src/glpmat.h
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
alpar@1
     1
/* glpmat.h (linear algebra routines) */
alpar@1
     2
alpar@1
     3
/***********************************************************************
alpar@1
     4
*  This code is part of GLPK (GNU Linear Programming Kit).
alpar@1
     5
*
alpar@1
     6
*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
alpar@1
     7
*  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
alpar@1
     8
*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
alpar@1
     9
*  E-mail: <mao@gnu.org>.
alpar@1
    10
*
alpar@1
    11
*  GLPK is free software: you can redistribute it and/or modify it
alpar@1
    12
*  under the terms of the GNU General Public License as published by
alpar@1
    13
*  the Free Software Foundation, either version 3 of the License, or
alpar@1
    14
*  (at your option) any later version.
alpar@1
    15
*
alpar@1
    16
*  GLPK is distributed in the hope that it will be useful, but WITHOUT
alpar@1
    17
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
alpar@1
    18
*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
alpar@1
    19
*  License for more details.
alpar@1
    20
*
alpar@1
    21
*  You should have received a copy of the GNU General Public License
alpar@1
    22
*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
alpar@1
    23
***********************************************************************/
alpar@1
    24
alpar@1
    25
#ifndef GLPMAT_H
alpar@1
    26
#define GLPMAT_H
alpar@1
    27
alpar@1
    28
/***********************************************************************
alpar@1
    29
*  FULL-VECTOR STORAGE
alpar@1
    30
* 
alpar@1
    31
*  For a sparse vector x having n elements, ne of which are non-zero,
alpar@1
    32
*  the full-vector storage format uses two arrays x_ind and x_vec, which
alpar@1
    33
*  are set up as follows:
alpar@1
    34
* 
alpar@1
    35
*  x_ind is an integer array of length [1+ne]. Location x_ind[0] is
alpar@1
    36
*  not used, and locations x_ind[1], ..., x_ind[ne] contain indices of
alpar@1
    37
*  non-zero elements in vector x.
alpar@1
    38
* 
alpar@1
    39
*  x_vec is a floating-point array of length [1+n]. Location x_vec[0]
alpar@1
    40
*  is not used, and locations x_vec[1], ..., x_vec[n] contain numeric
alpar@1
    41
*  values of ALL elements in vector x, including its zero elements.
alpar@1
    42
* 
alpar@1
    43
*  Let, for example, the following sparse vector x be given:
alpar@1
    44
* 
alpar@1
    45
*     (0, 1, 0, 0, 2, 3, 0, 4)
alpar@1
    46
* 
alpar@1
    47
*  Then the arrays are:
alpar@1
    48
* 
alpar@1
    49
*     x_ind = { X; 2, 5, 6, 8 }
alpar@1
    50
* 
alpar@1
    51
*     x_vec = { X; 0, 1, 0, 0, 2, 3, 0, 4 }
alpar@1
    52
* 
alpar@1
    53
*  COMPRESSED-VECTOR STORAGE
alpar@1
    54
* 
alpar@1
    55
*  For a sparse vector x having n elements, ne of which are non-zero,
alpar@1
    56
*  the compressed-vector storage format uses two arrays x_ind and x_vec,
alpar@1
    57
*  which are set up as follows:
alpar@1
    58
* 
alpar@1
    59
*  x_ind is an integer array of length [1+ne]. Location x_ind[0] is
alpar@1
    60
*  not used, and locations x_ind[1], ..., x_ind[ne] contain indices of
alpar@1
    61
*  non-zero elements in vector x.
alpar@1
    62
* 
alpar@1
    63
*  x_vec is a floating-point array of length [1+ne]. Location x_vec[0]
alpar@1
    64
*  is not used, and locations x_vec[1], ..., x_vec[ne] contain numeric
alpar@1
    65
*  values of corresponding non-zero elements in vector x.
alpar@1
    66
* 
alpar@1
    67
*  Let, for example, the following sparse vector x be given:
alpar@1
    68
* 
alpar@1
    69
*     (0, 1, 0, 0, 2, 3, 0, 4)
alpar@1
    70
* 
alpar@1
    71
*  Then the arrays are:
alpar@1
    72
*
alpar@1
    73
*     x_ind = { X; 2, 5, 6, 8 }
alpar@1
    74
* 
alpar@1
    75
*     x_vec = { X; 1, 2, 3, 4 }
alpar@1
    76
* 
alpar@1
    77
*  STORAGE-BY-ROWS
alpar@1
    78
* 
alpar@1
    79
*  For a sparse matrix A, which has m rows, n columns, and ne non-zero
alpar@1
    80
*  elements the storage-by-rows format uses three arrays A_ptr, A_ind,
alpar@1
    81
*  and A_val, which are set up as follows:
alpar@1
    82
* 
alpar@1
    83
*  A_ptr is an integer array of length [1+m+1] also called "row pointer
alpar@1
    84
*  array". It contains the relative starting positions of each row of A
alpar@1
    85
*  in the arrays A_ind and A_val, i.e. element A_ptr[i], 1 <= i <= m,
alpar@1
    86
*  indicates where row i begins in the arrays A_ind and A_val. If all
alpar@1
    87
*  elements in row i are zero, then A_ptr[i] = A_ptr[i+1]. Location
alpar@1
    88
*  A_ptr[0] is not used, location A_ptr[1] must contain 1, and location
alpar@1
    89
*  A_ptr[m+1] must contain ne+1 that indicates the position after the
alpar@1
    90
*  last element in the arrays A_ind and A_val.
alpar@1
    91
* 
alpar@1
    92
*  A_ind is an integer array of length [1+ne]. Location A_ind[0] is not
alpar@1
    93
*  used, and locations A_ind[1], ..., A_ind[ne] contain column indices
alpar@1
    94
*  of (non-zero) elements in matrix A.
alpar@1
    95
*
alpar@1
    96
*  A_val is a floating-point array of length [1+ne]. Location A_val[0]
alpar@1
    97
*  is not used, and locations A_val[1], ..., A_val[ne] contain numeric
alpar@1
    98
*  values of non-zero elements in matrix A.
alpar@1
    99
* 
alpar@1
   100
*  Non-zero elements of matrix A are stored contiguously, and the rows
alpar@1
   101
*  of matrix A are stored consecutively from 1 to m in the arrays A_ind
alpar@1
   102
*  and A_val. The elements in each row of A may be stored in any order
alpar@1
   103
*  in A_ind and A_val. Note that elements with duplicate column indices
alpar@1
   104
*  are not allowed.
alpar@1
   105
* 
alpar@1
   106
*  Let, for example, the following sparse matrix A be given:
alpar@1
   107
* 
alpar@1
   108
*     | 11  . 13  .  .  . |
alpar@1
   109
*     | 21 22  . 24  .  . |
alpar@1
   110
*     |  . 32 33  .  .  . |
alpar@1
   111
*     |  .  . 43 44  . 46 |
alpar@1
   112
*     |  .  .  .  .  .  . |
alpar@1
   113
*     | 61 62  .  .  . 66 |
alpar@1
   114
* 
alpar@1
   115
*  Then the arrays are:
alpar@1
   116
* 
alpar@1
   117
*     A_ptr = { X; 1, 3, 6, 8, 11, 11; 14 }
alpar@1
   118
*
alpar@1
   119
*     A_ind = { X;  1,  3;  4,  2,  1;  2,  3;  4,  3,  6;  1,  2,  6 }
alpar@1
   120
* 
alpar@1
   121
*     A_val = { X; 11, 13; 24, 22, 21; 32, 33; 44, 43, 46; 61, 62, 66 }
alpar@1
   122
* 
alpar@1
   123
*  PERMUTATION MATRICES
alpar@1
   124
* 
alpar@1
   125
*  Let P be a permutation matrix of the order n. It is represented as
alpar@1
   126
*  an integer array P_per of length [1+n+n] as follows: if p[i,j] = 1,
alpar@1
   127
*  then P_per[i] = j and P_per[n+j] = i. Location P_per[0] is not used.
alpar@1
   128
* 
alpar@1
   129
*  Let A' = P*A. If i-th row of A corresponds to i'-th row of A', then
alpar@1
   130
*  P_per[i'] = i and P_per[n+i] = i'.
alpar@1
   131
* 
alpar@1
   132
*  References:
alpar@1
   133
* 
alpar@1
   134
*  1. Gustavson F.G. Some basic techniques for solving sparse systems of
alpar@1
   135
*     linear equations. In Rose and Willoughby (1972), pp. 41-52.
alpar@1
   136
* 
alpar@1
   137
*  2. Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard.
alpar@1
   138
*     University of Tennessee (2001). */
alpar@1
   139
alpar@1
   140
#define check_fvs _glp_mat_check_fvs
alpar@1
   141
int check_fvs(int n, int nnz, int ind[], double vec[]);
alpar@1
   142
/* check sparse vector in full-vector storage format */
alpar@1
   143
alpar@1
   144
#define check_pattern _glp_mat_check_pattern
alpar@1
   145
int check_pattern(int m, int n, int A_ptr[], int A_ind[]);
alpar@1
   146
/* check pattern of sparse matrix */
alpar@1
   147
alpar@1
   148
#define transpose _glp_mat_transpose
alpar@1
   149
void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[],
alpar@1
   150
      int AT_ptr[], int AT_ind[], double AT_val[]);
alpar@1
   151
/* transpose sparse matrix */
alpar@1
   152
alpar@1
   153
#define adat_symbolic _glp_mat_adat_symbolic
alpar@1
   154
int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[],
alpar@1
   155
      int S_ptr[]);
alpar@1
   156
/* compute S = P*A*D*A'*P' (symbolic phase) */
alpar@1
   157
alpar@1
   158
#define adat_numeric _glp_mat_adat_numeric
alpar@1
   159
void adat_numeric(int m, int n, int P_per[],
alpar@1
   160
      int A_ptr[], int A_ind[], double A_val[], double D_diag[],
alpar@1
   161
      int S_ptr[], int S_ind[], double S_val[], double S_diag[]);
alpar@1
   162
/* compute S = P*A*D*A'*P' (numeric phase) */
alpar@1
   163
alpar@1
   164
#define min_degree _glp_mat_min_degree
alpar@1
   165
void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]);
alpar@1
   166
/* minimum degree ordering */
alpar@1
   167
alpar@1
   168
#define amd_order1 _glp_mat_amd_order1
alpar@1
   169
void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[]);
alpar@1
   170
/* approximate minimum degree ordering (AMD) */
alpar@1
   171
alpar@1
   172
#define symamd_ord _glp_mat_symamd_ord
alpar@1
   173
void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[]);
alpar@1
   174
/* approximate minimum degree ordering (SYMAMD) */
alpar@1
   175
alpar@1
   176
#define chol_symbolic _glp_mat_chol_symbolic
alpar@1
   177
int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]);
alpar@1
   178
/* compute Cholesky factorization (symbolic phase) */
alpar@1
   179
alpar@1
   180
#define chol_numeric _glp_mat_chol_numeric
alpar@1
   181
int chol_numeric(int n,
alpar@1
   182
      int A_ptr[], int A_ind[], double A_val[], double A_diag[],
alpar@1
   183
      int U_ptr[], int U_ind[], double U_val[], double U_diag[]);
alpar@1
   184
/* compute Cholesky factorization (numeric phase) */
alpar@1
   185
alpar@1
   186
#define u_solve _glp_mat_u_solve
alpar@1
   187
void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
alpar@1
   188
      double U_diag[], double x[]);
alpar@1
   189
/* solve upper triangular system U*x = b */
alpar@1
   190
alpar@1
   191
#define ut_solve _glp_mat_ut_solve
alpar@1
   192
void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
alpar@1
   193
      double U_diag[], double x[]);
alpar@1
   194
/* solve lower triangular system U'*x = b */
alpar@1
   195
alpar@1
   196
#endif
alpar@1
   197
alpar@1
   198
/* eof */