alpar@1
|
1 |
/* glpios11.c (process cuts stored in the local cut pool) */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#include "glpios.h"
|
alpar@1
|
26 |
|
alpar@1
|
27 |
/***********************************************************************
|
alpar@1
|
28 |
* NAME
|
alpar@1
|
29 |
*
|
alpar@1
|
30 |
* ios_process_cuts - process cuts stored in the local cut pool
|
alpar@1
|
31 |
*
|
alpar@1
|
32 |
* SYNOPSIS
|
alpar@1
|
33 |
*
|
alpar@1
|
34 |
* #include "glpios.h"
|
alpar@1
|
35 |
* void ios_process_cuts(glp_tree *T);
|
alpar@1
|
36 |
*
|
alpar@1
|
37 |
* DESCRIPTION
|
alpar@1
|
38 |
*
|
alpar@1
|
39 |
* The routine ios_process_cuts analyzes each cut currently stored in
|
alpar@1
|
40 |
* the local cut pool, which must be non-empty, and either adds the cut
|
alpar@1
|
41 |
* to the current subproblem or just discards it. All cuts are assumed
|
alpar@1
|
42 |
* to be locally valid. On exit the local cut pool remains unchanged.
|
alpar@1
|
43 |
*
|
alpar@1
|
44 |
* REFERENCES
|
alpar@1
|
45 |
*
|
alpar@1
|
46 |
* 1. E.Balas, S.Ceria, G.Cornuejols, "Mixed 0-1 Programming by
|
alpar@1
|
47 |
* Lift-and-Project in a Branch-and-Cut Framework", Management Sc.,
|
alpar@1
|
48 |
* 42 (1996) 1229-1246.
|
alpar@1
|
49 |
*
|
alpar@1
|
50 |
* 2. G.Andreello, A.Caprara, and M.Fischetti, "Embedding Cuts in
|
alpar@1
|
51 |
* a Branch&Cut Framework: a Computational Study with {0,1/2}-Cuts",
|
alpar@1
|
52 |
* Preliminary Draft, October 28, 2003, pp.6-8. */
|
alpar@1
|
53 |
|
alpar@1
|
54 |
struct info
|
alpar@1
|
55 |
{ /* estimated cut efficiency */
|
alpar@1
|
56 |
IOSCUT *cut;
|
alpar@1
|
57 |
/* pointer to cut in the cut pool */
|
alpar@1
|
58 |
char flag;
|
alpar@1
|
59 |
/* if this flag is set, the cut is included into the current
|
alpar@1
|
60 |
subproblem */
|
alpar@1
|
61 |
double eff;
|
alpar@1
|
62 |
/* cut efficacy (normalized residual) */
|
alpar@1
|
63 |
double deg;
|
alpar@1
|
64 |
/* lower bound to objective degradation */
|
alpar@1
|
65 |
};
|
alpar@1
|
66 |
|
alpar@1
|
67 |
static int fcmp(const void *arg1, const void *arg2)
|
alpar@1
|
68 |
{ const struct info *info1 = arg1, *info2 = arg2;
|
alpar@1
|
69 |
if (info1->deg == 0.0 && info2->deg == 0.0)
|
alpar@1
|
70 |
{ if (info1->eff > info2->eff) return -1;
|
alpar@1
|
71 |
if (info1->eff < info2->eff) return +1;
|
alpar@1
|
72 |
}
|
alpar@1
|
73 |
else
|
alpar@1
|
74 |
{ if (info1->deg > info2->deg) return -1;
|
alpar@1
|
75 |
if (info1->deg < info2->deg) return +1;
|
alpar@1
|
76 |
}
|
alpar@1
|
77 |
return 0;
|
alpar@1
|
78 |
}
|
alpar@1
|
79 |
|
alpar@1
|
80 |
static double parallel(IOSCUT *a, IOSCUT *b, double work[]);
|
alpar@1
|
81 |
|
alpar@1
|
82 |
void ios_process_cuts(glp_tree *T)
|
alpar@1
|
83 |
{ IOSPOOL *pool;
|
alpar@1
|
84 |
IOSCUT *cut;
|
alpar@1
|
85 |
IOSAIJ *aij;
|
alpar@1
|
86 |
struct info *info;
|
alpar@1
|
87 |
int k, kk, max_cuts, len, ret, *ind;
|
alpar@1
|
88 |
double *val, *work;
|
alpar@1
|
89 |
/* the current subproblem must exist */
|
alpar@1
|
90 |
xassert(T->curr != NULL);
|
alpar@1
|
91 |
/* the pool must exist and be non-empty */
|
alpar@1
|
92 |
pool = T->local;
|
alpar@1
|
93 |
xassert(pool != NULL);
|
alpar@1
|
94 |
xassert(pool->size > 0);
|
alpar@1
|
95 |
/* allocate working arrays */
|
alpar@1
|
96 |
info = xcalloc(1+pool->size, sizeof(struct info));
|
alpar@1
|
97 |
ind = xcalloc(1+T->n, sizeof(int));
|
alpar@1
|
98 |
val = xcalloc(1+T->n, sizeof(double));
|
alpar@1
|
99 |
work = xcalloc(1+T->n, sizeof(double));
|
alpar@1
|
100 |
for (k = 1; k <= T->n; k++) work[k] = 0.0;
|
alpar@1
|
101 |
/* build the list of cuts stored in the cut pool */
|
alpar@1
|
102 |
for (k = 0, cut = pool->head; cut != NULL; cut = cut->next)
|
alpar@1
|
103 |
k++, info[k].cut = cut, info[k].flag = 0;
|
alpar@1
|
104 |
xassert(k == pool->size);
|
alpar@1
|
105 |
/* estimate efficiency of all cuts in the cut pool */
|
alpar@1
|
106 |
for (k = 1; k <= pool->size; k++)
|
alpar@1
|
107 |
{ double temp, dy, dz;
|
alpar@1
|
108 |
cut = info[k].cut;
|
alpar@1
|
109 |
/* build the vector of cut coefficients and compute its
|
alpar@1
|
110 |
Euclidean norm */
|
alpar@1
|
111 |
len = 0; temp = 0.0;
|
alpar@1
|
112 |
for (aij = cut->ptr; aij != NULL; aij = aij->next)
|
alpar@1
|
113 |
{ xassert(1 <= aij->j && aij->j <= T->n);
|
alpar@1
|
114 |
len++, ind[len] = aij->j, val[len] = aij->val;
|
alpar@1
|
115 |
temp += aij->val * aij->val;
|
alpar@1
|
116 |
}
|
alpar@1
|
117 |
if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON;
|
alpar@1
|
118 |
/* transform the cut to express it only through non-basic
|
alpar@1
|
119 |
(auxiliary and structural) variables */
|
alpar@1
|
120 |
len = glp_transform_row(T->mip, len, ind, val);
|
alpar@1
|
121 |
/* determine change in the cut value and in the objective
|
alpar@1
|
122 |
value for the adjacent basis by simulating one step of the
|
alpar@1
|
123 |
dual simplex */
|
alpar@1
|
124 |
ret = _glp_analyze_row(T->mip, len, ind, val, cut->type,
|
alpar@1
|
125 |
cut->rhs, 1e-9, NULL, NULL, NULL, NULL, &dy, &dz);
|
alpar@1
|
126 |
/* determine normalized residual and lower bound to objective
|
alpar@1
|
127 |
degradation */
|
alpar@1
|
128 |
if (ret == 0)
|
alpar@1
|
129 |
{ info[k].eff = fabs(dy) / sqrt(temp);
|
alpar@1
|
130 |
/* if some reduced costs violates (slightly) their zero
|
alpar@1
|
131 |
bounds (i.e. have wrong signs) due to round-off errors,
|
alpar@1
|
132 |
dz also may have wrong sign being close to zero */
|
alpar@1
|
133 |
if (T->mip->dir == GLP_MIN)
|
alpar@1
|
134 |
{ if (dz < 0.0) dz = 0.0;
|
alpar@1
|
135 |
info[k].deg = + dz;
|
alpar@1
|
136 |
}
|
alpar@1
|
137 |
else /* GLP_MAX */
|
alpar@1
|
138 |
{ if (dz > 0.0) dz = 0.0;
|
alpar@1
|
139 |
info[k].deg = - dz;
|
alpar@1
|
140 |
}
|
alpar@1
|
141 |
}
|
alpar@1
|
142 |
else if (ret == 1)
|
alpar@1
|
143 |
{ /* the constraint is not violated at the current point */
|
alpar@1
|
144 |
info[k].eff = info[k].deg = 0.0;
|
alpar@1
|
145 |
}
|
alpar@1
|
146 |
else if (ret == 2)
|
alpar@1
|
147 |
{ /* no dual feasible adjacent basis exists */
|
alpar@1
|
148 |
info[k].eff = 1.0;
|
alpar@1
|
149 |
info[k].deg = DBL_MAX;
|
alpar@1
|
150 |
}
|
alpar@1
|
151 |
else
|
alpar@1
|
152 |
xassert(ret != ret);
|
alpar@1
|
153 |
/* if the degradation is too small, just ignore it */
|
alpar@1
|
154 |
if (info[k].deg < 0.01) info[k].deg = 0.0;
|
alpar@1
|
155 |
}
|
alpar@1
|
156 |
/* sort the list of cuts by decreasing objective degradation and
|
alpar@1
|
157 |
then by decreasing efficacy */
|
alpar@1
|
158 |
qsort(&info[1], pool->size, sizeof(struct info), fcmp);
|
alpar@1
|
159 |
/* only first (most efficient) max_cuts in the list are qualified
|
alpar@1
|
160 |
as candidates to be added to the current subproblem */
|
alpar@1
|
161 |
max_cuts = (T->curr->level == 0 ? 90 : 10);
|
alpar@1
|
162 |
if (max_cuts > pool->size) max_cuts = pool->size;
|
alpar@1
|
163 |
/* add cuts to the current subproblem */
|
alpar@1
|
164 |
#if 0
|
alpar@1
|
165 |
xprintf("*** adding cuts ***\n");
|
alpar@1
|
166 |
#endif
|
alpar@1
|
167 |
for (k = 1; k <= max_cuts; k++)
|
alpar@1
|
168 |
{ int i, len;
|
alpar@1
|
169 |
/* if this cut seems to be inefficient, skip it */
|
alpar@1
|
170 |
if (info[k].deg < 0.01 && info[k].eff < 0.01) continue;
|
alpar@1
|
171 |
/* if the angle between this cut and every other cut included
|
alpar@1
|
172 |
in the current subproblem is small, skip this cut */
|
alpar@1
|
173 |
for (kk = 1; kk < k; kk++)
|
alpar@1
|
174 |
{ if (info[kk].flag)
|
alpar@1
|
175 |
{ if (parallel(info[k].cut, info[kk].cut, work) > 0.90)
|
alpar@1
|
176 |
break;
|
alpar@1
|
177 |
}
|
alpar@1
|
178 |
}
|
alpar@1
|
179 |
if (kk < k) continue;
|
alpar@1
|
180 |
/* add this cut to the current subproblem */
|
alpar@1
|
181 |
#if 0
|
alpar@1
|
182 |
xprintf("eff = %g; deg = %g\n", info[k].eff, info[k].deg);
|
alpar@1
|
183 |
#endif
|
alpar@1
|
184 |
cut = info[k].cut, info[k].flag = 1;
|
alpar@1
|
185 |
i = glp_add_rows(T->mip, 1);
|
alpar@1
|
186 |
if (cut->name != NULL)
|
alpar@1
|
187 |
glp_set_row_name(T->mip, i, cut->name);
|
alpar@1
|
188 |
xassert(T->mip->row[i]->origin == GLP_RF_CUT);
|
alpar@1
|
189 |
T->mip->row[i]->klass = cut->klass;
|
alpar@1
|
190 |
len = 0;
|
alpar@1
|
191 |
for (aij = cut->ptr; aij != NULL; aij = aij->next)
|
alpar@1
|
192 |
len++, ind[len] = aij->j, val[len] = aij->val;
|
alpar@1
|
193 |
glp_set_mat_row(T->mip, i, len, ind, val);
|
alpar@1
|
194 |
xassert(cut->type == GLP_LO || cut->type == GLP_UP);
|
alpar@1
|
195 |
glp_set_row_bnds(T->mip, i, cut->type, cut->rhs, cut->rhs);
|
alpar@1
|
196 |
}
|
alpar@1
|
197 |
/* free working arrays */
|
alpar@1
|
198 |
xfree(info);
|
alpar@1
|
199 |
xfree(ind);
|
alpar@1
|
200 |
xfree(val);
|
alpar@1
|
201 |
xfree(work);
|
alpar@1
|
202 |
return;
|
alpar@1
|
203 |
}
|
alpar@1
|
204 |
|
alpar@1
|
205 |
#if 0
|
alpar@1
|
206 |
/***********************************************************************
|
alpar@1
|
207 |
* Given a cut a * x >= b (<= b) the routine efficacy computes the cut
|
alpar@1
|
208 |
* efficacy as follows:
|
alpar@1
|
209 |
*
|
alpar@1
|
210 |
* eff = d * (a * x~ - b) / ||a||,
|
alpar@1
|
211 |
*
|
alpar@1
|
212 |
* where d is -1 (in case of '>= b') or +1 (in case of '<= b'), x~ is
|
alpar@1
|
213 |
* the vector of values of structural variables in optimal solution to
|
alpar@1
|
214 |
* LP relaxation of the current subproblem, ||a|| is the Euclidean norm
|
alpar@1
|
215 |
* of the vector of cut coefficients.
|
alpar@1
|
216 |
*
|
alpar@1
|
217 |
* If the cut is violated at point x~, the efficacy eff is positive,
|
alpar@1
|
218 |
* and its value is the Euclidean distance between x~ and the cut plane
|
alpar@1
|
219 |
* a * x = b in the space of structural variables.
|
alpar@1
|
220 |
*
|
alpar@1
|
221 |
* Following geometrical intuition, it is quite natural to consider
|
alpar@1
|
222 |
* this distance as a first-order measure of the expected efficacy of
|
alpar@1
|
223 |
* the cut: the larger the distance the better the cut [1]. */
|
alpar@1
|
224 |
|
alpar@1
|
225 |
static double efficacy(glp_tree *T, IOSCUT *cut)
|
alpar@1
|
226 |
{ glp_prob *mip = T->mip;
|
alpar@1
|
227 |
IOSAIJ *aij;
|
alpar@1
|
228 |
double s = 0.0, t = 0.0, temp;
|
alpar@1
|
229 |
for (aij = cut->ptr; aij != NULL; aij = aij->next)
|
alpar@1
|
230 |
{ xassert(1 <= aij->j && aij->j <= mip->n);
|
alpar@1
|
231 |
s += aij->val * mip->col[aij->j]->prim;
|
alpar@1
|
232 |
t += aij->val * aij->val;
|
alpar@1
|
233 |
}
|
alpar@1
|
234 |
temp = sqrt(t);
|
alpar@1
|
235 |
if (temp < DBL_EPSILON) temp = DBL_EPSILON;
|
alpar@1
|
236 |
if (cut->type == GLP_LO)
|
alpar@1
|
237 |
temp = (s >= cut->rhs ? 0.0 : (cut->rhs - s) / temp);
|
alpar@1
|
238 |
else if (cut->type == GLP_UP)
|
alpar@1
|
239 |
temp = (s <= cut->rhs ? 0.0 : (s - cut->rhs) / temp);
|
alpar@1
|
240 |
else
|
alpar@1
|
241 |
xassert(cut != cut);
|
alpar@1
|
242 |
return temp;
|
alpar@1
|
243 |
}
|
alpar@1
|
244 |
#endif
|
alpar@1
|
245 |
|
alpar@1
|
246 |
/***********************************************************************
|
alpar@1
|
247 |
* Given two cuts a1 * x >= b1 (<= b1) and a2 * x >= b2 (<= b2) the
|
alpar@1
|
248 |
* routine parallel computes the cosine of angle between the cut planes
|
alpar@1
|
249 |
* a1 * x = b1 and a2 * x = b2 (which is the acute angle between two
|
alpar@1
|
250 |
* normals to these planes) in the space of structural variables as
|
alpar@1
|
251 |
* follows:
|
alpar@1
|
252 |
*
|
alpar@1
|
253 |
* cos phi = (a1' * a2) / (||a1|| * ||a2||),
|
alpar@1
|
254 |
*
|
alpar@1
|
255 |
* where (a1' * a2) is a dot product of vectors of cut coefficients,
|
alpar@1
|
256 |
* ||a1|| and ||a2|| are Euclidean norms of vectors a1 and a2.
|
alpar@1
|
257 |
*
|
alpar@1
|
258 |
* Note that requirement cos phi = 0 forces the cuts to be orthogonal,
|
alpar@1
|
259 |
* i.e. with disjoint support, while requirement cos phi <= 0.999 means
|
alpar@1
|
260 |
* only avoiding duplicate (parallel) cuts [1]. */
|
alpar@1
|
261 |
|
alpar@1
|
262 |
static double parallel(IOSCUT *a, IOSCUT *b, double work[])
|
alpar@1
|
263 |
{ IOSAIJ *aij;
|
alpar@1
|
264 |
double s = 0.0, sa = 0.0, sb = 0.0, temp;
|
alpar@1
|
265 |
for (aij = a->ptr; aij != NULL; aij = aij->next)
|
alpar@1
|
266 |
{ work[aij->j] = aij->val;
|
alpar@1
|
267 |
sa += aij->val * aij->val;
|
alpar@1
|
268 |
}
|
alpar@1
|
269 |
for (aij = b->ptr; aij != NULL; aij = aij->next)
|
alpar@1
|
270 |
{ s += work[aij->j] * aij->val;
|
alpar@1
|
271 |
sb += aij->val * aij->val;
|
alpar@1
|
272 |
}
|
alpar@1
|
273 |
for (aij = a->ptr; aij != NULL; aij = aij->next)
|
alpar@1
|
274 |
work[aij->j] = 0.0;
|
alpar@1
|
275 |
temp = sqrt(sa) * sqrt(sb);
|
alpar@1
|
276 |
if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON;
|
alpar@1
|
277 |
return s / temp;
|
alpar@1
|
278 |
}
|
alpar@1
|
279 |
|
alpar@1
|
280 |
/* eof */
|