1;
|
alpar@1
|
460 |
for (i = 1; i <= n; i++)
|
alpar@1
|
461 |
len = xadj[i], pos += len, xadj[i] = pos;
|
alpar@1
|
462 |
xadj[n+1] = pos;
|
alpar@1
|
463 |
xassert(pos - 1 == ne);
|
alpar@1
|
464 |
/* construct complete pattern */
|
alpar@1
|
465 |
for (i = 1; i <= n; i++)
|
alpar@1
|
466 |
{ for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
|
alpar@1
|
467 |
{ j = A_ind[t];
|
alpar@1
|
468 |
adjncy[--xadj[i]] = j, adjncy[--xadj[j]] = i;
|
alpar@1
|
469 |
}
|
alpar@1
|
470 |
}
|
alpar@1
|
471 |
/* call the main minimimum degree ordering routine */
|
alpar@1
|
472 |
genqmd(&n, xadj, adjncy, P_per, P_per + n, deg, marker, rchset,
|
alpar@1
|
473 |
nbrhd, qsize, qlink, &nofsub);
|
alpar@1
|
474 |
/* make sure that permutation matrix P is correct */
|
alpar@1
|
475 |
for (i = 1; i <= n; i++)
|
alpar@1
|
476 |
{ j = P_per[i];
|
alpar@1
|
477 |
xassert(1 <= j && j <= n);
|
alpar@1
|
478 |
xassert(P_per[n+j] == i);
|
alpar@1
|
479 |
}
|
alpar@1
|
480 |
/* free working arrays */
|
alpar@1
|
481 |
xfree(xadj);
|
alpar@1
|
482 |
xfree(adjncy);
|
alpar@1
|
483 |
xfree(deg);
|
alpar@1
|
484 |
xfree(marker);
|
alpar@1
|
485 |
xfree(rchset);
|
alpar@1
|
486 |
xfree(nbrhd);
|
alpar@1
|
487 |
xfree(qsize);
|
alpar@1
|
488 |
xfree(qlink);
|
alpar@1
|
489 |
return;
|
alpar@1
|
490 |
}
|
alpar@1
|
491 |
|
alpar@1
|
492 |
/**********************************************************************/
|
alpar@1
|
493 |
|
alpar@1
|
494 |
void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[])
|
alpar@1
|
495 |
{ /* approximate minimum degree ordering (AMD) */
|
alpar@1
|
496 |
int k, ret;
|
alpar@1
|
497 |
double Control[AMD_CONTROL], Info[AMD_INFO];
|
alpar@1
|
498 |
/* get the default parameters */
|
alpar@1
|
499 |
amd_defaults(Control);
|
alpar@1
|
500 |
#if 0
|
alpar@1
|
501 |
/* and print them */
|
alpar@1
|
502 |
amd_control(Control);
|
alpar@1
|
503 |
#endif
|
alpar@1
|
504 |
/* make all indices 0-based */
|
alpar@1
|
505 |
for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]--;
|
alpar@1
|
506 |
for (k = 1; k <= n+1; k++) A_ptr[k]--;
|
alpar@1
|
507 |
/* call the ordering routine */
|
alpar@1
|
508 |
ret = amd_order(n, &A_ptr[1], &A_ind[1], &P_per[1], Control, Info)
|
alpar@1
|
509 |
;
|
alpar@1
|
510 |
#if 0
|
alpar@1
|
511 |
amd_info(Info);
|
alpar@1
|
512 |
#endif
|
alpar@1
|
513 |
xassert(ret == AMD_OK || ret == AMD_OK_BUT_JUMBLED);
|
alpar@1
|
514 |
/* retsore 1-based indices */
|
alpar@1
|
515 |
for (k = 1; k <= n+1; k++) A_ptr[k]++;
|
alpar@1
|
516 |
for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]++;
|
alpar@1
|
517 |
/* patch up permutation matrix */
|
alpar@1
|
518 |
memset(&P_per[n+1], 0, n * sizeof(int));
|
alpar@1
|
519 |
for (k = 1; k <= n; k++)
|
alpar@1
|
520 |
{ P_per[k]++;
|
alpar@1
|
521 |
xassert(1 <= P_per[k] && P_per[k] <= n);
|
alpar@1
|
522 |
xassert(P_per[n+P_per[k]] == 0);
|
alpar@1
|
523 |
P_per[n+P_per[k]] = k;
|
alpar@1
|
524 |
}
|
alpar@1
|
525 |
return;
|
alpar@1
|
526 |
}
|
alpar@1
|
527 |
|
alpar@1
|
528 |
/**********************************************************************/
|
alpar@1
|
529 |
|
alpar@1
|
530 |
static void *allocate(size_t n, size_t size)
|
alpar@1
|
531 |
{ void *ptr;
|
alpar@1
|
532 |
ptr = xcalloc(n, size);
|
alpar@1
|
533 |
memset(ptr, 0, n * size);
|
alpar@1
|
534 |
return ptr;
|
alpar@1
|
535 |
}
|
alpar@1
|
536 |
|
alpar@1
|
537 |
static void release(void *ptr)
|
alpar@1
|
538 |
{ xfree(ptr);
|
alpar@1
|
539 |
return;
|
alpar@1
|
540 |
}
|
alpar@1
|
541 |
|
alpar@1
|
542 |
void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[])
|
alpar@1
|
543 |
{ /* approximate minimum degree ordering (SYMAMD) */
|
alpar@1
|
544 |
int k, ok;
|
alpar@1
|
545 |
int stats[COLAMD_STATS];
|
alpar@1
|
546 |
/* make all indices 0-based */
|
alpar@1
|
547 |
for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]--;
|
alpar@1
|
548 |
for (k = 1; k <= n+1; k++) A_ptr[k]--;
|
alpar@1
|
549 |
/* call the ordering routine */
|
alpar@1
|
550 |
ok = symamd(n, &A_ind[1], &A_ptr[1], &P_per[1], NULL, stats,
|
alpar@1
|
551 |
allocate, release);
|
alpar@1
|
552 |
#if 0
|
alpar@1
|
553 |
symamd_report(stats);
|
alpar@1
|
554 |
#endif
|
alpar@1
|
555 |
xassert(ok);
|
alpar@1
|
556 |
/* restore 1-based indices */
|
alpar@1
|
557 |
for (k = 1; k <= n+1; k++) A_ptr[k]++;
|
alpar@1
|
558 |
for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]++;
|
alpar@1
|
559 |
/* patch up permutation matrix */
|
alpar@1
|
560 |
memset(&P_per[n+1], 0, n * sizeof(int));
|
alpar@1
|
561 |
for (k = 1; k <= n; k++)
|
alpar@1
|
562 |
{ P_per[k]++;
|
alpar@1
|
563 |
xassert(1 <= P_per[k] && P_per[k] <= n);
|
alpar@1
|
564 |
xassert(P_per[n+P_per[k]] == 0);
|
alpar@1
|
565 |
P_per[n+P_per[k]] = k;
|
alpar@1
|
566 |
}
|
alpar@1
|
567 |
return;
|
alpar@1
|
568 |
}
|
alpar@1
|
569 |
|
alpar@1
|
570 |
/*----------------------------------------------------------------------
|
alpar@1
|
571 |
-- chol_symbolic - compute Cholesky factorization (symbolic phase).
|
alpar@1
|
572 |
--
|
alpar@1
|
573 |
-- *Synopsis*
|
alpar@1
|
574 |
--
|
alpar@1
|
575 |
-- #include "glpmat.h"
|
alpar@1
|
576 |
-- int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]);
|
alpar@1
|
577 |
--
|
alpar@1
|
578 |
-- *Description*
|
alpar@1
|
579 |
--
|
alpar@1
|
580 |
-- The routine chol_symbolic implements the symbolic phase of Cholesky
|
alpar@1
|
581 |
-- factorization A = U'*U, where A is a given sparse symmetric positive
|
alpar@1
|
582 |
-- definite matrix, U is a resultant upper triangular factor, U' is a
|
alpar@1
|
583 |
-- matrix transposed to U.
|
alpar@1
|
584 |
--
|
alpar@1
|
585 |
-- The parameter n is the order of matrices A and U.
|
alpar@1
|
586 |
--
|
alpar@1
|
587 |
-- The pattern of the given matrix A is specified on entry in the arrays
|
alpar@1
|
588 |
-- A_ptr and A_ind in storage-by-rows format. Only the upper triangular
|
alpar@1
|
589 |
-- part without diagonal elements (which all are assumed to be non-zero)
|
alpar@1
|
590 |
-- should be specified as if A were upper triangular. The arrays A_ptr
|
alpar@1
|
591 |
-- and A_ind are not changed on exit.
|
alpar@1
|
592 |
--
|
alpar@1
|
593 |
-- The pattern of the matrix U without diagonal elements (which all are
|
alpar@1
|
594 |
-- assumed to be non-zero) is stored on exit from the routine in the
|
alpar@1
|
595 |
-- arrays U_ptr and U_ind in storage-by-rows format. The array U_ptr
|
alpar@1
|
596 |
-- should be allocated on entry, however, its content is ignored. The
|
alpar@1
|
597 |
-- array U_ind is allocated by the routine which returns a pointer to it
|
alpar@1
|
598 |
-- on exit.
|
alpar@1
|
599 |
--
|
alpar@1
|
600 |
-- *Returns*
|
alpar@1
|
601 |
--
|
alpar@1
|
602 |
-- The routine returns a pointer to the array U_ind.
|
alpar@1
|
603 |
--
|
alpar@1
|
604 |
-- *Method*
|
alpar@1
|
605 |
--
|
alpar@1
|
606 |
-- The routine chol_symbolic computes the pattern of the matrix U in a
|
alpar@1
|
607 |
-- row-wise manner. No pivoting is used.
|
alpar@1
|
608 |
--
|
alpar@1
|
609 |
-- It is known that to compute the pattern of row k of the matrix U we
|
alpar@1
|
610 |
-- need to merge the pattern of row k of the matrix A and the patterns
|
alpar@1
|
611 |
-- of each row i of U, where u[i,k] is non-zero (these rows are already
|
alpar@1
|
612 |
-- computed and placed above row k).
|
alpar@1
|
613 |
--
|
alpar@1
|
614 |
-- However, to reduce the number of rows to be merged the routine uses
|
alpar@1
|
615 |
-- an advanced algorithm proposed in:
|
alpar@1
|
616 |
--
|
alpar@1
|
617 |
-- D.J.Rose, R.E.Tarjan, and G.S.Lueker. Algorithmic aspects of vertex
|
alpar@1
|
618 |
-- elimination on graphs. SIAM J. Comput. 5, 1976, 266-83.
|
alpar@1
|
619 |
--
|
alpar@1
|
620 |
-- The authors of the cited paper show that we have the same result if
|
alpar@1
|
621 |
-- we merge row k of the matrix A and such rows of the matrix U (among
|
alpar@1
|
622 |
-- rows 1, ..., k-1) whose leftmost non-diagonal non-zero element is
|
alpar@1
|
623 |
-- placed in k-th column. This feature signficantly reduces the number
|
alpar@1
|
624 |
-- of rows to be merged, especially on the final steps, where rows of
|
alpar@1
|
625 |
-- the matrix U become quite dense.
|
alpar@1
|
626 |
--
|
alpar@1
|
627 |
-- To determine rows, which should be merged on k-th step, for a fixed
|
alpar@1
|
628 |
-- time the routine uses linked lists of row numbers of the matrix U.
|
alpar@1
|
629 |
-- Location head[k] contains the number of a first row, whose leftmost
|
alpar@1
|
630 |
-- non-diagonal non-zero element is placed in column k, and location
|
alpar@1
|
631 |
-- next[i] contains the number of a next row with the same property as
|
alpar@1
|
632 |
-- row i. */
|
alpar@1
|
633 |
|
alpar@1
|
634 |
int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[])
|
alpar@1
|
635 |
{ int i, j, k, t, len, size, beg, end, min_j, *U_ind, *head, *next,
|
alpar@1
|
636 |
*ind, *map, *temp;
|
alpar@1
|
637 |
/* initially we assume that on computing the pattern of U fill-in
|
alpar@1
|
638 |
will double the number of non-zeros in A */
|
alpar@1
|
639 |
size = A_ptr[n+1] - 1;
|
alpar@1
|
640 |
if (size < n) size = n;
|
alpar@1
|
641 |
size += size;
|
alpar@1
|
642 |
U_ind = xcalloc(1+size, sizeof(int));
|
alpar@1
|
643 |
/* allocate and initialize working arrays */
|
alpar@1
|
644 |
head = xcalloc(1+n, sizeof(int));
|
alpar@1
|
645 |
for (i = 1; i <= n; i++) head[i] = 0;
|
alpar@1
|
646 |
next = xcalloc(1+n, sizeof(int));
|
alpar@1
|
647 |
ind = xcalloc(1+n, sizeof(int));
|
alpar@1
|
648 |
map = xcalloc(1+n, sizeof(int));
|
alpar@1
|
649 |
for (j = 1; j <= n; j++) map[j] = 0;
|
alpar@1
|
650 |
/* compute the pattern of matrix U */
|
alpar@1
|
651 |
U_ptr[1] = 1;
|
alpar@1
|
652 |
for (k = 1; k <= n; k++)
|
alpar@1
|
653 |
{ /* compute the pattern of k-th row of U, which is the union of
|
alpar@1
|
654 |
k-th row of A and those rows of U (among 1, ..., k-1) whose
|
alpar@1
|
655 |
leftmost non-diagonal non-zero is placed in k-th column */
|
alpar@1
|
656 |
/* (ind) := (k-th row of A) */
|
alpar@1
|
657 |
len = A_ptr[k+1] - A_ptr[k];
|
alpar@1
|
658 |
memcpy(&ind[1], &A_ind[A_ptr[k]], len * sizeof(int));
|
alpar@1
|
659 |
for (t = 1; t <= len; t++)
|
alpar@1
|
660 |
{ j = ind[t];
|
alpar@1
|
661 |
xassert(k < j && j <= n);
|
alpar@1
|
662 |
map[j] = 1;
|
alpar@1
|
663 |
}
|
alpar@1
|
664 |
/* walk through rows of U whose leftmost non-diagonal non-zero
|
alpar@1
|
665 |
is placed in k-th column */
|
alpar@1
|
666 |
for (i = head[k]; i != 0; i = next[i])
|
alpar@1
|
667 |
{ /* (ind) := (ind) union (i-th row of U) */
|
alpar@1
|
668 |
beg = U_ptr[i], end = U_ptr[i+1];
|
alpar@1
|
669 |
for (t = beg; t < end; t++)
|
alpar@1
|
670 |
{ j = U_ind[t];
|
alpar@1
|
671 |
if (j > k && !map[j]) ind[++len] = j, map[j] = 1;
|
alpar@1
|
672 |
}
|
alpar@1
|
673 |
}
|
alpar@1
|
674 |
/* now (ind) is the pattern of k-th row of U */
|
alpar@1
|
675 |
U_ptr[k+1] = U_ptr[k] + len;
|
alpar@1
|
676 |
/* at least (U_ptr[k+1] - 1) locations should be available in
|
alpar@1
|
677 |
the array U_ind */
|
alpar@1
|
678 |
if (U_ptr[k+1] - 1 > size)
|
alpar@1
|
679 |
{ temp = U_ind;
|
alpar@1
|
680 |
size += size;
|
alpar@1
|
681 |
U_ind = xcalloc(1+size, sizeof(int));
|
alpar@1
|
682 |
memcpy(&U_ind[1], &temp[1], (U_ptr[k] - 1) * sizeof(int));
|
alpar@1
|
683 |
xfree(temp);
|
alpar@1
|
684 |
}
|
alpar@1
|
685 |
xassert(U_ptr[k+1] - 1 <= size);
|
alpar@1
|
686 |
/* (k-th row of U) := (ind) */
|
alpar@1
|
687 |
memcpy(&U_ind[U_ptr[k]], &ind[1], len * sizeof(int));
|
alpar@1
|
688 |
/* determine column index of leftmost non-diagonal non-zero in
|
alpar@1
|
689 |
k-th row of U and clear the row pattern map */
|
alpar@1
|
690 |
min_j = n + 1;
|
alpar@1
|
691 |
for (t = 1; t <= len; t++)
|
alpar@1
|
692 |
{ j = ind[t], map[j] = 0;
|
alpar@1
|
693 |
if (min_j > j) min_j = j;
|
alpar@1
|
694 |
}
|
alpar@1
|
695 |
/* include k-th row into corresponding linked list */
|
alpar@1
|
696 |
if (min_j <= n) next[k] = head[min_j], head[min_j] = k;
|
alpar@1
|
697 |
}
|
alpar@1
|
698 |
/* free working arrays */
|
alpar@1
|
699 |
xfree(head);
|
alpar@1
|
700 |
xfree(next);
|
alpar@1
|
701 |
xfree(ind);
|
alpar@1
|
702 |
xfree(map);
|
alpar@1
|
703 |
/* reallocate the array U_ind to free unused locations */
|
alpar@1
|
704 |
temp = U_ind;
|
alpar@1
|
705 |
size = U_ptr[n+1] - 1;
|
alpar@1
|
706 |
U_ind = xcalloc(1+size, sizeof(int));
|
alpar@1
|
707 |
memcpy(&U_ind[1], &temp[1], size * sizeof(int));
|
alpar@1
|
708 |
xfree(temp);
|
alpar@1
|
709 |
return U_ind;
|
alpar@1
|
710 |
}
|
alpar@1
|
711 |
|
alpar@1
|
712 |
/*----------------------------------------------------------------------
|
alpar@1
|
713 |
-- chol_numeric - compute Cholesky factorization (numeric phase).
|
alpar@1
|
714 |
--
|
alpar@1
|
715 |
-- *Synopsis*
|
alpar@1
|
716 |
--
|
alpar@1
|
717 |
-- #include "glpmat.h"
|
alpar@1
|
718 |
-- int chol_numeric(int n,
|
alpar@1
|
719 |
-- int A_ptr[], int A_ind[], double A_val[], double A_diag[],
|
alpar@1
|
720 |
-- int U_ptr[], int U_ind[], double U_val[], double U_diag[]);
|
alpar@1
|
721 |
--
|
alpar@1
|
722 |
-- *Description*
|
alpar@1
|
723 |
--
|
alpar@1
|
724 |
-- The routine chol_symbolic implements the numeric phase of Cholesky
|
alpar@1
|
725 |
-- factorization A = U'*U, where A is a given sparse symmetric positive
|
alpar@1
|
726 |
-- definite matrix, U is a resultant upper triangular factor, U' is a
|
alpar@1
|
727 |
-- matrix transposed to U.
|
alpar@1
|
728 |
--
|
alpar@1
|
729 |
-- The parameter n is the order of matrices A and U.
|
alpar@1
|
730 |
--
|
alpar@1
|
731 |
-- Upper triangular part of the matrix A without diagonal elements is
|
alpar@1
|
732 |
-- specified in the arrays A_ptr, A_ind, and A_val in storage-by-rows
|
alpar@1
|
733 |
-- format. Diagonal elements of A are specified in the array A_diag,
|
alpar@1
|
734 |
-- where A_diag[0] is not used, A_diag[i] = a[i,i] for i = 1, ..., n.
|
alpar@1
|
735 |
-- The arrays A_ptr, A_ind, A_val, and A_diag are not changed on exit.
|
alpar@1
|
736 |
--
|
alpar@1
|
737 |
-- The pattern of the matrix U without diagonal elements (previously
|
alpar@1
|
738 |
-- computed with the routine chol_symbolic) is specified in the arrays
|
alpar@1
|
739 |
-- U_ptr and U_ind, which are not changed on exit. Numeric values of
|
alpar@1
|
740 |
-- non-diagonal elements of U are stored in corresponding locations of
|
alpar@1
|
741 |
-- the array U_val, and values of diagonal elements of U are stored in
|
alpar@1
|
742 |
-- locations U_diag[1], ..., U_diag[n].
|
alpar@1
|
743 |
--
|
alpar@1
|
744 |
-- *Returns*
|
alpar@1
|
745 |
--
|
alpar@1
|
746 |
-- The routine returns the number of non-positive diagonal elements of
|
alpar@1
|
747 |
-- the matrix U which have been replaced by a huge positive number (see
|
alpar@1
|
748 |
-- the method description below). Zero return code means the matrix A
|
alpar@1
|
749 |
-- has been successfully factorized.
|
alpar@1
|
750 |
--
|
alpar@1
|
751 |
-- *Method*
|
alpar@1
|
752 |
--
|
alpar@1
|
753 |
-- The routine chol_numeric computes the matrix U in a row-wise manner
|
alpar@1
|
754 |
-- using standard gaussian elimination technique. No pivoting is used.
|
alpar@1
|
755 |
--
|
alpar@1
|
756 |
-- Initially the routine sets U = A, and before k-th elimination step
|
alpar@1
|
757 |
-- the matrix U is the following:
|
alpar@1
|
758 |
--
|
alpar@1
|
759 |
-- 1 k n
|
alpar@1
|
760 |
-- 1 x x x x x x x x x x
|
alpar@1
|
761 |
-- . x x x x x x x x x
|
alpar@1
|
762 |
-- . . x x x x x x x x
|
alpar@1
|
763 |
-- . . . x x x x x x x
|
alpar@1
|
764 |
-- k . . . . * * * * * *
|
alpar@1
|
765 |
-- . . . . * * * * * *
|
alpar@1
|
766 |
-- . . . . * * * * * *
|
alpar@1
|
767 |
-- . . . . * * * * * *
|
alpar@1
|
768 |
-- . . . . * * * * * *
|
alpar@1
|
769 |
-- n . . . . * * * * * *
|
alpar@1
|
770 |
--
|
alpar@1
|
771 |
-- where 'x' are elements of already computed rows, '*' are elements of
|
alpar@1
|
772 |
-- the active submatrix. (Note that the lower triangular part of the
|
alpar@1
|
773 |
-- active submatrix being symmetric is not stored and diagonal elements
|
alpar@1
|
774 |
-- are stored separately in the array U_diag.)
|
alpar@1
|
775 |
--
|
alpar@1
|
776 |
-- The matrix A is assumed to be positive definite. However, if it is
|
alpar@1
|
777 |
-- close to semi-definite, on some elimination step a pivot u[k,k] may
|
alpar@1
|
778 |
-- happen to be non-positive due to round-off errors. In this case the
|
alpar@1
|
779 |
-- routine uses a technique proposed in:
|
alpar@1
|
780 |
--
|
alpar@1
|
781 |
-- S.J.Wright. The Cholesky factorization in interior-point and barrier
|
alpar@1
|
782 |
-- methods. Preprint MCS-P600-0596, Mathematics and Computer Science
|
alpar@1
|
783 |
-- Division, Argonne National Laboratory, Argonne, Ill., May 1996.
|
alpar@1
|
784 |
--
|
alpar@1
|
785 |
-- The routine just replaces non-positive u[k,k] by a huge positive
|
alpar@1
|
786 |
-- number. This involves non-diagonal elements in k-th row of U to be
|
alpar@1
|
787 |
-- close to zero that, in turn, involves k-th component of a solution
|
alpar@1
|
788 |
-- vector to be close to zero. Note, however, that this technique works
|
alpar@1
|
789 |
-- only if the system A*x = b is consistent. */
|
alpar@1
|
790 |
|
alpar@1
|
791 |
int chol_numeric(int n,
|
alpar@1
|
792 |
int A_ptr[], int A_ind[], double A_val[], double A_diag[],
|
alpar@1
|
793 |
int U_ptr[], int U_ind[], double U_val[], double U_diag[])
|
alpar@1
|
794 |
{ int i, j, k, t, t1, beg, end, beg1, end1, count = 0;
|
alpar@1
|
795 |
double ukk, uki, *work;
|
alpar@1
|
796 |
work = xcalloc(1+n, sizeof(double));
|
alpar@1
|
797 |
for (j = 1; j <= n; j++) work[j] = 0.0;
|
alpar@1
|
798 |
/* U := (upper triangle of A) */
|
alpar@1
|
799 |
/* note that the upper traingle of A is a subset of U */
|
alpar@1
|
800 |
for (i = 1; i <= n; i++)
|
alpar@1
|
801 |
{ beg = A_ptr[i], end = A_ptr[i+1];
|
alpar@1
|
802 |
for (t = beg; t < end; t++)
|
alpar@1
|
803 |
j = A_ind[t], work[j] = A_val[t];
|
alpar@1
|
804 |
beg = U_ptr[i], end = U_ptr[i+1];
|
alpar@1
|
805 |
for (t = beg; t < end; t++)
|
alpar@1
|
806 |
j = U_ind[t], U_val[t] = work[j], work[j] = 0.0;
|
alpar@1
|
807 |
U_diag[i] = A_diag[i];
|
alpar@1
|
808 |
}
|
alpar@1
|
809 |
/* main elimination loop */
|
alpar@1
|
810 |
for (k = 1; k <= n; k++)
|
alpar@1
|
811 |
{ /* transform k-th row of U */
|
alpar@1
|
812 |
ukk = U_diag[k];
|
alpar@1
|
813 |
if (ukk > 0.0)
|
alpar@1
|
814 |
U_diag[k] = ukk = sqrt(ukk);
|
alpar@1
|
815 |
else
|
alpar@1
|
816 |
U_diag[k] = ukk = DBL_MAX, count++;
|
alpar@1
|
817 |
/* (work) := (transformed k-th row) */
|
alpar@1
|
818 |
beg = U_ptr[k], end = U_ptr[k+1];
|
alpar@1
|
819 |
for (t = beg; t < end; t++)
|
alpar@1
|
820 |
work[U_ind[t]] = (U_val[t] /= ukk);
|
alpar@1
|
821 |
/* transform other rows of U */
|
alpar@1
|
822 |
for (t = beg; t < end; t++)
|
alpar@1
|
823 |
{ i = U_ind[t];
|
alpar@1
|
824 |
xassert(i > k);
|
alpar@1
|
825 |
/* (i-th row) := (i-th row) - u[k,i] * (k-th row) */
|
alpar@1
|
826 |
uki = work[i];
|
alpar@1
|
827 |
beg1 = U_ptr[i], end1 = U_ptr[i+1];
|
alpar@1
|
828 |
for (t1 = beg1; t1 < end1; t1++)
|
alpar@1
|
829 |
U_val[t1] -= uki * work[U_ind[t1]];
|
alpar@1
|
830 |
U_diag[i] -= uki * uki;
|
alpar@1
|
831 |
}
|
alpar@1
|
832 |
/* (work) := 0 */
|
alpar@1
|
833 |
for (t = beg; t < end; t++)
|
alpar@1
|
834 |
work[U_ind[t]] = 0.0;
|
alpar@1
|
835 |
}
|
alpar@1
|
836 |
xfree(work);
|
alpar@1
|
837 |
return count;
|
alpar@1
|
838 |
}
|
alpar@1
|
839 |
|
alpar@1
|
840 |
/*----------------------------------------------------------------------
|
alpar@1
|
841 |
-- u_solve - solve upper triangular system U*x = b.
|
alpar@1
|
842 |
--
|
alpar@1
|
843 |
-- *Synopsis*
|
alpar@1
|
844 |
--
|
alpar@1
|
845 |
-- #include "glpmat.h"
|
alpar@1
|
846 |
-- void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
|
alpar@1
|
847 |
-- double U_diag[], double x[]);
|
alpar@1
|
848 |
--
|
alpar@1
|
849 |
-- *Description*
|
alpar@1
|
850 |
--
|
alpar@1
|
851 |
-- The routine u_solve solves an linear system U*x = b, where U is an
|
alpar@1
|
852 |
-- upper triangular matrix.
|
alpar@1
|
853 |
--
|
alpar@1
|
854 |
-- The parameter n is the order of matrix U.
|
alpar@1
|
855 |
--
|
alpar@1
|
856 |
-- The matrix U without diagonal elements is specified in the arrays
|
alpar@1
|
857 |
-- U_ptr, U_ind, and U_val in storage-by-rows format. Diagonal elements
|
alpar@1
|
858 |
-- of U are specified in the array U_diag, where U_diag[0] is not used,
|
alpar@1
|
859 |
-- U_diag[i] = u[i,i] for i = 1, ..., n. All these four arrays are not
|
alpar@1
|
860 |
-- changed on exit.
|
alpar@1
|
861 |
--
|
alpar@1
|
862 |
-- The right-hand side vector b is specified on entry in the array x,
|
alpar@1
|
863 |
-- where x[0] is not used, and x[i] = b[i] for i = 1, ..., n. On exit
|
alpar@1
|
864 |
-- the routine stores computed components of the vector of unknowns x
|
alpar@1
|
865 |
-- in the array x in the same manner. */
|
alpar@1
|
866 |
|
alpar@1
|
867 |
void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
|
alpar@1
|
868 |
double U_diag[], double x[])
|
alpar@1
|
869 |
{ int i, t, beg, end;
|
alpar@1
|
870 |
double temp;
|
alpar@1
|
871 |
for (i = n; i >= 1; i--)
|
alpar@1
|
872 |
{ temp = x[i];
|
alpar@1
|
873 |
beg = U_ptr[i], end = U_ptr[i+1];
|
alpar@1
|
874 |
for (t = beg; t < end; t++)
|
alpar@1
|
875 |
temp -= U_val[t] * x[U_ind[t]];
|
alpar@1
|
876 |
xassert(U_diag[i] != 0.0);
|
alpar@1
|
877 |
x[i] = temp / U_diag[i];
|
alpar@1
|
878 |
}
|
alpar@1
|
879 |
return;
|
alpar@1
|
880 |
}
|
alpar@1
|
881 |
|
alpar@1
|
882 |
/*----------------------------------------------------------------------
|
alpar@1
|
883 |
-- ut_solve - solve lower triangular system U'*x = b.
|
alpar@1
|
884 |
--
|
alpar@1
|
885 |
-- *Synopsis*
|
alpar@1
|
886 |
--
|
alpar@1
|
887 |
-- #include "glpmat.h"
|
alpar@1
|
888 |
-- void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
|
alpar@1
|
889 |
-- double U_diag[], double x[]);
|
alpar@1
|
890 |
--
|
alpar@1
|
891 |
-- *Description*
|
alpar@1
|
892 |
--
|
alpar@1
|
893 |
-- The routine ut_solve solves an linear system U'*x = b, where U is a
|
alpar@1
|
894 |
-- matrix transposed to an upper triangular matrix.
|
alpar@1
|
895 |
--
|
alpar@1
|
896 |
-- The parameter n is the order of matrix U.
|
alpar@1
|
897 |
--
|
alpar@1
|
898 |
-- The matrix U without diagonal elements is specified in the arrays
|
alpar@1
|
899 |
-- U_ptr, U_ind, and U_val in storage-by-rows format. Diagonal elements
|
alpar@1
|
900 |
-- of U are specified in the array U_diag, where U_diag[0] is not used,
|
alpar@1
|
901 |
-- U_diag[i] = u[i,i] for i = 1, ..., n. All these four arrays are not
|
alpar@1
|
902 |
-- changed on exit.
|
alpar@1
|
903 |
--
|
alpar@1
|
904 |
-- The right-hand side vector b is specified on entry in the array x,
|
alpar@1
|
905 |
-- where x[0] is not used, and x[i] = b[i] for i = 1, ..., n. On exit
|
alpar@1
|
906 |
-- the routine stores computed components of the vector of unknowns x
|
alpar@1
|
907 |
-- in the array x in the same manner. */
|
alpar@1
|
908 |
|
alpar@1
|
909 |
void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
|
alpar@1
|
910 |
double U_diag[], double x[])
|
alpar@1
|
911 |
{ int i, t, beg, end;
|
alpar@1
|
912 |
double temp;
|
alpar@1
|
913 |
for (i = 1; i <= n; i++)
|
alpar@1
|
914 |
{ xassert(U_diag[i] != 0.0);
|
alpar@1
|
915 |
temp = (x[i] /= U_diag[i]);
|
alpar@1
|
916 |
if (temp == 0.0) continue;
|
alpar@1
|
917 |
beg = U_ptr[i], end = U_ptr[i+1];
|
alpar@1
|
918 |
for (t = beg; t < end; t++)
|
alpar@1
|
919 |
x[U_ind[t]] -= U_val[t] * temp;
|
alpar@1
|
920 |
}
|
alpar@1
|
921 |
return;
|
alpar@1
|
922 |
}
|
alpar@1
|
923 |
|
alpar@1
|
924 |
/* eof */
|