|
1 /* glpios11.c (process cuts stored in the local cut pool) */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #include "glpios.h" |
|
26 |
|
27 /*********************************************************************** |
|
28 * NAME |
|
29 * |
|
30 * ios_process_cuts - process cuts stored in the local cut pool |
|
31 * |
|
32 * SYNOPSIS |
|
33 * |
|
34 * #include "glpios.h" |
|
35 * void ios_process_cuts(glp_tree *T); |
|
36 * |
|
37 * DESCRIPTION |
|
38 * |
|
39 * The routine ios_process_cuts analyzes each cut currently stored in |
|
40 * the local cut pool, which must be non-empty, and either adds the cut |
|
41 * to the current subproblem or just discards it. All cuts are assumed |
|
42 * to be locally valid. On exit the local cut pool remains unchanged. |
|
43 * |
|
44 * REFERENCES |
|
45 * |
|
46 * 1. E.Balas, S.Ceria, G.Cornuejols, "Mixed 0-1 Programming by |
|
47 * Lift-and-Project in a Branch-and-Cut Framework", Management Sc., |
|
48 * 42 (1996) 1229-1246. |
|
49 * |
|
50 * 2. G.Andreello, A.Caprara, and M.Fischetti, "Embedding Cuts in |
|
51 * a Branch&Cut Framework: a Computational Study with {0,1/2}-Cuts", |
|
52 * Preliminary Draft, October 28, 2003, pp.6-8. */ |
|
53 |
|
54 struct info |
|
55 { /* estimated cut efficiency */ |
|
56 IOSCUT *cut; |
|
57 /* pointer to cut in the cut pool */ |
|
58 char flag; |
|
59 /* if this flag is set, the cut is included into the current |
|
60 subproblem */ |
|
61 double eff; |
|
62 /* cut efficacy (normalized residual) */ |
|
63 double deg; |
|
64 /* lower bound to objective degradation */ |
|
65 }; |
|
66 |
|
67 static int fcmp(const void *arg1, const void *arg2) |
|
68 { const struct info *info1 = arg1, *info2 = arg2; |
|
69 if (info1->deg == 0.0 && info2->deg == 0.0) |
|
70 { if (info1->eff > info2->eff) return -1; |
|
71 if (info1->eff < info2->eff) return +1; |
|
72 } |
|
73 else |
|
74 { if (info1->deg > info2->deg) return -1; |
|
75 if (info1->deg < info2->deg) return +1; |
|
76 } |
|
77 return 0; |
|
78 } |
|
79 |
|
80 static double parallel(IOSCUT *a, IOSCUT *b, double work[]); |
|
81 |
|
82 void ios_process_cuts(glp_tree *T) |
|
83 { IOSPOOL *pool; |
|
84 IOSCUT *cut; |
|
85 IOSAIJ *aij; |
|
86 struct info *info; |
|
87 int k, kk, max_cuts, len, ret, *ind; |
|
88 double *val, *work; |
|
89 /* the current subproblem must exist */ |
|
90 xassert(T->curr != NULL); |
|
91 /* the pool must exist and be non-empty */ |
|
92 pool = T->local; |
|
93 xassert(pool != NULL); |
|
94 xassert(pool->size > 0); |
|
95 /* allocate working arrays */ |
|
96 info = xcalloc(1+pool->size, sizeof(struct info)); |
|
97 ind = xcalloc(1+T->n, sizeof(int)); |
|
98 val = xcalloc(1+T->n, sizeof(double)); |
|
99 work = xcalloc(1+T->n, sizeof(double)); |
|
100 for (k = 1; k <= T->n; k++) work[k] = 0.0; |
|
101 /* build the list of cuts stored in the cut pool */ |
|
102 for (k = 0, cut = pool->head; cut != NULL; cut = cut->next) |
|
103 k++, info[k].cut = cut, info[k].flag = 0; |
|
104 xassert(k == pool->size); |
|
105 /* estimate efficiency of all cuts in the cut pool */ |
|
106 for (k = 1; k <= pool->size; k++) |
|
107 { double temp, dy, dz; |
|
108 cut = info[k].cut; |
|
109 /* build the vector of cut coefficients and compute its |
|
110 Euclidean norm */ |
|
111 len = 0; temp = 0.0; |
|
112 for (aij = cut->ptr; aij != NULL; aij = aij->next) |
|
113 { xassert(1 <= aij->j && aij->j <= T->n); |
|
114 len++, ind[len] = aij->j, val[len] = aij->val; |
|
115 temp += aij->val * aij->val; |
|
116 } |
|
117 if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON; |
|
118 /* transform the cut to express it only through non-basic |
|
119 (auxiliary and structural) variables */ |
|
120 len = glp_transform_row(T->mip, len, ind, val); |
|
121 /* determine change in the cut value and in the objective |
|
122 value for the adjacent basis by simulating one step of the |
|
123 dual simplex */ |
|
124 ret = _glp_analyze_row(T->mip, len, ind, val, cut->type, |
|
125 cut->rhs, 1e-9, NULL, NULL, NULL, NULL, &dy, &dz); |
|
126 /* determine normalized residual and lower bound to objective |
|
127 degradation */ |
|
128 if (ret == 0) |
|
129 { info[k].eff = fabs(dy) / sqrt(temp); |
|
130 /* if some reduced costs violates (slightly) their zero |
|
131 bounds (i.e. have wrong signs) due to round-off errors, |
|
132 dz also may have wrong sign being close to zero */ |
|
133 if (T->mip->dir == GLP_MIN) |
|
134 { if (dz < 0.0) dz = 0.0; |
|
135 info[k].deg = + dz; |
|
136 } |
|
137 else /* GLP_MAX */ |
|
138 { if (dz > 0.0) dz = 0.0; |
|
139 info[k].deg = - dz; |
|
140 } |
|
141 } |
|
142 else if (ret == 1) |
|
143 { /* the constraint is not violated at the current point */ |
|
144 info[k].eff = info[k].deg = 0.0; |
|
145 } |
|
146 else if (ret == 2) |
|
147 { /* no dual feasible adjacent basis exists */ |
|
148 info[k].eff = 1.0; |
|
149 info[k].deg = DBL_MAX; |
|
150 } |
|
151 else |
|
152 xassert(ret != ret); |
|
153 /* if the degradation is too small, just ignore it */ |
|
154 if (info[k].deg < 0.01) info[k].deg = 0.0; |
|
155 } |
|
156 /* sort the list of cuts by decreasing objective degradation and |
|
157 then by decreasing efficacy */ |
|
158 qsort(&info[1], pool->size, sizeof(struct info), fcmp); |
|
159 /* only first (most efficient) max_cuts in the list are qualified |
|
160 as candidates to be added to the current subproblem */ |
|
161 max_cuts = (T->curr->level == 0 ? 90 : 10); |
|
162 if (max_cuts > pool->size) max_cuts = pool->size; |
|
163 /* add cuts to the current subproblem */ |
|
164 #if 0 |
|
165 xprintf("*** adding cuts ***\n"); |
|
166 #endif |
|
167 for (k = 1; k <= max_cuts; k++) |
|
168 { int i, len; |
|
169 /* if this cut seems to be inefficient, skip it */ |
|
170 if (info[k].deg < 0.01 && info[k].eff < 0.01) continue; |
|
171 /* if the angle between this cut and every other cut included |
|
172 in the current subproblem is small, skip this cut */ |
|
173 for (kk = 1; kk < k; kk++) |
|
174 { if (info[kk].flag) |
|
175 { if (parallel(info[k].cut, info[kk].cut, work) > 0.90) |
|
176 break; |
|
177 } |
|
178 } |
|
179 if (kk < k) continue; |
|
180 /* add this cut to the current subproblem */ |
|
181 #if 0 |
|
182 xprintf("eff = %g; deg = %g\n", info[k].eff, info[k].deg); |
|
183 #endif |
|
184 cut = info[k].cut, info[k].flag = 1; |
|
185 i = glp_add_rows(T->mip, 1); |
|
186 if (cut->name != NULL) |
|
187 glp_set_row_name(T->mip, i, cut->name); |
|
188 xassert(T->mip->row[i]->origin == GLP_RF_CUT); |
|
189 T->mip->row[i]->klass = cut->klass; |
|
190 len = 0; |
|
191 for (aij = cut->ptr; aij != NULL; aij = aij->next) |
|
192 len++, ind[len] = aij->j, val[len] = aij->val; |
|
193 glp_set_mat_row(T->mip, i, len, ind, val); |
|
194 xassert(cut->type == GLP_LO || cut->type == GLP_UP); |
|
195 glp_set_row_bnds(T->mip, i, cut->type, cut->rhs, cut->rhs); |
|
196 } |
|
197 /* free working arrays */ |
|
198 xfree(info); |
|
199 xfree(ind); |
|
200 xfree(val); |
|
201 xfree(work); |
|
202 return; |
|
203 } |
|
204 |
|
205 #if 0 |
|
206 /*********************************************************************** |
|
207 * Given a cut a * x >= b (<= b) the routine efficacy computes the cut |
|
208 * efficacy as follows: |
|
209 * |
|
210 * eff = d * (a * x~ - b) / ||a||, |
|
211 * |
|
212 * where d is -1 (in case of '>= b') or +1 (in case of '<= b'), x~ is |
|
213 * the vector of values of structural variables in optimal solution to |
|
214 * LP relaxation of the current subproblem, ||a|| is the Euclidean norm |
|
215 * of the vector of cut coefficients. |
|
216 * |
|
217 * If the cut is violated at point x~, the efficacy eff is positive, |
|
218 * and its value is the Euclidean distance between x~ and the cut plane |
|
219 * a * x = b in the space of structural variables. |
|
220 * |
|
221 * Following geometrical intuition, it is quite natural to consider |
|
222 * this distance as a first-order measure of the expected efficacy of |
|
223 * the cut: the larger the distance the better the cut [1]. */ |
|
224 |
|
225 static double efficacy(glp_tree *T, IOSCUT *cut) |
|
226 { glp_prob *mip = T->mip; |
|
227 IOSAIJ *aij; |
|
228 double s = 0.0, t = 0.0, temp; |
|
229 for (aij = cut->ptr; aij != NULL; aij = aij->next) |
|
230 { xassert(1 <= aij->j && aij->j <= mip->n); |
|
231 s += aij->val * mip->col[aij->j]->prim; |
|
232 t += aij->val * aij->val; |
|
233 } |
|
234 temp = sqrt(t); |
|
235 if (temp < DBL_EPSILON) temp = DBL_EPSILON; |
|
236 if (cut->type == GLP_LO) |
|
237 temp = (s >= cut->rhs ? 0.0 : (cut->rhs - s) / temp); |
|
238 else if (cut->type == GLP_UP) |
|
239 temp = (s <= cut->rhs ? 0.0 : (s - cut->rhs) / temp); |
|
240 else |
|
241 xassert(cut != cut); |
|
242 return temp; |
|
243 } |
|
244 #endif |
|
245 |
|
246 /*********************************************************************** |
|
247 * Given two cuts a1 * x >= b1 (<= b1) and a2 * x >= b2 (<= b2) the |
|
248 * routine parallel computes the cosine of angle between the cut planes |
|
249 * a1 * x = b1 and a2 * x = b2 (which is the acute angle between two |
|
250 * normals to these planes) in the space of structural variables as |
|
251 * follows: |
|
252 * |
|
253 * cos phi = (a1' * a2) / (||a1|| * ||a2||), |
|
254 * |
|
255 * where (a1' * a2) is a dot product of vectors of cut coefficients, |
|
256 * ||a1|| and ||a2|| are Euclidean norms of vectors a1 and a2. |
|
257 * |
|
258 * Note that requirement cos phi = 0 forces the cuts to be orthogonal, |
|
259 * i.e. with disjoint support, while requirement cos phi <= 0.999 means |
|
260 * only avoiding duplicate (parallel) cuts [1]. */ |
|
261 |
|
262 static double parallel(IOSCUT *a, IOSCUT *b, double work[]) |
|
263 { IOSAIJ *aij; |
|
264 double s = 0.0, sa = 0.0, sb = 0.0, temp; |
|
265 for (aij = a->ptr; aij != NULL; aij = aij->next) |
|
266 { work[aij->j] = aij->val; |
|
267 sa += aij->val * aij->val; |
|
268 } |
|
269 for (aij = b->ptr; aij != NULL; aij = aij->next) |
|
270 { s += work[aij->j] * aij->val; |
|
271 sb += aij->val * aij->val; |
|
272 } |
|
273 for (aij = a->ptr; aij != NULL; aij = aij->next) |
|
274 work[aij->j] = 0.0; |
|
275 temp = sqrt(sa) * sqrt(sb); |
|
276 if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON; |
|
277 return s / temp; |
|
278 } |
|
279 |
|
280 /* eof */ |