src/glpmat.h
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* glpmat.h (linear algebra routines) */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #ifndef GLPMAT_H
    26 #define GLPMAT_H
    27 
    28 /***********************************************************************
    29 *  FULL-VECTOR STORAGE
    30 * 
    31 *  For a sparse vector x having n elements, ne of which are non-zero,
    32 *  the full-vector storage format uses two arrays x_ind and x_vec, which
    33 *  are set up as follows:
    34 * 
    35 *  x_ind is an integer array of length [1+ne]. Location x_ind[0] is
    36 *  not used, and locations x_ind[1], ..., x_ind[ne] contain indices of
    37 *  non-zero elements in vector x.
    38 * 
    39 *  x_vec is a floating-point array of length [1+n]. Location x_vec[0]
    40 *  is not used, and locations x_vec[1], ..., x_vec[n] contain numeric
    41 *  values of ALL elements in vector x, including its zero elements.
    42 * 
    43 *  Let, for example, the following sparse vector x be given:
    44 * 
    45 *     (0, 1, 0, 0, 2, 3, 0, 4)
    46 * 
    47 *  Then the arrays are:
    48 * 
    49 *     x_ind = { X; 2, 5, 6, 8 }
    50 * 
    51 *     x_vec = { X; 0, 1, 0, 0, 2, 3, 0, 4 }
    52 * 
    53 *  COMPRESSED-VECTOR STORAGE
    54 * 
    55 *  For a sparse vector x having n elements, ne of which are non-zero,
    56 *  the compressed-vector storage format uses two arrays x_ind and x_vec,
    57 *  which are set up as follows:
    58 * 
    59 *  x_ind is an integer array of length [1+ne]. Location x_ind[0] is
    60 *  not used, and locations x_ind[1], ..., x_ind[ne] contain indices of
    61 *  non-zero elements in vector x.
    62 * 
    63 *  x_vec is a floating-point array of length [1+ne]. Location x_vec[0]
    64 *  is not used, and locations x_vec[1], ..., x_vec[ne] contain numeric
    65 *  values of corresponding non-zero elements in vector x.
    66 * 
    67 *  Let, for example, the following sparse vector x be given:
    68 * 
    69 *     (0, 1, 0, 0, 2, 3, 0, 4)
    70 * 
    71 *  Then the arrays are:
    72 *
    73 *     x_ind = { X; 2, 5, 6, 8 }
    74 * 
    75 *     x_vec = { X; 1, 2, 3, 4 }
    76 * 
    77 *  STORAGE-BY-ROWS
    78 * 
    79 *  For a sparse matrix A, which has m rows, n columns, and ne non-zero
    80 *  elements the storage-by-rows format uses three arrays A_ptr, A_ind,
    81 *  and A_val, which are set up as follows:
    82 * 
    83 *  A_ptr is an integer array of length [1+m+1] also called "row pointer
    84 *  array". It contains the relative starting positions of each row of A
    85 *  in the arrays A_ind and A_val, i.e. element A_ptr[i], 1 <= i <= m,
    86 *  indicates where row i begins in the arrays A_ind and A_val. If all
    87 *  elements in row i are zero, then A_ptr[i] = A_ptr[i+1]. Location
    88 *  A_ptr[0] is not used, location A_ptr[1] must contain 1, and location
    89 *  A_ptr[m+1] must contain ne+1 that indicates the position after the
    90 *  last element in the arrays A_ind and A_val.
    91 * 
    92 *  A_ind is an integer array of length [1+ne]. Location A_ind[0] is not
    93 *  used, and locations A_ind[1], ..., A_ind[ne] contain column indices
    94 *  of (non-zero) elements in matrix A.
    95 *
    96 *  A_val is a floating-point array of length [1+ne]. Location A_val[0]
    97 *  is not used, and locations A_val[1], ..., A_val[ne] contain numeric
    98 *  values of non-zero elements in matrix A.
    99 * 
   100 *  Non-zero elements of matrix A are stored contiguously, and the rows
   101 *  of matrix A are stored consecutively from 1 to m in the arrays A_ind
   102 *  and A_val. The elements in each row of A may be stored in any order
   103 *  in A_ind and A_val. Note that elements with duplicate column indices
   104 *  are not allowed.
   105 * 
   106 *  Let, for example, the following sparse matrix A be given:
   107 * 
   108 *     | 11  . 13  .  .  . |
   109 *     | 21 22  . 24  .  . |
   110 *     |  . 32 33  .  .  . |
   111 *     |  .  . 43 44  . 46 |
   112 *     |  .  .  .  .  .  . |
   113 *     | 61 62  .  .  . 66 |
   114 * 
   115 *  Then the arrays are:
   116 * 
   117 *     A_ptr = { X; 1, 3, 6, 8, 11, 11; 14 }
   118 *
   119 *     A_ind = { X;  1,  3;  4,  2,  1;  2,  3;  4,  3,  6;  1,  2,  6 }
   120 * 
   121 *     A_val = { X; 11, 13; 24, 22, 21; 32, 33; 44, 43, 46; 61, 62, 66 }
   122 * 
   123 *  PERMUTATION MATRICES
   124 * 
   125 *  Let P be a permutation matrix of the order n. It is represented as
   126 *  an integer array P_per of length [1+n+n] as follows: if p[i,j] = 1,
   127 *  then P_per[i] = j and P_per[n+j] = i. Location P_per[0] is not used.
   128 * 
   129 *  Let A' = P*A. If i-th row of A corresponds to i'-th row of A', then
   130 *  P_per[i'] = i and P_per[n+i] = i'.
   131 * 
   132 *  References:
   133 * 
   134 *  1. Gustavson F.G. Some basic techniques for solving sparse systems of
   135 *     linear equations. In Rose and Willoughby (1972), pp. 41-52.
   136 * 
   137 *  2. Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard.
   138 *     University of Tennessee (2001). */
   139 
   140 #define check_fvs _glp_mat_check_fvs
   141 int check_fvs(int n, int nnz, int ind[], double vec[]);
   142 /* check sparse vector in full-vector storage format */
   143 
   144 #define check_pattern _glp_mat_check_pattern
   145 int check_pattern(int m, int n, int A_ptr[], int A_ind[]);
   146 /* check pattern of sparse matrix */
   147 
   148 #define transpose _glp_mat_transpose
   149 void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[],
   150       int AT_ptr[], int AT_ind[], double AT_val[]);
   151 /* transpose sparse matrix */
   152 
   153 #define adat_symbolic _glp_mat_adat_symbolic
   154 int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[],
   155       int S_ptr[]);
   156 /* compute S = P*A*D*A'*P' (symbolic phase) */
   157 
   158 #define adat_numeric _glp_mat_adat_numeric
   159 void adat_numeric(int m, int n, int P_per[],
   160       int A_ptr[], int A_ind[], double A_val[], double D_diag[],
   161       int S_ptr[], int S_ind[], double S_val[], double S_diag[]);
   162 /* compute S = P*A*D*A'*P' (numeric phase) */
   163 
   164 #define min_degree _glp_mat_min_degree
   165 void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]);
   166 /* minimum degree ordering */
   167 
   168 #define amd_order1 _glp_mat_amd_order1
   169 void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[]);
   170 /* approximate minimum degree ordering (AMD) */
   171 
   172 #define symamd_ord _glp_mat_symamd_ord
   173 void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[]);
   174 /* approximate minimum degree ordering (SYMAMD) */
   175 
   176 #define chol_symbolic _glp_mat_chol_symbolic
   177 int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]);
   178 /* compute Cholesky factorization (symbolic phase) */
   179 
   180 #define chol_numeric _glp_mat_chol_numeric
   181 int chol_numeric(int n,
   182       int A_ptr[], int A_ind[], double A_val[], double A_diag[],
   183       int U_ptr[], int U_ind[], double U_val[], double U_diag[]);
   184 /* compute Cholesky factorization (numeric phase) */
   185 
   186 #define u_solve _glp_mat_u_solve
   187 void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
   188       double U_diag[], double x[]);
   189 /* solve upper triangular system U*x = b */
   190 
   191 #define ut_solve _glp_mat_ut_solve
   192 void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
   193       double U_diag[], double x[]);
   194 /* solve lower triangular system U'*x = b */
   195 
   196 #endif
   197 
   198 /* eof */