src/glpmat.h
changeset 1 c445c931472f
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/glpmat.h	Mon Dec 06 13:09:21 2010 +0100
     1.3 @@ -0,0 +1,198 @@
     1.4 +/* glpmat.h (linear algebra routines) */
     1.5 +
     1.6 +/***********************************************************************
     1.7 +*  This code is part of GLPK (GNU Linear Programming Kit).
     1.8 +*
     1.9 +*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
    1.10 +*  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
    1.11 +*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
    1.12 +*  E-mail: <mao@gnu.org>.
    1.13 +*
    1.14 +*  GLPK is free software: you can redistribute it and/or modify it
    1.15 +*  under the terms of the GNU General Public License as published by
    1.16 +*  the Free Software Foundation, either version 3 of the License, or
    1.17 +*  (at your option) any later version.
    1.18 +*
    1.19 +*  GLPK is distributed in the hope that it will be useful, but WITHOUT
    1.20 +*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    1.21 +*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    1.22 +*  License for more details.
    1.23 +*
    1.24 +*  You should have received a copy of the GNU General Public License
    1.25 +*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    1.26 +***********************************************************************/
    1.27 +
    1.28 +#ifndef GLPMAT_H
    1.29 +#define GLPMAT_H
    1.30 +
    1.31 +/***********************************************************************
    1.32 +*  FULL-VECTOR STORAGE
    1.33 +* 
    1.34 +*  For a sparse vector x having n elements, ne of which are non-zero,
    1.35 +*  the full-vector storage format uses two arrays x_ind and x_vec, which
    1.36 +*  are set up as follows:
    1.37 +* 
    1.38 +*  x_ind is an integer array of length [1+ne]. Location x_ind[0] is
    1.39 +*  not used, and locations x_ind[1], ..., x_ind[ne] contain indices of
    1.40 +*  non-zero elements in vector x.
    1.41 +* 
    1.42 +*  x_vec is a floating-point array of length [1+n]. Location x_vec[0]
    1.43 +*  is not used, and locations x_vec[1], ..., x_vec[n] contain numeric
    1.44 +*  values of ALL elements in vector x, including its zero elements.
    1.45 +* 
    1.46 +*  Let, for example, the following sparse vector x be given:
    1.47 +* 
    1.48 +*     (0, 1, 0, 0, 2, 3, 0, 4)
    1.49 +* 
    1.50 +*  Then the arrays are:
    1.51 +* 
    1.52 +*     x_ind = { X; 2, 5, 6, 8 }
    1.53 +* 
    1.54 +*     x_vec = { X; 0, 1, 0, 0, 2, 3, 0, 4 }
    1.55 +* 
    1.56 +*  COMPRESSED-VECTOR STORAGE
    1.57 +* 
    1.58 +*  For a sparse vector x having n elements, ne of which are non-zero,
    1.59 +*  the compressed-vector storage format uses two arrays x_ind and x_vec,
    1.60 +*  which are set up as follows:
    1.61 +* 
    1.62 +*  x_ind is an integer array of length [1+ne]. Location x_ind[0] is
    1.63 +*  not used, and locations x_ind[1], ..., x_ind[ne] contain indices of
    1.64 +*  non-zero elements in vector x.
    1.65 +* 
    1.66 +*  x_vec is a floating-point array of length [1+ne]. Location x_vec[0]
    1.67 +*  is not used, and locations x_vec[1], ..., x_vec[ne] contain numeric
    1.68 +*  values of corresponding non-zero elements in vector x.
    1.69 +* 
    1.70 +*  Let, for example, the following sparse vector x be given:
    1.71 +* 
    1.72 +*     (0, 1, 0, 0, 2, 3, 0, 4)
    1.73 +* 
    1.74 +*  Then the arrays are:
    1.75 +*
    1.76 +*     x_ind = { X; 2, 5, 6, 8 }
    1.77 +* 
    1.78 +*     x_vec = { X; 1, 2, 3, 4 }
    1.79 +* 
    1.80 +*  STORAGE-BY-ROWS
    1.81 +* 
    1.82 +*  For a sparse matrix A, which has m rows, n columns, and ne non-zero
    1.83 +*  elements the storage-by-rows format uses three arrays A_ptr, A_ind,
    1.84 +*  and A_val, which are set up as follows:
    1.85 +* 
    1.86 +*  A_ptr is an integer array of length [1+m+1] also called "row pointer
    1.87 +*  array". It contains the relative starting positions of each row of A
    1.88 +*  in the arrays A_ind and A_val, i.e. element A_ptr[i], 1 <= i <= m,
    1.89 +*  indicates where row i begins in the arrays A_ind and A_val. If all
    1.90 +*  elements in row i are zero, then A_ptr[i] = A_ptr[i+1]. Location
    1.91 +*  A_ptr[0] is not used, location A_ptr[1] must contain 1, and location
    1.92 +*  A_ptr[m+1] must contain ne+1 that indicates the position after the
    1.93 +*  last element in the arrays A_ind and A_val.
    1.94 +* 
    1.95 +*  A_ind is an integer array of length [1+ne]. Location A_ind[0] is not
    1.96 +*  used, and locations A_ind[1], ..., A_ind[ne] contain column indices
    1.97 +*  of (non-zero) elements in matrix A.
    1.98 +*
    1.99 +*  A_val is a floating-point array of length [1+ne]. Location A_val[0]
   1.100 +*  is not used, and locations A_val[1], ..., A_val[ne] contain numeric
   1.101 +*  values of non-zero elements in matrix A.
   1.102 +* 
   1.103 +*  Non-zero elements of matrix A are stored contiguously, and the rows
   1.104 +*  of matrix A are stored consecutively from 1 to m in the arrays A_ind
   1.105 +*  and A_val. The elements in each row of A may be stored in any order
   1.106 +*  in A_ind and A_val. Note that elements with duplicate column indices
   1.107 +*  are not allowed.
   1.108 +* 
   1.109 +*  Let, for example, the following sparse matrix A be given:
   1.110 +* 
   1.111 +*     | 11  . 13  .  .  . |
   1.112 +*     | 21 22  . 24  .  . |
   1.113 +*     |  . 32 33  .  .  . |
   1.114 +*     |  .  . 43 44  . 46 |
   1.115 +*     |  .  .  .  .  .  . |
   1.116 +*     | 61 62  .  .  . 66 |
   1.117 +* 
   1.118 +*  Then the arrays are:
   1.119 +* 
   1.120 +*     A_ptr = { X; 1, 3, 6, 8, 11, 11; 14 }
   1.121 +*
   1.122 +*     A_ind = { X;  1,  3;  4,  2,  1;  2,  3;  4,  3,  6;  1,  2,  6 }
   1.123 +* 
   1.124 +*     A_val = { X; 11, 13; 24, 22, 21; 32, 33; 44, 43, 46; 61, 62, 66 }
   1.125 +* 
   1.126 +*  PERMUTATION MATRICES
   1.127 +* 
   1.128 +*  Let P be a permutation matrix of the order n. It is represented as
   1.129 +*  an integer array P_per of length [1+n+n] as follows: if p[i,j] = 1,
   1.130 +*  then P_per[i] = j and P_per[n+j] = i. Location P_per[0] is not used.
   1.131 +* 
   1.132 +*  Let A' = P*A. If i-th row of A corresponds to i'-th row of A', then
   1.133 +*  P_per[i'] = i and P_per[n+i] = i'.
   1.134 +* 
   1.135 +*  References:
   1.136 +* 
   1.137 +*  1. Gustavson F.G. Some basic techniques for solving sparse systems of
   1.138 +*     linear equations. In Rose and Willoughby (1972), pp. 41-52.
   1.139 +* 
   1.140 +*  2. Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard.
   1.141 +*     University of Tennessee (2001). */
   1.142 +
   1.143 +#define check_fvs _glp_mat_check_fvs
   1.144 +int check_fvs(int n, int nnz, int ind[], double vec[]);
   1.145 +/* check sparse vector in full-vector storage format */
   1.146 +
   1.147 +#define check_pattern _glp_mat_check_pattern
   1.148 +int check_pattern(int m, int n, int A_ptr[], int A_ind[]);
   1.149 +/* check pattern of sparse matrix */
   1.150 +
   1.151 +#define transpose _glp_mat_transpose
   1.152 +void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[],
   1.153 +      int AT_ptr[], int AT_ind[], double AT_val[]);
   1.154 +/* transpose sparse matrix */
   1.155 +
   1.156 +#define adat_symbolic _glp_mat_adat_symbolic
   1.157 +int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[],
   1.158 +      int S_ptr[]);
   1.159 +/* compute S = P*A*D*A'*P' (symbolic phase) */
   1.160 +
   1.161 +#define adat_numeric _glp_mat_adat_numeric
   1.162 +void adat_numeric(int m, int n, int P_per[],
   1.163 +      int A_ptr[], int A_ind[], double A_val[], double D_diag[],
   1.164 +      int S_ptr[], int S_ind[], double S_val[], double S_diag[]);
   1.165 +/* compute S = P*A*D*A'*P' (numeric phase) */
   1.166 +
   1.167 +#define min_degree _glp_mat_min_degree
   1.168 +void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]);
   1.169 +/* minimum degree ordering */
   1.170 +
   1.171 +#define amd_order1 _glp_mat_amd_order1
   1.172 +void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[]);
   1.173 +/* approximate minimum degree ordering (AMD) */
   1.174 +
   1.175 +#define symamd_ord _glp_mat_symamd_ord
   1.176 +void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[]);
   1.177 +/* approximate minimum degree ordering (SYMAMD) */
   1.178 +
   1.179 +#define chol_symbolic _glp_mat_chol_symbolic
   1.180 +int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]);
   1.181 +/* compute Cholesky factorization (symbolic phase) */
   1.182 +
   1.183 +#define chol_numeric _glp_mat_chol_numeric
   1.184 +int chol_numeric(int n,
   1.185 +      int A_ptr[], int A_ind[], double A_val[], double A_diag[],
   1.186 +      int U_ptr[], int U_ind[], double U_val[], double U_diag[]);
   1.187 +/* compute Cholesky factorization (numeric phase) */
   1.188 +
   1.189 +#define u_solve _glp_mat_u_solve
   1.190 +void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
   1.191 +      double U_diag[], double x[]);
   1.192 +/* solve upper triangular system U*x = b */
   1.193 +
   1.194 +#define ut_solve _glp_mat_ut_solve
   1.195 +void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
   1.196 +      double U_diag[], double x[]);
   1.197 +/* solve lower triangular system U'*x = b */
   1.198 +
   1.199 +#endif
   1.200 +
   1.201 +/* eof */