1.1 --- a/damecco.tex Wed Nov 23 21:15:26 2016 +0100
1.2 +++ b/damecco.tex Wed Nov 23 21:45:11 2016 +0100
1.3 @@ -508,8 +508,9 @@
1.4
1.5
1.6 \begin{algorithm}
1.7 -\algtext*{EndIf}%ne nyomtasson end if-et \algtext*{EndFor}%ne
1.8 -nyomtasson .. \algtext*{EndProcedure}%ne nyomtasson ..
1.9 +\algtext*{EndIf}%ne nyomtasson end if-et
1.10 +\algtext*{EndFor}%ne
1.11 +\algtext*{EndProcedure}%ne nyomtasson ..
1.12 \caption{\hspace{0.5cm}$A\ high\ level\ description\ of\ VF2$}\label{alg:VF2Pseu}
1.13 \begin{algorithmic}[1]
1.14
1.15 @@ -866,6 +867,7 @@
1.16 \algtext*{EndIf}
1.17 \algtext*{EndProcedure}
1.18 \algtext*{EndWhile}
1.19 +\algtext*{EndFor}
1.20 \caption{\hspace{0.5cm}$The\ method\ of\ VF2++\ for\ determining\ the\ node\ order$}\label{alg:VF2PPPseu}
1.21 \begin{algorithmic}[1]
1.22 \Procedure{VF2++order}{} \State $\mathcal{M}$ := $\emptyset$
1.23 @@ -922,7 +924,7 @@
1.24 \begin{claim}
1.25 \[LabCut_{IND}((u,v),M(s))\!:=\!\!\!\!\!\bigvee_{l\ is\ label}\!\!\!\!\!\!\!|\Gamma_{large}^{l} (v) \cap T_{large}(s)|\!<\!|\Gamma_{small}^{l}(u)\cap T_{small}(s)|\ \vee\]\[\bigvee_{l\ is\ label} \newline |\Gamma_{large}^{l}(v)\cap \tilde{T}_{large}(s)| < |\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)|\] is a cutting function by IND.
1.26 \end{claim}
1.27 -The following claims can be proven similarly.
1.28 +
1.29 \subsubsection{Graph isomorphism}
1.30 \begin{claim}
1.31 \[LabCut_{ISO}((u,v),M(s))\!:=\!\!\!\!\!\bigvee_{l\ is\ label}\!\!\!\!\!\!\!|\Gamma_{large}^{l} (v) \cap T_{large}(s)|\!\neq\!|\Gamma_{small}^{l}(u)\cap T_{small}(s)|\ \vee\]\[\bigvee_{l\ is\ label} \newline |\Gamma_{large}^{l}(v)\cap \tilde{T}_{large}(s)| \neq |\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)|\] is a cutting function by ISO.
1.32 @@ -998,12 +1000,6 @@
1.33 Representing $\mathcal{M}\subseteq V_{small}$ as an array of
1.34 size $|V_{small}|$, both the computation of the BFS tree, and processing its levels by Algorithm~\ref{alg:VF2PPProcess1} can be done inplace by swapping nodes.
1.35
1.36 -After a node $u$ gets to the next place of the node order,
1.37 -$F_\mathcal{M}[lab[u]]$ has to be decreased by one, because there is
1.38 -one less covered node in $V_{large}$ with label $lab(u)$, that is why
1.39 -min selection sort is preferred which gives the elements from left to
1.40 -right in descending order, see Algorithm~\ref{alg:VF2PPProcess1}.
1.41 -
1.42 \subsubsection{Cutting rules}
1.43 In Section~\ref{VF2PPCuttingRules}, the cutting rules were
1.44 described using the sets $T_{small}$, $T_{large}$, $\tilde T_{small}$