src/glpios11.c
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* glpios11.c (process cuts stored in the local cut pool) */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #include "glpios.h"
    26 
    27 /***********************************************************************
    28 *  NAME
    29 *
    30 *  ios_process_cuts - process cuts stored in the local cut pool
    31 *
    32 *  SYNOPSIS
    33 *
    34 *  #include "glpios.h"
    35 *  void ios_process_cuts(glp_tree *T);
    36 *
    37 *  DESCRIPTION
    38 *
    39 *  The routine ios_process_cuts analyzes each cut currently stored in
    40 *  the local cut pool, which must be non-empty, and either adds the cut
    41 *  to the current subproblem or just discards it. All cuts are assumed
    42 *  to be locally valid. On exit the local cut pool remains unchanged.
    43 *
    44 *  REFERENCES
    45 *
    46 *  1. E.Balas, S.Ceria, G.Cornuejols, "Mixed 0-1 Programming by
    47 *     Lift-and-Project in a Branch-and-Cut Framework", Management Sc.,
    48 *     42 (1996) 1229-1246.
    49 *
    50 *  2. G.Andreello, A.Caprara, and M.Fischetti, "Embedding Cuts in
    51 *     a Branch&Cut Framework: a Computational Study with {0,1/2}-Cuts",
    52 *     Preliminary Draft, October 28, 2003, pp.6-8. */
    53 
    54 struct info
    55 {     /* estimated cut efficiency */
    56       IOSCUT *cut;
    57       /* pointer to cut in the cut pool */
    58       char flag;
    59       /* if this flag is set, the cut is included into the current
    60          subproblem */
    61       double eff;
    62       /* cut efficacy (normalized residual) */
    63       double deg;
    64       /* lower bound to objective degradation */
    65 };
    66 
    67 static int fcmp(const void *arg1, const void *arg2)
    68 {     const struct info *info1 = arg1, *info2 = arg2;
    69       if (info1->deg == 0.0 && info2->deg == 0.0)
    70       {  if (info1->eff > info2->eff) return -1;
    71          if (info1->eff < info2->eff) return +1;
    72       }
    73       else
    74       {  if (info1->deg > info2->deg) return -1;
    75          if (info1->deg < info2->deg) return +1;
    76       }
    77       return 0;
    78 }
    79 
    80 static double parallel(IOSCUT *a, IOSCUT *b, double work[]);
    81 
    82 void ios_process_cuts(glp_tree *T)
    83 {     IOSPOOL *pool;
    84       IOSCUT *cut;
    85       IOSAIJ *aij;
    86       struct info *info;
    87       int k, kk, max_cuts, len, ret, *ind;
    88       double *val, *work;
    89       /* the current subproblem must exist */
    90       xassert(T->curr != NULL);
    91       /* the pool must exist and be non-empty */
    92       pool = T->local;
    93       xassert(pool != NULL);
    94       xassert(pool->size > 0);
    95       /* allocate working arrays */
    96       info = xcalloc(1+pool->size, sizeof(struct info));
    97       ind = xcalloc(1+T->n, sizeof(int));
    98       val = xcalloc(1+T->n, sizeof(double));
    99       work = xcalloc(1+T->n, sizeof(double));
   100       for (k = 1; k <= T->n; k++) work[k] = 0.0;
   101       /* build the list of cuts stored in the cut pool */
   102       for (k = 0, cut = pool->head; cut != NULL; cut = cut->next)
   103          k++, info[k].cut = cut, info[k].flag = 0;
   104       xassert(k == pool->size);
   105       /* estimate efficiency of all cuts in the cut pool */
   106       for (k = 1; k <= pool->size; k++)
   107       {  double temp, dy, dz;
   108          cut = info[k].cut;
   109          /* build the vector of cut coefficients and compute its
   110             Euclidean norm */
   111          len = 0; temp = 0.0;
   112          for (aij = cut->ptr; aij != NULL; aij = aij->next)
   113          {  xassert(1 <= aij->j && aij->j <= T->n);
   114             len++, ind[len] = aij->j, val[len] = aij->val;
   115             temp += aij->val * aij->val;
   116          }
   117          if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON;
   118          /* transform the cut to express it only through non-basic
   119             (auxiliary and structural) variables */
   120          len = glp_transform_row(T->mip, len, ind, val);
   121          /* determine change in the cut value and in the objective
   122             value for the adjacent basis by simulating one step of the
   123             dual simplex */
   124          ret = _glp_analyze_row(T->mip, len, ind, val, cut->type,
   125             cut->rhs, 1e-9, NULL, NULL, NULL, NULL, &dy, &dz);
   126          /* determine normalized residual and lower bound to objective
   127             degradation */
   128          if (ret == 0)
   129          {  info[k].eff = fabs(dy) / sqrt(temp);
   130             /* if some reduced costs violates (slightly) their zero
   131                bounds (i.e. have wrong signs) due to round-off errors,
   132                dz also may have wrong sign being close to zero */
   133             if (T->mip->dir == GLP_MIN)
   134             {  if (dz < 0.0) dz = 0.0;
   135                info[k].deg = + dz;
   136             }
   137             else /* GLP_MAX */
   138             {  if (dz > 0.0) dz = 0.0;
   139                info[k].deg = - dz;
   140             }
   141          }
   142          else if (ret == 1)
   143          {  /* the constraint is not violated at the current point */
   144             info[k].eff = info[k].deg = 0.0;
   145          }
   146          else if (ret == 2)
   147          {  /* no dual feasible adjacent basis exists */
   148             info[k].eff = 1.0;
   149             info[k].deg = DBL_MAX;
   150          }
   151          else
   152             xassert(ret != ret);
   153          /* if the degradation is too small, just ignore it */
   154          if (info[k].deg < 0.01) info[k].deg = 0.0;
   155       }
   156       /* sort the list of cuts by decreasing objective degradation and
   157          then by decreasing efficacy */
   158       qsort(&info[1], pool->size, sizeof(struct info), fcmp);
   159       /* only first (most efficient) max_cuts in the list are qualified
   160          as candidates to be added to the current subproblem */
   161       max_cuts = (T->curr->level == 0 ? 90 : 10);
   162       if (max_cuts > pool->size) max_cuts = pool->size;
   163       /* add cuts to the current subproblem */
   164 #if 0
   165       xprintf("*** adding cuts ***\n");
   166 #endif
   167       for (k = 1; k <= max_cuts; k++)
   168       {  int i, len;
   169          /* if this cut seems to be inefficient, skip it */
   170          if (info[k].deg < 0.01 && info[k].eff < 0.01) continue;
   171          /* if the angle between this cut and every other cut included
   172             in the current subproblem is small, skip this cut */
   173          for (kk = 1; kk < k; kk++)
   174          {  if (info[kk].flag)
   175             {  if (parallel(info[k].cut, info[kk].cut, work) > 0.90)
   176                   break;
   177             }
   178          }
   179          if (kk < k) continue;
   180          /* add this cut to the current subproblem */
   181 #if 0
   182          xprintf("eff = %g; deg = %g\n", info[k].eff, info[k].deg);
   183 #endif
   184          cut = info[k].cut, info[k].flag = 1;
   185          i = glp_add_rows(T->mip, 1);
   186          if (cut->name != NULL)
   187             glp_set_row_name(T->mip, i, cut->name);
   188          xassert(T->mip->row[i]->origin == GLP_RF_CUT);
   189          T->mip->row[i]->klass = cut->klass;
   190          len = 0;
   191          for (aij = cut->ptr; aij != NULL; aij = aij->next)
   192             len++, ind[len] = aij->j, val[len] = aij->val;
   193          glp_set_mat_row(T->mip, i, len, ind, val);
   194          xassert(cut->type == GLP_LO || cut->type == GLP_UP);
   195          glp_set_row_bnds(T->mip, i, cut->type, cut->rhs, cut->rhs);
   196       }
   197       /* free working arrays */
   198       xfree(info);
   199       xfree(ind);
   200       xfree(val);
   201       xfree(work);
   202       return;
   203 }
   204 
   205 #if 0
   206 /***********************************************************************
   207 *  Given a cut a * x >= b (<= b) the routine efficacy computes the cut
   208 *  efficacy as follows:
   209 *
   210 *     eff = d * (a * x~ - b) / ||a||,
   211 *
   212 *  where d is -1 (in case of '>= b') or +1 (in case of '<= b'), x~ is
   213 *  the vector of values of structural variables in optimal solution to
   214 *  LP relaxation of the current subproblem, ||a|| is the Euclidean norm
   215 *  of the vector of cut coefficients.
   216 *
   217 *  If the cut is violated at point x~, the efficacy eff is positive,
   218 *  and its value is the Euclidean distance between x~ and the cut plane
   219 *  a * x = b in the space of structural variables.
   220 *
   221 *  Following geometrical intuition, it is quite natural to consider
   222 *  this distance as a first-order measure of the expected efficacy of
   223 *  the cut: the larger the distance the better the cut [1]. */
   224 
   225 static double efficacy(glp_tree *T, IOSCUT *cut)
   226 {     glp_prob *mip = T->mip;
   227       IOSAIJ *aij;
   228       double s = 0.0, t = 0.0, temp;
   229       for (aij = cut->ptr; aij != NULL; aij = aij->next)
   230       {  xassert(1 <= aij->j && aij->j <= mip->n);
   231          s += aij->val * mip->col[aij->j]->prim;
   232          t += aij->val * aij->val;
   233       }
   234       temp = sqrt(t);
   235       if (temp < DBL_EPSILON) temp = DBL_EPSILON;
   236       if (cut->type == GLP_LO)
   237          temp = (s >= cut->rhs ? 0.0 : (cut->rhs - s) / temp);
   238       else if (cut->type == GLP_UP)
   239          temp = (s <= cut->rhs ? 0.0 : (s - cut->rhs) / temp);
   240       else
   241          xassert(cut != cut);
   242       return temp;
   243 }
   244 #endif
   245 
   246 /***********************************************************************
   247 *  Given two cuts a1 * x >= b1 (<= b1) and a2 * x >= b2 (<= b2) the
   248 *  routine parallel computes the cosine of angle between the cut planes
   249 *  a1 * x = b1 and a2 * x = b2 (which is the acute angle between two
   250 *  normals to these planes) in the space of structural variables as
   251 *  follows:
   252 *
   253 *     cos phi = (a1' * a2) / (||a1|| * ||a2||),
   254 *
   255 *  where (a1' * a2) is a dot product of vectors of cut coefficients,
   256 *  ||a1|| and ||a2|| are Euclidean norms of vectors a1 and a2.
   257 *
   258 *  Note that requirement cos phi = 0 forces the cuts to be orthogonal,
   259 *  i.e. with disjoint support, while requirement cos phi <= 0.999 means
   260 *  only avoiding duplicate (parallel) cuts [1]. */
   261 
   262 static double parallel(IOSCUT *a, IOSCUT *b, double work[])
   263 {     IOSAIJ *aij;
   264       double s = 0.0, sa = 0.0, sb = 0.0, temp;
   265       for (aij = a->ptr; aij != NULL; aij = aij->next)
   266       {  work[aij->j] = aij->val;
   267          sa += aij->val * aij->val;
   268       }
   269       for (aij = b->ptr; aij != NULL; aij = aij->next)
   270       {  s += work[aij->j] * aij->val;
   271          sb += aij->val * aij->val;
   272       }
   273       for (aij = a->ptr; aij != NULL; aij = aij->next)
   274          work[aij->j] = 0.0;
   275       temp = sqrt(sa) * sqrt(sb);
   276       if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON;
   277       return s / temp;
   278 }
   279 
   280 /* eof */