Under 30
authorMadarasi Peter
Wed, 23 Nov 2016 21:45:11 +0100
changeset 13a21760ed63d6
parent 12 d35847f14178
child 14 b45bac511108
Under 30
damecco.tex
     1.1 --- a/damecco.tex	Wed Nov 23 21:15:26 2016 +0100
     1.2 +++ b/damecco.tex	Wed Nov 23 21:45:11 2016 +0100
     1.3 @@ -508,8 +508,9 @@
     1.4  
     1.5  
     1.6  \begin{algorithm}
     1.7 -\algtext*{EndIf}%ne nyomtasson end if-et \algtext*{EndFor}%ne
     1.8 -nyomtasson ..  \algtext*{EndProcedure}%ne nyomtasson ..
     1.9 +\algtext*{EndIf}%ne nyomtasson end if-et
    1.10 +\algtext*{EndFor}%ne
    1.11 +\algtext*{EndProcedure}%ne nyomtasson ..
    1.12  \caption{\hspace{0.5cm}$A\ high\ level\ description\ of\ VF2$}\label{alg:VF2Pseu}
    1.13  \begin{algorithmic}[1]
    1.14  
    1.15 @@ -866,6 +867,7 @@
    1.16  \algtext*{EndIf}
    1.17  \algtext*{EndProcedure}
    1.18  \algtext*{EndWhile}
    1.19 +\algtext*{EndFor}
    1.20  \caption{\hspace{0.5cm}$The\ method\ of\ VF2++\ for\ determining\ the\ node\ order$}\label{alg:VF2PPPseu}
    1.21  \begin{algorithmic}[1]
    1.22  \Procedure{VF2++order}{} \State $\mathcal{M}$ := $\emptyset$
    1.23 @@ -922,7 +924,7 @@
    1.24  \begin{claim}
    1.25  \[LabCut_{IND}((u,v),M(s))\!:=\!\!\!\!\!\bigvee_{l\ is\ label}\!\!\!\!\!\!\!|\Gamma_{large}^{l} (v) \cap T_{large}(s)|\!<\!|\Gamma_{small}^{l}(u)\cap T_{small}(s)|\ \vee\]\[\bigvee_{l\ is\ label} \newline |\Gamma_{large}^{l}(v)\cap \tilde{T}_{large}(s)| < |\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)|\] is a cutting function by IND.
    1.26  \end{claim}
    1.27 -The following claims can be proven similarly.
    1.28 +
    1.29  \subsubsection{Graph isomorphism}
    1.30  \begin{claim}
    1.31  \[LabCut_{ISO}((u,v),M(s))\!:=\!\!\!\!\!\bigvee_{l\ is\ label}\!\!\!\!\!\!\!|\Gamma_{large}^{l} (v) \cap T_{large}(s)|\!\neq\!|\Gamma_{small}^{l}(u)\cap T_{small}(s)|\  \vee\]\[\bigvee_{l\ is\ label} \newline |\Gamma_{large}^{l}(v)\cap \tilde{T}_{large}(s)| \neq |\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)|\] is a cutting function by ISO.
    1.32 @@ -998,12 +1000,6 @@
    1.33  Representing $\mathcal{M}\subseteq V_{small}$ as an array of
    1.34  size $|V_{small}|$, both the computation of the BFS tree, and processing its levels by Algorithm~\ref{alg:VF2PPProcess1} can be done inplace by swapping nodes.
    1.35  
    1.36 -After a node $u$ gets to the next place of the node order,
    1.37 -$F_\mathcal{M}[lab[u]]$ has to be decreased by one, because there is
    1.38 -one less covered node in $V_{large}$ with label $lab(u)$, that is why
    1.39 -min selection sort is preferred which gives the elements from left to
    1.40 -right in descending order, see Algorithm~\ref{alg:VF2PPProcess1}.
    1.41 -
    1.42  \subsubsection{Cutting rules}
    1.43  In Section~\ref{VF2PPCuttingRules}, the cutting rules were
    1.44  described using the sets $T_{small}$, $T_{large}$, $\tilde T_{small}$