lemon/concept/bpugraph.h
author deba
Tue, 03 Oct 2006 11:46:39 +0000
changeset 2231 06faf3f06d67
parent 2163 bef3457be038
permissions -rw-r--r--
Some rearrangement of concepts and extenders
BpUGraph concepts and concept check test
deba@1911
     1
/* -*- C++ -*-
deba@1911
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
deba@1911
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1956
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@1911
     8
 *
deba@1911
     9
 * Permission to use, modify and distribute this software is granted
deba@1911
    10
 * provided that this copyright notice appears in all copies. For
deba@1911
    11
 * precise terms see the accompanying LICENSE file.
deba@1911
    12
 *
deba@1911
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@1911
    14
 * express or implied, and with no claim as to its suitability for any
deba@1911
    15
 * purpose.
deba@1911
    16
 *
deba@1911
    17
 */
deba@1911
    18
deba@1911
    19
/// \ingroup graph_concepts
deba@1911
    20
/// \file
deba@1911
    21
/// \brief Undirected bipartite graphs and components of.
deba@1911
    22
deba@1911
    23
deba@1911
    24
#ifndef LEMON_CONCEPT_BPUGRAPH_H
deba@1911
    25
#define LEMON_CONCEPT_BPUGRAPH_H
deba@1911
    26
deba@2126
    27
#include <lemon/concept/graph_components.h>
deba@1911
    28
deba@1911
    29
#include <lemon/concept/graph.h>
deba@1911
    30
#include <lemon/concept/ugraph.h>
deba@1911
    31
deba@1993
    32
#include <lemon/bits/utility.h>
deba@1911
    33
deba@1911
    34
namespace lemon {
deba@1911
    35
  namespace concept {
deba@1911
    36
deba@1911
    37
    /// \addtogroup graph_concepts
deba@1911
    38
    /// @{
deba@1911
    39
deba@1911
    40
deba@1911
    41
    /// \brief Class describing the concept of Bipartite Undirected Graphs.
deba@1911
    42
    ///
deba@1911
    43
    /// This class describes the common interface of all 
deba@1911
    44
    /// Undirected Bipartite Graphs.
deba@1911
    45
    ///
deba@1911
    46
    /// As all concept describing classes it provides only interface
deba@1911
    47
    /// without any sensible implementation. So any algorithm for
deba@1911
    48
    /// bipartite undirected graph should compile with this class, but it 
deba@1911
    49
    /// will not run properly, of course.
deba@1911
    50
    ///
deba@1911
    51
    /// In LEMON bipartite undirected graphs also fulfill the concept of 
deba@1911
    52
    /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept"). 
deba@1911
    53
    ///
deba@1911
    54
    /// You can assume that all undirected bipartite graph can be handled
deba@1911
    55
    /// as an undirected graph and consequently as a static graph.
deba@1911
    56
    ///
deba@1911
    57
    /// The bipartite graph stores two types of nodes which are named
deba@2163
    58
    /// ANode and BNode. The graph type contains two types ANode and
deba@2163
    59
    /// BNode which are inherited from Node type. Moreover they have
deba@2163
    60
    /// constructor which converts Node to either ANode or BNode when
deba@2163
    61
    /// it is possible. Therefor everywhere the Node type can be used
deba@2163
    62
    /// instead of ANode and BNode. So the usage of the ANode and
deba@2163
    63
    /// BNode is not suggested.
deba@1911
    64
    ///
deba@1911
    65
    /// The iteration on the partition can be done with the ANodeIt and 
deba@1911
    66
    /// BNodeIt classes. The node map can be used to map values to the nodes
deba@1911
    67
    /// and similarly we can use to map values for just the ANodes and
deba@1911
    68
    /// BNodes the ANodeMap and BNodeMap template classes.
deba@1911
    69
deba@1911
    70
    class BpUGraph {
deba@1911
    71
    public:
deba@2163
    72
      /// \brief The undirected graph should be tagged by the
deba@2163
    73
      /// UndirectedTag.
deba@1911
    74
      ///
deba@2163
    75
      /// The undirected graph should be tagged by the UndirectedTag. This
deba@2163
    76
      /// tag helps the enable_if technics to make compile time 
deba@2163
    77
      /// specializations for undirected graphs.  
deba@1979
    78
      typedef True UndirectedTag;
deba@1911
    79
deba@1911
    80
      /// \brief The base type of node iterators, 
deba@1911
    81
      /// or in other words, the trivial node iterator.
deba@1911
    82
      ///
deba@1911
    83
      /// This is the base type of each node iterator,
deba@1911
    84
      /// thus each kind of node iterator converts to this.
deba@1911
    85
      /// More precisely each kind of node iterator should be inherited 
deba@1911
    86
      /// from the trivial node iterator. The Node class represents
deba@1911
    87
      /// both of two types of nodes. 
deba@1911
    88
      class Node {
deba@1911
    89
      public:
deba@1911
    90
        /// Default constructor
deba@1911
    91
deba@1911
    92
        /// @warning The default constructor sets the iterator
deba@1911
    93
        /// to an undefined value.
deba@1911
    94
        Node() { }
deba@1911
    95
        /// Copy constructor.
deba@1911
    96
deba@1911
    97
        /// Copy constructor.
deba@1911
    98
        ///
deba@1911
    99
        Node(const Node&) { }
deba@1911
   100
deba@1911
   101
        /// Invalid constructor \& conversion.
deba@1911
   102
deba@1911
   103
        /// This constructor initializes the iterator to be invalid.
deba@1911
   104
        /// \sa Invalid for more details.
deba@1911
   105
        Node(Invalid) { }
deba@1911
   106
        /// Equality operator
deba@1911
   107
deba@1911
   108
        /// Two iterators are equal if and only if they point to the
deba@1911
   109
        /// same object or both are invalid.
deba@1911
   110
        bool operator==(Node) const { return true; }
deba@1911
   111
deba@1911
   112
        /// Inequality operator
deba@1911
   113
        
deba@1911
   114
        /// \sa operator==(Node n)
deba@1911
   115
        ///
deba@1911
   116
        bool operator!=(Node) const { return true; }
deba@1911
   117
deba@1911
   118
	/// Artificial ordering operator.
deba@1911
   119
	
deba@1911
   120
	/// To allow the use of graph descriptors as key type in std::map or
deba@1911
   121
	/// similar associative container we require this.
deba@1911
   122
	///
deba@1911
   123
	/// \note This operator only have to define some strict ordering of
deba@1911
   124
	/// the items; this order has nothing to do with the iteration
deba@1911
   125
	/// ordering of the items.
deba@1911
   126
	bool operator<(Node) const { return false; }
deba@1911
   127
deba@1911
   128
      };
deba@1933
   129
deba@2163
   130
      /// \brief Helper class for ANodes.
deba@1933
   131
      ///
deba@2163
   132
      /// This class is just a helper class for ANodes, it is not
deba@2163
   133
      /// suggested to use it directly. It can be converted easily to
deba@2163
   134
      /// node and vice versa. The usage of this class is limited
deba@2231
   135
      /// to use just as template parameters for special map types. 
deba@2231
   136
      class ANode : public Node {
deba@1933
   137
      public:
deba@1933
   138
        /// Default constructor
deba@1933
   139
deba@1933
   140
        /// @warning The default constructor sets the iterator
deba@1933
   141
        /// to an undefined value.
deba@2231
   142
        ANode() : Node() { }
deba@1933
   143
        /// Copy constructor.
deba@1933
   144
deba@1933
   145
        /// Copy constructor.
deba@1933
   146
        ///
deba@2231
   147
        ANode(const ANode&) : Node() { }
deba@1933
   148
deba@1933
   149
        /// Construct the same node as ANode.
deba@1933
   150
deba@1933
   151
        /// Construct the same node as ANode. It may throws assertion
deba@1933
   152
        /// when the given node is from the BNode set.
deba@2231
   153
        ANode(const Node&) : Node() { }
deba@2231
   154
deba@2231
   155
        /// Assign node to A-node.
deba@2231
   156
deba@2231
   157
        /// Besides the core graph item functionality each node should
deba@2231
   158
        /// be convertible to the represented A-node if it is it possible. 
deba@2231
   159
        ANode& operator=(const Node&) { return *this; }
deba@1933
   160
deba@1933
   161
        /// Invalid constructor \& conversion.
deba@1933
   162
deba@1933
   163
        /// This constructor initializes the iterator to be invalid.
deba@1933
   164
        /// \sa Invalid for more details.
deba@1933
   165
        ANode(Invalid) { }
deba@1933
   166
        /// Equality operator
deba@1933
   167
deba@1933
   168
        /// Two iterators are equal if and only if they point to the
deba@1933
   169
        /// same object or both are invalid.
deba@1933
   170
        bool operator==(ANode) const { return true; }
deba@1933
   171
deba@1933
   172
        /// Inequality operator
deba@1933
   173
        
deba@1933
   174
        /// \sa operator==(ANode n)
deba@1933
   175
        ///
deba@1933
   176
        bool operator!=(ANode) const { return true; }
deba@1933
   177
deba@1933
   178
	/// Artificial ordering operator.
deba@1933
   179
	
deba@1933
   180
	/// To allow the use of graph descriptors as key type in std::map or
deba@1933
   181
	/// similar associative container we require this.
deba@1933
   182
	///
deba@1933
   183
	/// \note This operator only have to define some strict ordering of
deba@1933
   184
	/// the items; this order has nothing to do with the iteration
deba@1933
   185
	/// ordering of the items.
deba@1933
   186
	bool operator<(ANode) const { return false; }
deba@1933
   187
deba@1933
   188
      };
deba@1933
   189
deba@2163
   190
      /// \brief Helper class for BNodes.
deba@1933
   191
      ///
deba@2163
   192
      /// This class is just a helper class for BNodes, it is not
deba@2163
   193
      /// suggested to use it directly. It can be converted easily to
deba@2163
   194
      /// node and vice versa. The usage of this class is limited
deba@2231
   195
      /// to use just as template parameters for special map types. 
deba@2231
   196
      class BNode : public Node {
deba@1933
   197
      public:
deba@1933
   198
        /// Default constructor
deba@1933
   199
deba@1933
   200
        /// @warning The default constructor sets the iterator
deba@1933
   201
        /// to an undefined value.
deba@2231
   202
        BNode() : Node() { }
deba@1933
   203
        /// Copy constructor.
deba@1933
   204
deba@1933
   205
        /// Copy constructor.
deba@1933
   206
        ///
deba@2231
   207
        BNode(const BNode&) : Node() { }
deba@1933
   208
deba@1933
   209
        /// Construct the same node as BNode.
deba@1933
   210
deba@1933
   211
        /// Construct the same node as BNode. It may throws assertion
deba@1933
   212
        /// when the given node is from the ANode set.
deba@2231
   213
        BNode(const Node&) : Node() { }
deba@2231
   214
deba@2231
   215
        /// Assign node to B-node.
deba@2231
   216
deba@2231
   217
        /// Besides the core graph item functionality each node should
deba@2231
   218
        /// be convertible to the represented B-node if it is it possible. 
deba@2231
   219
        BNode& operator=(const Node&) { return *this; }
deba@1933
   220
deba@1933
   221
        /// Invalid constructor \& conversion.
deba@1933
   222
deba@1933
   223
        /// This constructor initializes the iterator to be invalid.
deba@1933
   224
        /// \sa Invalid for more details.
deba@1933
   225
        BNode(Invalid) { }
deba@1933
   226
        /// Equality operator
deba@1933
   227
deba@1933
   228
        /// Two iterators are equal if and only if they point to the
deba@1933
   229
        /// same object or both are invalid.
deba@1933
   230
        bool operator==(BNode) const { return true; }
deba@1933
   231
deba@1933
   232
        /// Inequality operator
deba@1933
   233
        
deba@1933
   234
        /// \sa operator==(BNode n)
deba@1933
   235
        ///
deba@1933
   236
        bool operator!=(BNode) const { return true; }
deba@1933
   237
deba@1933
   238
	/// Artificial ordering operator.
deba@1933
   239
	
deba@1933
   240
	/// To allow the use of graph descriptors as key type in std::map or
deba@1933
   241
	/// similar associative container we require this.
deba@1933
   242
	///
deba@1933
   243
	/// \note This operator only have to define some strict ordering of
deba@1933
   244
	/// the items; this order has nothing to do with the iteration
deba@1933
   245
	/// ordering of the items.
deba@1933
   246
	bool operator<(BNode) const { return false; }
deba@1933
   247
deba@1933
   248
      };
deba@1911
   249
    
deba@1911
   250
      /// This iterator goes through each node.
deba@1911
   251
deba@1911
   252
      /// This iterator goes through each node.
deba@1911
   253
      /// Its usage is quite simple, for example you can count the number
deba@1911
   254
      /// of nodes in graph \c g of type \c Graph like this:
alpar@1946
   255
      ///\code
deba@1911
   256
      /// int count=0;
deba@1911
   257
      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
alpar@1946
   258
      ///\endcode
deba@1911
   259
      class NodeIt : public Node {
deba@1911
   260
      public:
deba@1911
   261
        /// Default constructor
deba@1911
   262
deba@1911
   263
        /// @warning The default constructor sets the iterator
deba@1911
   264
        /// to an undefined value.
deba@1911
   265
        NodeIt() { }
deba@1911
   266
        /// Copy constructor.
deba@1911
   267
        
deba@1911
   268
        /// Copy constructor.
deba@1911
   269
        ///
deba@1911
   270
        NodeIt(const NodeIt& n) : Node(n) { }
deba@1911
   271
        /// Invalid constructor \& conversion.
deba@1911
   272
deba@1911
   273
        /// Initialize the iterator to be invalid.
deba@1911
   274
        /// \sa Invalid for more details.
deba@1911
   275
        NodeIt(Invalid) { }
deba@1911
   276
        /// Sets the iterator to the first node.
deba@1911
   277
deba@1911
   278
        /// Sets the iterator to the first node of \c g.
deba@1911
   279
        ///
deba@1911
   280
        NodeIt(const BpUGraph&) { }
deba@1911
   281
        /// Node -> NodeIt conversion.
deba@1911
   282
deba@1911
   283
        /// Sets the iterator to the node of \c the graph pointed by 
deba@1911
   284
	/// the trivial iterator.
deba@1911
   285
        /// This feature necessitates that each time we 
deba@1911
   286
        /// iterate the edge-set, the iteration order is the same.
deba@1911
   287
        NodeIt(const BpUGraph&, const Node&) { }
deba@1911
   288
        /// Next node.
deba@1911
   289
deba@1911
   290
        /// Assign the iterator to the next node.
deba@1911
   291
        ///
deba@1911
   292
        NodeIt& operator++() { return *this; }
deba@1911
   293
      };
deba@1911
   294
deba@1911
   295
      /// This iterator goes through each ANode.
deba@1911
   296
deba@1911
   297
      /// This iterator goes through each ANode.
deba@1911
   298
      /// Its usage is quite simple, for example you can count the number
deba@1911
   299
      /// of nodes in graph \c g of type \c Graph like this:
alpar@1946
   300
      ///\code
deba@1911
   301
      /// int count=0;
deba@1911
   302
      /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
alpar@1946
   303
      ///\endcode
deba@2163
   304
      class ANodeIt : public Node {
deba@1911
   305
      public:
deba@1911
   306
        /// Default constructor
deba@1911
   307
deba@1911
   308
        /// @warning The default constructor sets the iterator
deba@1911
   309
        /// to an undefined value.
deba@1911
   310
        ANodeIt() { }
deba@1911
   311
        /// Copy constructor.
deba@1911
   312
        
deba@1911
   313
        /// Copy constructor.
deba@1911
   314
        ///
deba@1911
   315
        ANodeIt(const ANodeIt& n) : Node(n) { }
deba@1911
   316
        /// Invalid constructor \& conversion.
deba@1911
   317
deba@1911
   318
        /// Initialize the iterator to be invalid.
deba@1911
   319
        /// \sa Invalid for more details.
deba@1911
   320
        ANodeIt(Invalid) { }
deba@1911
   321
        /// Sets the iterator to the first node.
deba@1911
   322
deba@1911
   323
        /// Sets the iterator to the first node of \c g.
deba@1911
   324
        ///
deba@1911
   325
        ANodeIt(const BpUGraph&) { }
deba@1911
   326
        /// Node -> ANodeIt conversion.
deba@1911
   327
deba@1911
   328
        /// Sets the iterator to the node of \c the graph pointed by 
deba@1911
   329
	/// the trivial iterator.
deba@1911
   330
        /// This feature necessitates that each time we 
deba@1911
   331
        /// iterate the edge-set, the iteration order is the same.
deba@1911
   332
        ANodeIt(const BpUGraph&, const Node&) { }
deba@1911
   333
        /// Next node.
deba@1911
   334
deba@1911
   335
        /// Assign the iterator to the next node.
deba@1911
   336
        ///
deba@1911
   337
        ANodeIt& operator++() { return *this; }
deba@1911
   338
      };
deba@1911
   339
deba@1911
   340
      /// This iterator goes through each BNode.
deba@1911
   341
deba@1911
   342
      /// This iterator goes through each BNode.
deba@1911
   343
      /// Its usage is quite simple, for example you can count the number
deba@1911
   344
      /// of nodes in graph \c g of type \c Graph like this:
alpar@1946
   345
      ///\code
deba@1911
   346
      /// int count=0;
deba@1911
   347
      /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
alpar@1946
   348
      ///\endcode
deba@2163
   349
      class BNodeIt : public Node {
deba@1911
   350
      public:
deba@1911
   351
        /// Default constructor
deba@1911
   352
deba@1911
   353
        /// @warning The default constructor sets the iterator
deba@1911
   354
        /// to an undefined value.
deba@1911
   355
        BNodeIt() { }
deba@1911
   356
        /// Copy constructor.
deba@1911
   357
        
deba@1911
   358
        /// Copy constructor.
deba@1911
   359
        ///
deba@1911
   360
        BNodeIt(const BNodeIt& n) : Node(n) { }
deba@1911
   361
        /// Invalid constructor \& conversion.
deba@1911
   362
deba@1911
   363
        /// Initialize the iterator to be invalid.
deba@1911
   364
        /// \sa Invalid for more details.
deba@1911
   365
        BNodeIt(Invalid) { }
deba@1911
   366
        /// Sets the iterator to the first node.
deba@1911
   367
deba@1911
   368
        /// Sets the iterator to the first node of \c g.
deba@1911
   369
        ///
deba@1911
   370
        BNodeIt(const BpUGraph&) { }
deba@1911
   371
        /// Node -> BNodeIt conversion.
deba@1911
   372
deba@1911
   373
        /// Sets the iterator to the node of \c the graph pointed by 
deba@1911
   374
	/// the trivial iterator.
deba@1911
   375
        /// This feature necessitates that each time we 
deba@1911
   376
        /// iterate the edge-set, the iteration order is the same.
deba@1911
   377
        BNodeIt(const BpUGraph&, const Node&) { }
deba@1911
   378
        /// Next node.
deba@1911
   379
deba@1911
   380
        /// Assign the iterator to the next node.
deba@1911
   381
        ///
deba@1911
   382
        BNodeIt& operator++() { return *this; }
deba@1911
   383
      };
deba@1911
   384
    
deba@1911
   385
    
deba@1911
   386
      /// The base type of the undirected edge iterators.
deba@1911
   387
deba@1911
   388
      /// The base type of the undirected edge iterators.
deba@1911
   389
      ///
deba@1911
   390
      class UEdge {
deba@1911
   391
      public:
deba@1911
   392
        /// Default constructor
deba@1911
   393
deba@1911
   394
        /// @warning The default constructor sets the iterator
deba@1911
   395
        /// to an undefined value.
deba@1911
   396
        UEdge() { }
deba@1911
   397
        /// Copy constructor.
deba@1911
   398
deba@1911
   399
        /// Copy constructor.
deba@1911
   400
        ///
deba@1911
   401
        UEdge(const UEdge&) { }
deba@1911
   402
        /// Initialize the iterator to be invalid.
deba@1911
   403
deba@1911
   404
        /// Initialize the iterator to be invalid.
deba@1911
   405
        ///
deba@1911
   406
        UEdge(Invalid) { }
deba@1911
   407
        /// Equality operator
deba@1911
   408
deba@1911
   409
        /// Two iterators are equal if and only if they point to the
deba@1911
   410
        /// same object or both are invalid.
deba@1911
   411
        bool operator==(UEdge) const { return true; }
deba@1911
   412
        /// Inequality operator
deba@1911
   413
deba@1911
   414
        /// \sa operator==(UEdge n)
deba@1911
   415
        ///
deba@1911
   416
        bool operator!=(UEdge) const { return true; }
deba@1911
   417
deba@1911
   418
	/// Artificial ordering operator.
deba@1911
   419
	
deba@1911
   420
	/// To allow the use of graph descriptors as key type in std::map or
deba@1911
   421
	/// similar associative container we require this.
deba@1911
   422
	///
deba@1911
   423
	/// \note This operator only have to define some strict ordering of
deba@1911
   424
	/// the items; this order has nothing to do with the iteration
deba@1911
   425
	/// ordering of the items.
deba@1911
   426
	bool operator<(UEdge) const { return false; }
deba@1911
   427
      };
deba@1911
   428
deba@1911
   429
      /// This iterator goes through each undirected edge.
deba@1911
   430
deba@1911
   431
      /// This iterator goes through each undirected edge of a graph.
deba@1911
   432
      /// Its usage is quite simple, for example you can count the number
deba@1911
   433
      /// of undirected edges in a graph \c g of type \c Graph as follows:
alpar@1946
   434
      ///\code
deba@1911
   435
      /// int count=0;
deba@1911
   436
      /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
alpar@1946
   437
      ///\endcode
deba@1911
   438
      class UEdgeIt : public UEdge {
deba@1911
   439
      public:
deba@1911
   440
        /// Default constructor
deba@1911
   441
deba@1911
   442
        /// @warning The default constructor sets the iterator
deba@1911
   443
        /// to an undefined value.
deba@1911
   444
        UEdgeIt() { }
deba@1911
   445
        /// Copy constructor.
deba@1911
   446
deba@1911
   447
        /// Copy constructor.
deba@1911
   448
        ///
deba@1911
   449
        UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
deba@1911
   450
        /// Initialize the iterator to be invalid.
deba@1911
   451
deba@1911
   452
        /// Initialize the iterator to be invalid.
deba@1911
   453
        ///
deba@1911
   454
        UEdgeIt(Invalid) { }
deba@1911
   455
        /// This constructor sets the iterator to the first undirected edge.
deba@1911
   456
    
deba@1911
   457
        /// This constructor sets the iterator to the first undirected edge.
deba@1911
   458
        UEdgeIt(const BpUGraph&) { }
deba@1911
   459
        /// UEdge -> UEdgeIt conversion
deba@1911
   460
deba@1911
   461
        /// Sets the iterator to the value of the trivial iterator.
deba@1911
   462
        /// This feature necessitates that each time we
deba@1911
   463
        /// iterate the undirected edge-set, the iteration order is the 
deba@1911
   464
	/// same.
deba@1911
   465
        UEdgeIt(const BpUGraph&, const UEdge&) { } 
deba@1911
   466
        /// Next undirected edge
deba@1911
   467
        
deba@1911
   468
        /// Assign the iterator to the next undirected edge.
deba@1911
   469
        UEdgeIt& operator++() { return *this; }
deba@1911
   470
      };
deba@1911
   471
deba@1911
   472
      /// \brief This iterator goes trough the incident undirected 
deba@1911
   473
      /// edges of a node.
deba@1911
   474
      ///
deba@1911
   475
      /// This iterator goes trough the incident undirected edges
deba@1911
   476
      /// of a certain node
deba@1911
   477
      /// of a graph.
deba@1911
   478
      /// Its usage is quite simple, for example you can compute the
deba@1911
   479
      /// degree (i.e. count the number
deba@1911
   480
      /// of incident edges of a node \c n
deba@1911
   481
      /// in graph \c g of type \c Graph as follows.
alpar@1946
   482
      ///\code
deba@1911
   483
      /// int count=0;
deba@1911
   484
      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
alpar@1946
   485
      ///\endcode
deba@1911
   486
      class IncEdgeIt : public UEdge {
deba@1911
   487
      public:
deba@1911
   488
        /// Default constructor
deba@1911
   489
deba@1911
   490
        /// @warning The default constructor sets the iterator
deba@1911
   491
        /// to an undefined value.
deba@1911
   492
        IncEdgeIt() { }
deba@1911
   493
        /// Copy constructor.
deba@1911
   494
deba@1911
   495
        /// Copy constructor.
deba@1911
   496
        ///
deba@1911
   497
        IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
deba@1911
   498
        /// Initialize the iterator to be invalid.
deba@1911
   499
deba@1911
   500
        /// Initialize the iterator to be invalid.
deba@1911
   501
        ///
deba@1911
   502
        IncEdgeIt(Invalid) { }
deba@1911
   503
        /// This constructor sets the iterator to first incident edge.
deba@1911
   504
    
deba@1911
   505
        /// This constructor set the iterator to the first incident edge of
deba@1911
   506
        /// the node.
deba@1911
   507
        IncEdgeIt(const BpUGraph&, const Node&) { }
deba@1911
   508
        /// UEdge -> IncEdgeIt conversion
deba@1911
   509
deba@1911
   510
        /// Sets the iterator to the value of the trivial iterator \c e.
deba@1911
   511
        /// This feature necessitates that each time we 
deba@1911
   512
        /// iterate the edge-set, the iteration order is the same.
deba@1911
   513
        IncEdgeIt(const BpUGraph&, const UEdge&) { }
deba@1911
   514
        /// Next incident edge
deba@1911
   515
deba@1911
   516
        /// Assign the iterator to the next incident edge
deba@1911
   517
	/// of the corresponding node.
deba@1911
   518
        IncEdgeIt& operator++() { return *this; }
deba@1911
   519
      };
deba@1911
   520
deba@1911
   521
      /// The directed edge type.
deba@1911
   522
deba@1911
   523
      /// The directed edge type. It can be converted to the
deba@1911
   524
      /// undirected edge.
deba@1911
   525
      class Edge : public UEdge {
deba@1911
   526
      public:
deba@1911
   527
        /// Default constructor
deba@1911
   528
deba@1911
   529
        /// @warning The default constructor sets the iterator
deba@1911
   530
        /// to an undefined value.
deba@1911
   531
        Edge() { }
deba@1911
   532
        /// Copy constructor.
deba@1911
   533
deba@1911
   534
        /// Copy constructor.
deba@1911
   535
        ///
deba@1911
   536
        Edge(const Edge& e) : UEdge(e) { }
deba@1911
   537
        /// Initialize the iterator to be invalid.
deba@1911
   538
deba@1911
   539
        /// Initialize the iterator to be invalid.
deba@1911
   540
        ///
deba@1911
   541
        Edge(Invalid) { }
deba@1911
   542
        /// Equality operator
deba@1911
   543
deba@1911
   544
        /// Two iterators are equal if and only if they point to the
deba@1911
   545
        /// same object or both are invalid.
deba@1911
   546
        bool operator==(Edge) const { return true; }
deba@1911
   547
        /// Inequality operator
deba@1911
   548
deba@1911
   549
        /// \sa operator==(Edge n)
deba@1911
   550
        ///
deba@1911
   551
        bool operator!=(Edge) const { return true; }
deba@1911
   552
deba@1911
   553
	/// Artificial ordering operator.
deba@1911
   554
	
deba@1911
   555
	/// To allow the use of graph descriptors as key type in std::map or
deba@1911
   556
	/// similar associative container we require this.
deba@1911
   557
	///
deba@1911
   558
	/// \note This operator only have to define some strict ordering of
deba@1911
   559
	/// the items; this order has nothing to do with the iteration
deba@1911
   560
	/// ordering of the items.
deba@1911
   561
	bool operator<(Edge) const { return false; }
deba@1911
   562
	
deba@1911
   563
      }; 
deba@1911
   564
      /// This iterator goes through each directed edge.
deba@1911
   565
deba@1911
   566
      /// This iterator goes through each edge of a graph.
deba@1911
   567
      /// Its usage is quite simple, for example you can count the number
deba@1911
   568
      /// of edges in a graph \c g of type \c Graph as follows:
alpar@1946
   569
      ///\code
deba@1911
   570
      /// int count=0;
deba@1911
   571
      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
alpar@1946
   572
      ///\endcode
deba@1911
   573
      class EdgeIt : public Edge {
deba@1911
   574
      public:
deba@1911
   575
        /// Default constructor
deba@1911
   576
deba@1911
   577
        /// @warning The default constructor sets the iterator
deba@1911
   578
        /// to an undefined value.
deba@1911
   579
        EdgeIt() { }
deba@1911
   580
        /// Copy constructor.
deba@1911
   581
deba@1911
   582
        /// Copy constructor.
deba@1911
   583
        ///
deba@1911
   584
        EdgeIt(const EdgeIt& e) : Edge(e) { }
deba@1911
   585
        /// Initialize the iterator to be invalid.
deba@1911
   586
deba@1911
   587
        /// Initialize the iterator to be invalid.
deba@1911
   588
        ///
deba@1911
   589
        EdgeIt(Invalid) { }
deba@1911
   590
        /// This constructor sets the iterator to the first edge.
deba@1911
   591
    
deba@1911
   592
        /// This constructor sets the iterator to the first edge of \c g.
deba@1911
   593
        ///@param g the graph
deba@1911
   594
        EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
deba@1911
   595
        /// Edge -> EdgeIt conversion
deba@1911
   596
deba@1911
   597
        /// Sets the iterator to the value of the trivial iterator \c e.
deba@1911
   598
        /// This feature necessitates that each time we 
deba@1911
   599
        /// iterate the edge-set, the iteration order is the same.
deba@1911
   600
        EdgeIt(const BpUGraph&, const Edge&) { } 
deba@1911
   601
        ///Next edge
deba@1911
   602
        
deba@1911
   603
        /// Assign the iterator to the next edge.
deba@1911
   604
        EdgeIt& operator++() { return *this; }
deba@1911
   605
      };
deba@1911
   606
   
deba@1911
   607
      /// This iterator goes trough the outgoing directed edges of a node.
deba@1911
   608
deba@1911
   609
      /// This iterator goes trough the \e outgoing edges of a certain node
deba@1911
   610
      /// of a graph.
deba@1911
   611
      /// Its usage is quite simple, for example you can count the number
deba@1911
   612
      /// of outgoing edges of a node \c n
deba@1911
   613
      /// in graph \c g of type \c Graph as follows.
alpar@1946
   614
      ///\code
deba@1911
   615
      /// int count=0;
deba@1911
   616
      /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
alpar@1946
   617
      ///\endcode
deba@1911
   618
    
deba@1911
   619
      class OutEdgeIt : public Edge {
deba@1911
   620
      public:
deba@1911
   621
        /// Default constructor
deba@1911
   622
deba@1911
   623
        /// @warning The default constructor sets the iterator
deba@1911
   624
        /// to an undefined value.
deba@1911
   625
        OutEdgeIt() { }
deba@1911
   626
        /// Copy constructor.
deba@1911
   627
deba@1911
   628
        /// Copy constructor.
deba@1911
   629
        ///
deba@1911
   630
        OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
deba@1911
   631
        /// Initialize the iterator to be invalid.
deba@1911
   632
deba@1911
   633
        /// Initialize the iterator to be invalid.
deba@1911
   634
        ///
deba@1911
   635
        OutEdgeIt(Invalid) { }
deba@1911
   636
        /// This constructor sets the iterator to the first outgoing edge.
deba@1911
   637
    
deba@1911
   638
        /// This constructor sets the iterator to the first outgoing edge of
deba@1911
   639
        /// the node.
deba@1911
   640
        ///@param n the node
deba@1911
   641
        ///@param g the graph
deba@1911
   642
        OutEdgeIt(const BpUGraph& n, const Node& g) {
deba@1911
   643
	  ignore_unused_variable_warning(n);
deba@1911
   644
	  ignore_unused_variable_warning(g);
deba@1911
   645
	}
deba@1911
   646
        /// Edge -> OutEdgeIt conversion
deba@1911
   647
deba@1911
   648
        /// Sets the iterator to the value of the trivial iterator.
deba@1911
   649
	/// This feature necessitates that each time we 
deba@1911
   650
        /// iterate the edge-set, the iteration order is the same.
deba@1911
   651
        OutEdgeIt(const BpUGraph&, const Edge&) { }
deba@1911
   652
        ///Next outgoing edge
deba@1911
   653
        
deba@1911
   654
        /// Assign the iterator to the next 
deba@1911
   655
        /// outgoing edge of the corresponding node.
deba@1911
   656
        OutEdgeIt& operator++() { return *this; }
deba@1911
   657
      };
deba@1911
   658
deba@1911
   659
      /// This iterator goes trough the incoming directed edges of a node.
deba@1911
   660
deba@1911
   661
      /// This iterator goes trough the \e incoming edges of a certain node
deba@1911
   662
      /// of a graph.
deba@1911
   663
      /// Its usage is quite simple, for example you can count the number
deba@1911
   664
      /// of outgoing edges of a node \c n
deba@1911
   665
      /// in graph \c g of type \c Graph as follows.
alpar@1946
   666
      ///\code
deba@1911
   667
      /// int count=0;
deba@1911
   668
      /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
alpar@1946
   669
      ///\endcode
deba@1911
   670
deba@1911
   671
      class InEdgeIt : public Edge {
deba@1911
   672
      public:
deba@1911
   673
        /// Default constructor
deba@1911
   674
deba@1911
   675
        /// @warning The default constructor sets the iterator
deba@1911
   676
        /// to an undefined value.
deba@1911
   677
        InEdgeIt() { }
deba@1911
   678
        /// Copy constructor.
deba@1911
   679
deba@1911
   680
        /// Copy constructor.
deba@1911
   681
        ///
deba@1911
   682
        InEdgeIt(const InEdgeIt& e) : Edge(e) { }
deba@1911
   683
        /// Initialize the iterator to be invalid.
deba@1911
   684
deba@1911
   685
        /// Initialize the iterator to be invalid.
deba@1911
   686
        ///
deba@1911
   687
        InEdgeIt(Invalid) { }
deba@1911
   688
        /// This constructor sets the iterator to first incoming edge.
deba@1911
   689
    
deba@1911
   690
        /// This constructor set the iterator to the first incoming edge of
deba@1911
   691
        /// the node.
deba@1911
   692
        ///@param n the node
deba@1911
   693
        ///@param g the graph
deba@1911
   694
        InEdgeIt(const BpUGraph& g, const Node& n) { 
deba@1911
   695
	  ignore_unused_variable_warning(n);
deba@1911
   696
	  ignore_unused_variable_warning(g);
deba@1911
   697
	}
deba@1911
   698
        /// Edge -> InEdgeIt conversion
deba@1911
   699
deba@1911
   700
        /// Sets the iterator to the value of the trivial iterator \c e.
deba@1911
   701
        /// This feature necessitates that each time we 
deba@1911
   702
        /// iterate the edge-set, the iteration order is the same.
deba@1911
   703
        InEdgeIt(const BpUGraph&, const Edge&) { }
deba@1911
   704
        /// Next incoming edge
deba@1911
   705
deba@1911
   706
        /// Assign the iterator to the next inedge of the corresponding node.
deba@1911
   707
        ///
deba@1911
   708
        InEdgeIt& operator++() { return *this; }
deba@1911
   709
      };
deba@1911
   710
deba@1911
   711
      /// \brief Read write map of the nodes to type \c T.
deba@1911
   712
      /// 
deba@1911
   713
      /// ReadWrite map of the nodes to type \c T.
deba@1911
   714
      /// \sa Reference
deba@1911
   715
      /// \warning Making maps that can handle bool type (NodeMap<bool>)
deba@1911
   716
      /// needs some extra attention!
deba@1911
   717
      /// \todo Wrong documentation
deba@1911
   718
      template<class T> 
deba@1911
   719
      class NodeMap : public ReadWriteMap< Node, T >
deba@1911
   720
      {
deba@1911
   721
      public:
deba@1911
   722
deba@1911
   723
        ///\e
deba@1911
   724
        NodeMap(const BpUGraph&) { }
deba@1911
   725
        ///\e
deba@1911
   726
        NodeMap(const BpUGraph&, T) { }
deba@1911
   727
deba@1911
   728
        ///Copy constructor
deba@1911
   729
        NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
deba@1911
   730
        ///Assignment operator
deba@1911
   731
        NodeMap& operator=(const NodeMap&) { return *this; }
deba@2231
   732
        ///Assignment operator
deba@2231
   733
        template <typename CMap>
deba@2231
   734
        NodeMap& operator=(const CMap&) { 
deba@2231
   735
          checkConcept<ReadMap<Node, T>, CMap>();
deba@2231
   736
          return *this; 
deba@2231
   737
        }
deba@1911
   738
      };
deba@1911
   739
deba@1911
   740
      /// \brief Read write map of the ANodes to type \c T.
deba@1911
   741
      /// 
deba@1911
   742
      /// ReadWrite map of the ANodes to type \c T.
deba@1911
   743
      /// \sa Reference
deba@1911
   744
      /// \warning Making maps that can handle bool type (NodeMap<bool>)
deba@1911
   745
      /// needs some extra attention!
deba@1911
   746
      /// \todo Wrong documentation
deba@1911
   747
      template<class T> 
deba@1911
   748
      class ANodeMap : public ReadWriteMap< Node, T >
deba@1911
   749
      {
deba@1911
   750
      public:
deba@1911
   751
deba@1911
   752
        ///\e
deba@1911
   753
        ANodeMap(const BpUGraph&) { }
deba@1911
   754
        ///\e
deba@1911
   755
        ANodeMap(const BpUGraph&, T) { }
deba@1911
   756
deba@1911
   757
        ///Copy constructor
deba@2231
   758
        ANodeMap(const ANodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
deba@1911
   759
        ///Assignment operator
deba@2231
   760
        ANodeMap& operator=(const ANodeMap&) { return *this; }
deba@2231
   761
        ///Assignment operator
deba@2231
   762
        template <typename CMap>
deba@2231
   763
        ANodeMap& operator=(const CMap&) { 
deba@2231
   764
          checkConcept<ReadMap<Node, T>, CMap>();
deba@2231
   765
          return *this; 
deba@2231
   766
        }
deba@1911
   767
      };
deba@1911
   768
deba@1911
   769
      /// \brief Read write map of the BNodes to type \c T.
deba@1911
   770
      /// 
deba@1911
   771
      /// ReadWrite map of the BNodes to type \c T.
deba@1911
   772
      /// \sa Reference
deba@1911
   773
      /// \warning Making maps that can handle bool type (NodeMap<bool>)
deba@1911
   774
      /// needs some extra attention!
deba@1911
   775
      /// \todo Wrong documentation
deba@1911
   776
      template<class T> 
deba@1911
   777
      class BNodeMap : public ReadWriteMap< Node, T >
deba@1911
   778
      {
deba@1911
   779
      public:
deba@1911
   780
deba@1911
   781
        ///\e
deba@1911
   782
        BNodeMap(const BpUGraph&) { }
deba@1911
   783
        ///\e
deba@1911
   784
        BNodeMap(const BpUGraph&, T) { }
deba@1911
   785
deba@1911
   786
        ///Copy constructor
deba@2231
   787
        BNodeMap(const BNodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
deba@1911
   788
        ///Assignment operator
deba@2231
   789
        BNodeMap& operator=(const BNodeMap&) { return *this; }
deba@2231
   790
        ///Assignment operator
deba@2231
   791
        template <typename CMap>
deba@2231
   792
        BNodeMap& operator=(const CMap&) { 
deba@2231
   793
          checkConcept<ReadMap<Node, T>, CMap>();
deba@2231
   794
          return *this; 
deba@2231
   795
        }
deba@1911
   796
      };
deba@1911
   797
deba@1911
   798
      /// \brief Read write map of the directed edges to type \c T.
deba@1911
   799
      ///
deba@1911
   800
      /// Reference map of the directed edges to type \c T.
deba@1911
   801
      /// \sa Reference
deba@1911
   802
      /// \warning Making maps that can handle bool type (EdgeMap<bool>)
deba@1911
   803
      /// needs some extra attention!
deba@1911
   804
      /// \todo Wrong documentation
deba@1911
   805
      template<class T> 
deba@1911
   806
      class EdgeMap : public ReadWriteMap<Edge,T>
deba@1911
   807
      {
deba@1911
   808
      public:
deba@1911
   809
deba@1911
   810
        ///\e
deba@1911
   811
        EdgeMap(const BpUGraph&) { }
deba@1911
   812
        ///\e
deba@1911
   813
        EdgeMap(const BpUGraph&, T) { }
deba@1911
   814
        ///Copy constructor
deba@1911
   815
        EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
deba@1911
   816
        ///Assignment operator
deba@1911
   817
        EdgeMap& operator=(const EdgeMap&) { return *this; }
deba@2231
   818
        ///Assignment operator
deba@2231
   819
        template <typename CMap>
deba@2231
   820
        EdgeMap& operator=(const CMap&) { 
deba@2231
   821
          checkConcept<ReadMap<Edge, T>, CMap>();
deba@2231
   822
          return *this; 
deba@2231
   823
        }
deba@1911
   824
      };
deba@1911
   825
deba@1911
   826
      /// Read write map of the undirected edges to type \c T.
deba@1911
   827
deba@1911
   828
      /// Reference map of the edges to type \c T.
deba@1911
   829
      /// \sa Reference
deba@1911
   830
      /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
deba@1911
   831
      /// needs some extra attention!
deba@1911
   832
      /// \todo Wrong documentation
deba@1911
   833
      template<class T> 
deba@1911
   834
      class UEdgeMap : public ReadWriteMap<UEdge,T>
deba@1911
   835
      {
deba@1911
   836
      public:
deba@1911
   837
deba@1911
   838
        ///\e
deba@1911
   839
        UEdgeMap(const BpUGraph&) { }
deba@1911
   840
        ///\e
deba@1911
   841
        UEdgeMap(const BpUGraph&, T) { }
deba@1911
   842
        ///Copy constructor
deba@1911
   843
        UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
deba@1911
   844
        ///Assignment operator
deba@1911
   845
        UEdgeMap &operator=(const UEdgeMap&) { return *this; }
deba@2231
   846
        ///Assignment operator
deba@2231
   847
        template <typename CMap>
deba@2231
   848
        UEdgeMap& operator=(const CMap&) { 
deba@2231
   849
          checkConcept<ReadMap<UEdge, T>, CMap>();
deba@2231
   850
          return *this; 
deba@2231
   851
        }
deba@1911
   852
      };
deba@1911
   853
deba@1911
   854
      /// \brief Direct the given undirected edge.
deba@1911
   855
      ///
deba@1911
   856
      /// Direct the given undirected edge. The returned edge source
deba@2163
   857
      /// will be the given node.
deba@1911
   858
      Edge direct(const UEdge&, const Node&) const {
deba@1911
   859
	return INVALID;
deba@1911
   860
      }
deba@1911
   861
deba@1911
   862
      /// \brief Direct the given undirected edge.
deba@1911
   863
      ///
deba@2163
   864
      /// Direct the given undirected edge. The returned edge
deba@2163
   865
      /// represents the given undireted edge and the direction comes
deba@2163
   866
      /// from the given bool.  The source of the undirected edge and
deba@2163
   867
      /// the directed edge is the same when the given bool is true.
deba@1911
   868
      Edge direct(const UEdge&, bool) const {
deba@1911
   869
	return INVALID;
deba@1911
   870
      }
deba@1911
   871
deba@1911
   872
      /// \brief Returns true when the given node is an ANode.
deba@1911
   873
      ///
deba@1911
   874
      /// Returns true when the given node is an ANode.
deba@1911
   875
      bool aNode(Node) const { return true;}
deba@1911
   876
deba@1911
   877
      /// \brief Returns true when the given node is an BNode.
deba@1911
   878
      ///
deba@1911
   879
      /// Returns true when the given node is an BNode.
deba@1911
   880
      bool bNode(Node) const { return true;}
deba@1911
   881
deba@1911
   882
      /// \brief Returns the edge's end node which is in the ANode set.
deba@1911
   883
      ///
deba@1911
   884
      /// Returns the edge's end node which is in the ANode set.
deba@1911
   885
      Node aNode(UEdge) const { return INVALID;}
deba@1911
   886
deba@1911
   887
      /// \brief Returns the edge's end node which is in the BNode set.
deba@1911
   888
      ///
deba@1911
   889
      /// Returns the edge's end node which is in the BNode set.
deba@1911
   890
      Node bNode(UEdge) const { return INVALID;}
deba@1911
   891
deba@1911
   892
      /// \brief Returns true if the edge has default orientation.
deba@1911
   893
      ///
deba@1911
   894
      /// Returns whether the given directed edge is same orientation as
deba@2163
   895
      /// the corresponding undirected edge's default orientation.
deba@1911
   896
      bool direction(Edge) const { return true; }
deba@1911
   897
deba@1911
   898
      /// \brief Returns the opposite directed edge.
deba@1911
   899
      ///
deba@1911
   900
      /// Returns the opposite directed edge.
deba@1911
   901
      Edge oppositeEdge(Edge) const { return INVALID; }
deba@1911
   902
deba@1911
   903
      /// \brief Opposite node on an edge
deba@1911
   904
      ///
deba@2163
   905
      /// \return the opposite of the given Node on the given UEdge
deba@1911
   906
      Node oppositeNode(Node, UEdge) const { return INVALID; }
deba@1911
   907
deba@1911
   908
      /// \brief First node of the undirected edge.
deba@1911
   909
      ///
deba@1911
   910
      /// \return the first node of the given UEdge.
deba@1911
   911
      ///
deba@2163
   912
      /// Naturally undirected edges don't have direction and thus
deba@1911
   913
      /// don't have source and target node. But we use these two methods
deba@1911
   914
      /// to query the two endnodes of the edge. The direction of the edge
deba@1911
   915
      /// which arises this way is called the inherent direction of the
deba@1911
   916
      /// undirected edge, and is used to define the "default" direction
deba@1911
   917
      /// of the directed versions of the edges.
deba@1911
   918
      /// \sa direction
deba@1911
   919
      Node source(UEdge) const { return INVALID; }
deba@1911
   920
deba@1911
   921
      /// \brief Second node of the undirected edge.
deba@1911
   922
      Node target(UEdge) const { return INVALID; }
deba@1911
   923
deba@1911
   924
      /// \brief Source node of the directed edge.
deba@1911
   925
      Node source(Edge) const { return INVALID; }
deba@1911
   926
deba@1911
   927
      /// \brief Target node of the directed edge.
deba@1911
   928
      Node target(Edge) const { return INVALID; }
deba@1911
   929
deba@1911
   930
      /// \brief Base node of the iterator
deba@1911
   931
      ///
deba@1911
   932
      /// Returns the base node (the source in this case) of the iterator
deba@1911
   933
      Node baseNode(OutEdgeIt e) const {
deba@1911
   934
	return source(e);
deba@1911
   935
      }
deba@1911
   936
deba@1911
   937
      /// \brief Running node of the iterator
deba@1911
   938
      ///
deba@1911
   939
      /// Returns the running node (the target in this case) of the
deba@1911
   940
      /// iterator
deba@1911
   941
      Node runningNode(OutEdgeIt e) const {
deba@1911
   942
	return target(e);
deba@1911
   943
      }
deba@1911
   944
deba@1911
   945
      /// \brief Base node of the iterator
deba@1911
   946
      ///
deba@1911
   947
      /// Returns the base node (the target in this case) of the iterator
deba@1911
   948
      Node baseNode(InEdgeIt e) const {
deba@1911
   949
	return target(e);
deba@1911
   950
      }
deba@1911
   951
      /// \brief Running node of the iterator
deba@1911
   952
      ///
deba@1911
   953
      /// Returns the running node (the source in this case) of the
deba@1911
   954
      /// iterator
deba@1911
   955
      Node runningNode(InEdgeIt e) const {
deba@1911
   956
	return source(e);
deba@1911
   957
      }
deba@1911
   958
deba@1911
   959
      /// \brief Base node of the iterator
deba@1911
   960
      ///
deba@1911
   961
      /// Returns the base node of the iterator
deba@1911
   962
      Node baseNode(IncEdgeIt) const {
deba@1911
   963
	return INVALID;
deba@1911
   964
      }
deba@1911
   965
      
deba@1911
   966
      /// \brief Running node of the iterator
deba@1911
   967
      ///
deba@1911
   968
      /// Returns the running node of the iterator
deba@1911
   969
      Node runningNode(IncEdgeIt) const {
deba@1911
   970
	return INVALID;
deba@1911
   971
      }
deba@1911
   972
deba@2231
   973
      void first(Node&) const {}
deba@2231
   974
      void next(Node&) const {}
deba@2231
   975
deba@2231
   976
      void first(Edge&) const {}
deba@2231
   977
      void next(Edge&) const {}
deba@2231
   978
deba@2231
   979
      void first(UEdge&) const {}
deba@2231
   980
      void next(UEdge&) const {}
deba@2231
   981
deba@2231
   982
      void firstANode(Node&) const {}
deba@2231
   983
      void nextANode(Node&) const {}
deba@2231
   984
deba@2231
   985
      void firstBNode(Node&) const {}
deba@2231
   986
      void nextBNode(Node&) const {}
deba@2231
   987
deba@2231
   988
      void firstIn(Edge&, const Node&) const {}
deba@2231
   989
      void nextIn(Edge&) const {}
deba@2231
   990
deba@2231
   991
      void firstOut(Edge&, const Node&) const {}
deba@2231
   992
      void nextOut(Edge&) const {}
deba@2231
   993
deba@2231
   994
      void firstInc(UEdge &, bool &, const Node &) const {}
deba@2231
   995
      void nextInc(UEdge &, bool &) const {}
deba@2231
   996
deba@2231
   997
      void firstFromANode(UEdge&, const Node&) const {}
deba@2231
   998
      void nextFromANode(UEdge&) const {}
deba@2231
   999
deba@2231
  1000
      void firstFromBNode(UEdge&, const Node&) const {}
deba@2231
  1001
      void nextFromBNode(UEdge&) const {}
deba@2231
  1002
deba@1911
  1003
      template <typename Graph>
deba@1911
  1004
      struct Constraints {
deba@1911
  1005
	void constraints() {
deba@2231
  1006
	  checkConcept<IterableBpUGraphComponent<>, Graph>();
deba@2231
  1007
	  checkConcept<MappableBpUGraphComponent<>, Graph>();
deba@1911
  1008
	}
deba@1911
  1009
      };
deba@1911
  1010
deba@1911
  1011
    };
deba@1911
  1012
deba@1911
  1013
deba@1911
  1014
    /// @}
deba@1911
  1015
deba@1911
  1016
  }
deba@1911
  1017
deba@1911
  1018
}
deba@1911
  1019
deba@1911
  1020
#endif