src/work/alpar/dijkstra.h
author alpar
Sat, 05 Feb 2005 20:05:01 +0000
changeset 1125 377e240b050f
parent 1124 12623f7ecb37
child 1126 04e1cb315951
permissions -rw-r--r--
A new exception class called UninitializedParameter.
alpar@906
     1
/* -*- C++ -*-
alpar@921
     2
 * src/lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@906
     4
 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@906
     5
 * (Egervary Combinatorial Optimization Research Group, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@921
    17
#ifndef LEMON_DIJKSTRA_H
alpar@921
    18
#define LEMON_DIJKSTRA_H
alpar@255
    19
alpar@758
    20
///\ingroup flowalgs
alpar@255
    21
///\file
alpar@255
    22
///\brief Dijkstra algorithm.
alpar@255
    23
alpar@953
    24
#include <lemon/list_graph.h>
alpar@921
    25
#include <lemon/bin_heap.h>
alpar@921
    26
#include <lemon/invalid.h>
alpar@1119
    27
#include <lemon/error.h>
alpar@1119
    28
#include <lemon/maps.h>
alpar@255
    29
alpar@921
    30
namespace lemon {
jacint@385
    31
alpar@1119
    32
alpar@758
    33
/// \addtogroup flowalgs
alpar@430
    34
/// @{
alpar@430
    35
alpar@954
    36
  ///Default traits class of Dijkstra class.
alpar@954
    37
alpar@954
    38
  ///Default traits class of Dijkstra class.
alpar@954
    39
  ///\param GR Graph type.
alpar@954
    40
  ///\param LM Type of length map.
alpar@953
    41
  template<class GR, class LM>
alpar@953
    42
  struct DijkstraDefaultTraits
alpar@953
    43
  {
alpar@954
    44
    ///The graph type the algorithm runs on. 
alpar@953
    45
    typedef GR Graph;
alpar@953
    46
    ///The type of the map that stores the edge lengths.
alpar@953
    47
hegyi@1124
    48
    ///The type of the map that stores the edge lengths.
alpar@967
    49
    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
alpar@953
    50
    typedef LM LengthMap;
alpar@954
    51
    //The type of the length of the edges.
alpar@987
    52
    typedef typename LM::Value Value;
alpar@954
    53
    ///The heap type used by Dijkstra algorithm.
alpar@967
    54
alpar@967
    55
    ///The heap type used by Dijkstra algorithm.
alpar@967
    56
    ///
alpar@967
    57
    ///\sa BinHeap
alpar@967
    58
    ///\sa Dijkstra
alpar@953
    59
    typedef BinHeap<typename Graph::Node,
alpar@987
    60
		    typename LM::Value,
alpar@953
    61
		    typename GR::template NodeMap<int>,
alpar@987
    62
		    std::less<Value> > Heap;
alpar@953
    63
alpar@953
    64
    ///\brief The type of the map that stores the last
alpar@953
    65
    ///edges of the shortest paths.
alpar@953
    66
    /// 
hegyi@1124
    67
    ///The type of the map that stores the last
hegyi@1124
    68
    ///edges of the shortest paths.
alpar@967
    69
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
    70
    ///
alpar@954
    71
    typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
alpar@954
    72
    ///Instantiates a PredMap.
alpar@953
    73
 
hegyi@1123
    74
    ///This function instantiates a \ref PredMap. 
hegyi@1123
    75
    ///\param G is the graph, to which we would like to define the PredMap.
alpar@1119
    76
    ///\todo The graph alone may be insufficient for the initialization
alpar@954
    77
    static PredMap *createPredMap(const GR &G) 
alpar@953
    78
    {
alpar@953
    79
      return new PredMap(G);
alpar@953
    80
    }
alpar@953
    81
    ///\brief The type of the map that stores the last but one
alpar@953
    82
    ///nodes of the shortest paths.
alpar@953
    83
    ///
hegyi@1124
    84
    ///The type of the map that stores the last but one
hegyi@1124
    85
    ///nodes of the shortest paths.
alpar@967
    86
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
    87
    ///
alpar@954
    88
    typedef typename Graph::template NodeMap<typename GR::Node> PredNodeMap;
alpar@954
    89
    ///Instantiates a PredNodeMap.
alpar@1125
    90
    
hegyi@1123
    91
    ///This function instantiates a \ref PredNodeMap. 
hegyi@1123
    92
    ///\param G is the graph, to which we would like to define the \ref PredNodeMap
alpar@954
    93
    static PredNodeMap *createPredNodeMap(const GR &G)
alpar@953
    94
    {
alpar@953
    95
      return new PredNodeMap(G);
alpar@953
    96
    }
alpar@1119
    97
alpar@1119
    98
    ///The type of the map that stores whether a nodes is reached.
alpar@1119
    99
 
hegyi@1124
   100
    ///The type of the map that stores whether a nodes is reached.
alpar@1119
   101
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1119
   102
    ///By default it is a NullMap.
alpar@1119
   103
    ///\todo If it is set to a real map, Dijkstra::reached() should read this.
alpar@1119
   104
    ///\todo named parameter to set this type, function to read and write.
alpar@1119
   105
    typedef NullMap<typename Graph::Node,bool> ReachedMap;
alpar@1119
   106
    ///Instantiates a ReachedMap.
alpar@1119
   107
 
hegyi@1123
   108
    ///This function instantiates a \ref ReachedMap. 
hegyi@1123
   109
    ///\param G is the graph, to which we would like to define the \ref ReachedMap
alpar@1119
   110
    static ReachedMap *createReachedMap(const GR &G)
alpar@1119
   111
    {
alpar@1119
   112
      return new ReachedMap();
alpar@1119
   113
    }
alpar@953
   114
    ///The type of the map that stores the dists of the nodes.
alpar@953
   115
 
hegyi@1124
   116
    ///The type of the map that stores the dists of the nodes.
alpar@967
   117
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
   118
    ///
alpar@987
   119
    typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
alpar@954
   120
    ///Instantiates a DistMap.
alpar@953
   121
 
hegyi@1123
   122
    ///This function instantiates a \ref DistMap. 
hegyi@1123
   123
    ///\param G is the graph, to which we would like to define the \ref DistMap
alpar@954
   124
    static DistMap *createDistMap(const GR &G)
alpar@953
   125
    {
alpar@953
   126
      return new DistMap(G);
alpar@953
   127
    }
alpar@953
   128
  };
alpar@953
   129
  
alpar@255
   130
  ///%Dijkstra algorithm class.
alpar@1125
   131
  
alpar@255
   132
  ///This class provides an efficient implementation of %Dijkstra algorithm.
alpar@255
   133
  ///The edge lengths are passed to the algorithm using a
klao@959
   134
  ///\ref concept::ReadMap "ReadMap",
alpar@255
   135
  ///so it is easy to change it to any kind of length.
alpar@255
   136
  ///
alpar@880
   137
  ///The type of the length is determined by the
alpar@987
   138
  ///\ref concept::ReadMap::Value "Value" of the length map.
alpar@255
   139
  ///
alpar@255
   140
  ///It is also possible to change the underlying priority heap.
alpar@255
   141
  ///
alpar@953
   142
  ///\param GR The graph type the algorithm runs on. The default value is
alpar@955
   143
  ///\ref ListGraph. The value of GR is not used directly by Dijkstra, it
alpar@954
   144
  ///is only passed to \ref DijkstraDefaultTraits.
alpar@584
   145
  ///\param LM This read-only
jacint@385
   146
  ///EdgeMap
jacint@385
   147
  ///determines the
jacint@385
   148
  ///lengths of the edges. It is read once for each edge, so the map
jacint@385
   149
  ///may involve in relatively time consuming process to compute the edge
jacint@385
   150
  ///length if it is necessary. The default map type is
klao@959
   151
  ///\ref concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".
alpar@955
   152
  ///The value of LM is not used directly by Dijkstra, it
alpar@954
   153
  ///is only passed to \ref DijkstraDefaultTraits.
alpar@954
   154
  ///\param TR Traits class to set various data types used by the algorithm.
alpar@954
   155
  ///The default traits class is
alpar@955
   156
  ///\ref DijkstraDefaultTraits "DijkstraDefaultTraits<GR,LM>".
alpar@954
   157
  ///See \ref DijkstraDefaultTraits for the documentation of
alpar@954
   158
  ///a Dijkstra traits class.
alpar@456
   159
  ///
alpar@689
   160
  ///\author Jacint Szabo and Alpar Juttner
alpar@693
   161
  ///\todo We need a typedef-names should be standardized. (-:
alpar@584
   162
alpar@255
   163
#ifdef DOXYGEN
alpar@584
   164
  template <typename GR,
alpar@584
   165
	    typename LM,
alpar@953
   166
	    typename TR>
alpar@255
   167
#else
alpar@953
   168
  template <typename GR=ListGraph,
alpar@584
   169
	    typename LM=typename GR::template EdgeMap<int>,
alpar@953
   170
	    typename TR=DijkstraDefaultTraits<GR,LM> >
alpar@255
   171
#endif
alpar@1116
   172
  class Dijkstra {
alpar@255
   173
  public:
alpar@1125
   174
    /**
alpar@1125
   175
     * \brief \ref Exception for uninitialized parameters.
alpar@1125
   176
     *
alpar@1125
   177
     * This error represents problems in the initialization
alpar@1125
   178
     * of the parameters of the algorithms.
alpar@1125
   179
     */
alpar@1125
   180
    class UninitializedParameter : public lemon::UninitializedParameter {
alpar@1125
   181
    public:
alpar@1125
   182
      virtual const char* exceptionName() const {
alpar@1125
   183
	return "lemon::Dijsktra::UninitializedParameter";
alpar@1125
   184
      }
alpar@1125
   185
    };
alpar@1119
   186
alpar@953
   187
    typedef TR Traits;
alpar@584
   188
    ///The type of the underlying graph.
alpar@954
   189
    typedef typename TR::Graph Graph;
alpar@911
   190
    ///\e
alpar@255
   191
    typedef typename Graph::Node Node;
alpar@911
   192
    ///\e
alpar@255
   193
    typedef typename Graph::NodeIt NodeIt;
alpar@911
   194
    ///\e
alpar@255
   195
    typedef typename Graph::Edge Edge;
alpar@911
   196
    ///\e
alpar@255
   197
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@255
   198
    
alpar@584
   199
    ///The type of the length of the edges.
alpar@987
   200
    typedef typename TR::LengthMap::Value Value;
alpar@693
   201
    ///The type of the map that stores the edge lengths.
alpar@954
   202
    typedef typename TR::LengthMap LengthMap;
alpar@693
   203
    ///\brief The type of the map that stores the last
alpar@584
   204
    ///edges of the shortest paths.
alpar@953
   205
    typedef typename TR::PredMap PredMap;
alpar@693
   206
    ///\brief The type of the map that stores the last but one
alpar@584
   207
    ///nodes of the shortest paths.
alpar@953
   208
    typedef typename TR::PredNodeMap PredNodeMap;
alpar@1119
   209
    ///The type of the map indicating if a node is reached.
alpar@1119
   210
    typedef typename TR::ReachedMap ReachedMap;
alpar@693
   211
    ///The type of the map that stores the dists of the nodes.
alpar@953
   212
    typedef typename TR::DistMap DistMap;
alpar@953
   213
    ///The heap type used by the dijkstra algorithm.
alpar@953
   214
    typedef typename TR::Heap Heap;
alpar@255
   215
  private:
alpar@802
   216
    /// Pointer to the underlying graph.
alpar@688
   217
    const Graph *G;
alpar@802
   218
    /// Pointer to the length map
alpar@954
   219
    const LengthMap *length;
alpar@802
   220
    ///Pointer to the map of predecessors edges.
alpar@1119
   221
    PredMap *_pred;
alpar@1119
   222
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
alpar@1119
   223
    bool local_pred;
alpar@802
   224
    ///Pointer to the map of predecessors nodes.
alpar@688
   225
    PredNodeMap *pred_node;
alpar@802
   226
    ///Indicates if \ref pred_node is locally allocated (\c true) or not.
alpar@688
   227
    bool local_pred_node;
alpar@802
   228
    ///Pointer to the map of distances.
alpar@688
   229
    DistMap *distance;
alpar@802
   230
    ///Indicates if \ref distance is locally allocated (\c true) or not.
alpar@688
   231
    bool local_distance;
alpar@1119
   232
    ///Pointer to the map of reached status of the nodes.
alpar@1119
   233
    ReachedMap *_reached;
alpar@1119
   234
    ///Indicates if \ref _reached is locally allocated (\c true) or not.
alpar@1119
   235
    bool local_reached;
alpar@688
   236
alpar@802
   237
    ///The source node of the last execution.
alpar@774
   238
    Node source;
alpar@774
   239
alpar@785
   240
    ///Initializes the maps.
alpar@688
   241
    
alpar@694
   242
    ///\todo Error if \c G or are \c NULL. What about \c length?
alpar@688
   243
    ///\todo Better memory allocation (instead of new).
alpar@688
   244
    void init_maps() 
alpar@688
   245
    {
alpar@1119
   246
      if(!_pred) {
alpar@1119
   247
	local_pred = true;
alpar@1119
   248
	_pred = Traits::createPredMap(*G);
alpar@688
   249
      }
alpar@688
   250
      if(!pred_node) {
alpar@688
   251
	local_pred_node = true;
alpar@953
   252
	pred_node = Traits::createPredNodeMap(*G);
alpar@688
   253
      }
alpar@688
   254
      if(!distance) {
alpar@688
   255
	local_distance = true;
alpar@953
   256
	distance = Traits::createDistMap(*G);
alpar@688
   257
      }
alpar@1119
   258
      if(!_reached) {
alpar@1119
   259
	local_reached = true;
alpar@1119
   260
	_reached = Traits::createReachedMap(*G);
alpar@1119
   261
      }
alpar@688
   262
    }
alpar@255
   263
    
alpar@255
   264
  public :
alpar@1116
   265
 
alpar@953
   266
    template <class T>
alpar@1116
   267
    struct DefPredMapTraits : public Traits {
alpar@953
   268
      typedef T PredMap;
alpar@953
   269
      ///\todo An exception should be thrown.
alpar@953
   270
      ///
alpar@953
   271
      static PredMap *createPredMap(const Graph &G) 
alpar@953
   272
      {
alpar@1119
   273
	throw UninitializedData();
alpar@953
   274
      }
alpar@953
   275
    };
alpar@954
   276
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@954
   277
alpar@954
   278
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@1043
   279
    ///
alpar@953
   280
    template <class T>
alpar@1116
   281
    class DefPredMap : public Dijkstra< Graph,
alpar@953
   282
					LengthMap,
alpar@1116
   283
					DefPredMapTraits<T> > { };
alpar@953
   284
    
alpar@953
   285
    template <class T>
alpar@1116
   286
    struct DefPredNodeMapTraits : public Traits {
alpar@953
   287
      typedef T PredNodeMap;
alpar@953
   288
      ///\todo An exception should be thrown.
alpar@953
   289
      ///
alpar@953
   290
      static PredNodeMap *createPredNodeMap(const Graph &G) 
alpar@953
   291
      {
alpar@1119
   292
	throw UninitializedData();
alpar@953
   293
      }
alpar@953
   294
    };
alpar@954
   295
    ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
alpar@954
   296
alpar@954
   297
    ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
alpar@1043
   298
    ///
alpar@953
   299
    template <class T>
alpar@1116
   300
    class DefPredNodeMap : public Dijkstra< Graph,
alpar@953
   301
					    LengthMap,
alpar@1116
   302
					    DefPredNodeMapTraits<T> > { };
alpar@953
   303
    
alpar@953
   304
    template <class T>
alpar@1116
   305
    struct DefDistMapTraits : public Traits {
alpar@953
   306
      typedef T DistMap;
alpar@953
   307
      ///\todo An exception should be thrown.
alpar@953
   308
      ///
alpar@953
   309
      static DistMap *createDistMap(const Graph &G) 
alpar@953
   310
      {
alpar@1119
   311
	throw UninitializedData();
alpar@953
   312
      }
alpar@953
   313
    };
alpar@954
   314
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@954
   315
alpar@954
   316
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@1043
   317
    ///
alpar@953
   318
    template <class T>
alpar@1116
   319
    class DefDistMap : public Dijkstra< Graph,
alpar@953
   320
					LengthMap,
alpar@1116
   321
					DefDistMapTraits<T> > { };
alpar@953
   322
    
alpar@802
   323
    ///Constructor.
alpar@255
   324
    
alpar@802
   325
    ///\param _G the graph the algorithm will run on.
alpar@802
   326
    ///\param _length the length map used by the algorithm.
alpar@954
   327
    Dijkstra(const Graph& _G, const LengthMap& _length) :
alpar@688
   328
      G(&_G), length(&_length),
alpar@1119
   329
      _pred(NULL), local_pred(false),
alpar@707
   330
      pred_node(NULL), local_pred_node(false),
alpar@1119
   331
      distance(NULL), local_distance(false),
alpar@1119
   332
      _reached(NULL), local_reached(false)
alpar@688
   333
    { }
alpar@688
   334
    
alpar@802
   335
    ///Destructor.
alpar@688
   336
    ~Dijkstra() 
alpar@688
   337
    {
alpar@1119
   338
      if(local_pred) delete _pred;
alpar@688
   339
      if(local_pred_node) delete pred_node;
alpar@688
   340
      if(local_distance) delete distance;
alpar@1119
   341
      if(local_reached) delete _reached;
alpar@688
   342
    }
alpar@688
   343
alpar@688
   344
    ///Sets the length map.
alpar@688
   345
alpar@688
   346
    ///Sets the length map.
alpar@688
   347
    ///\return <tt> (*this) </tt>
alpar@1116
   348
    Dijkstra &lengthMap(const LengthMap &m) 
alpar@688
   349
    {
alpar@688
   350
      length = &m;
alpar@688
   351
      return *this;
alpar@688
   352
    }
alpar@688
   353
alpar@688
   354
    ///Sets the map storing the predecessor edges.
alpar@688
   355
alpar@688
   356
    ///Sets the map storing the predecessor edges.
alpar@688
   357
    ///If you don't use this function before calling \ref run(),
alpar@688
   358
    ///it will allocate one. The destuctor deallocates this
alpar@688
   359
    ///automatically allocated map, of course.
alpar@688
   360
    ///\return <tt> (*this) </tt>
alpar@1116
   361
    Dijkstra &predMap(PredMap &m) 
alpar@688
   362
    {
alpar@1119
   363
      if(local_pred) {
alpar@1119
   364
	delete _pred;
alpar@1119
   365
	local_pred=false;
alpar@688
   366
      }
alpar@1119
   367
      _pred = &m;
alpar@688
   368
      return *this;
alpar@688
   369
    }
alpar@688
   370
alpar@688
   371
    ///Sets the map storing the predecessor nodes.
alpar@688
   372
alpar@688
   373
    ///Sets the map storing the predecessor nodes.
alpar@688
   374
    ///If you don't use this function before calling \ref run(),
alpar@688
   375
    ///it will allocate one. The destuctor deallocates this
alpar@688
   376
    ///automatically allocated map, of course.
alpar@688
   377
    ///\return <tt> (*this) </tt>
alpar@1116
   378
    Dijkstra &predNodeMap(PredNodeMap &m) 
alpar@688
   379
    {
alpar@688
   380
      if(local_pred_node) {
alpar@688
   381
	delete pred_node;
alpar@688
   382
	local_pred_node=false;
alpar@688
   383
      }
alpar@688
   384
      pred_node = &m;
alpar@688
   385
      return *this;
alpar@688
   386
    }
alpar@688
   387
alpar@688
   388
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   389
alpar@688
   390
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   391
    ///If you don't use this function before calling \ref run(),
alpar@688
   392
    ///it will allocate one. The destuctor deallocates this
alpar@688
   393
    ///automatically allocated map, of course.
alpar@688
   394
    ///\return <tt> (*this) </tt>
alpar@1116
   395
    Dijkstra &distMap(DistMap &m) 
alpar@688
   396
    {
alpar@688
   397
      if(local_distance) {
alpar@688
   398
	delete distance;
alpar@688
   399
	local_distance=false;
alpar@688
   400
      }
alpar@688
   401
      distance = &m;
alpar@688
   402
      return *this;
alpar@688
   403
    }
alpar@255
   404
    
alpar@694
   405
  ///Runs %Dijkstra algorithm from node \c s.
alpar@694
   406
alpar@694
   407
  ///This method runs the %Dijkstra algorithm from a root node \c s
alpar@694
   408
  ///in order to
alpar@694
   409
  ///compute the
alpar@694
   410
  ///shortest path to each node. The algorithm computes
alpar@694
   411
  ///- The shortest path tree.
alpar@694
   412
  ///- The distance of each node from the root.
alpar@954
   413
  ///\todo heap_map's type could also be in the traits class.
alpar@694
   414
    void run(Node s) {
alpar@694
   415
      
alpar@694
   416
      init_maps();
alpar@694
   417
      
alpar@774
   418
      source = s;
alpar@774
   419
      
alpar@774
   420
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
alpar@1119
   421
	_pred->set(u,INVALID);
alpar@694
   422
	pred_node->set(u,INVALID);
alpar@1119
   423
	///\todo *_reached is not set to false.
alpar@694
   424
      }
alpar@694
   425
      
alpar@954
   426
      typename Graph::template NodeMap<int> heap_map(*G,-1);
alpar@694
   427
      
alpar@953
   428
      Heap heap(heap_map);
alpar@694
   429
      
alpar@694
   430
      heap.push(s,0); 
alpar@694
   431
      
alpar@694
   432
      while ( !heap.empty() ) {
alpar@694
   433
	
alpar@694
   434
	Node v=heap.top(); 
alpar@1119
   435
	_reached->set(v,true);
alpar@987
   436
	Value oldvalue=heap[v];
alpar@694
   437
	heap.pop();
alpar@694
   438
	distance->set(v, oldvalue);
alpar@694
   439
	
alpar@694
   440
	
alpar@774
   441
	for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
alpar@986
   442
	  Node w=G->target(e); 
alpar@694
   443
	  switch(heap.state(w)) {
alpar@953
   444
	  case Heap::PRE_HEAP:
alpar@694
   445
	    heap.push(w,oldvalue+(*length)[e]); 
alpar@1119
   446
	    _pred->set(w,e);
alpar@694
   447
	    pred_node->set(w,v);
alpar@694
   448
	    break;
alpar@953
   449
	  case Heap::IN_HEAP:
alpar@694
   450
	    if ( oldvalue+(*length)[e] < heap[w] ) {
alpar@694
   451
	      heap.decrease(w, oldvalue+(*length)[e]); 
alpar@1119
   452
	      _pred->set(w,e);
alpar@694
   453
	      pred_node->set(w,v);
alpar@694
   454
	    }
alpar@694
   455
	    break;
alpar@953
   456
	  case Heap::POST_HEAP:
alpar@694
   457
	    break;
alpar@694
   458
	  }
alpar@694
   459
	}
alpar@694
   460
      }
alpar@694
   461
    }
alpar@255
   462
    
jacint@385
   463
    ///The distance of a node from the root.
alpar@255
   464
jacint@385
   465
    ///Returns the distance of a node from the root.
alpar@255
   466
    ///\pre \ref run() must be called before using this function.
jacint@385
   467
    ///\warning If node \c v in unreachable from the root the return value
alpar@255
   468
    ///of this funcion is undefined.
alpar@987
   469
    Value dist(Node v) const { return (*distance)[v]; }
jacint@373
   470
alpar@584
   471
    ///Returns the 'previous edge' of the shortest path tree.
alpar@255
   472
alpar@584
   473
    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
alpar@785
   474
    ///i.e. it returns the last edge of a shortest path from the root to \c
alpar@688
   475
    ///v. It is \ref INVALID
alpar@688
   476
    ///if \c v is unreachable from the root or if \c v=s. The
jacint@385
   477
    ///shortest path tree used here is equal to the shortest path tree used in
jacint@385
   478
    ///\ref predNode(Node v).  \pre \ref run() must be called before using
jacint@385
   479
    ///this function.
alpar@780
   480
    ///\todo predEdge could be a better name.
alpar@1119
   481
    Edge pred(Node v) const { return (*_pred)[v]; }
jacint@373
   482
alpar@584
   483
    ///Returns the 'previous node' of the shortest path tree.
alpar@255
   484
alpar@584
   485
    ///For a node \c v it returns the 'previous node' of the shortest path tree,
jacint@385
   486
    ///i.e. it returns the last but one node from a shortest path from the
jacint@385
   487
    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
jacint@385
   488
    ///\c v=s. The shortest path tree used here is equal to the shortest path
jacint@385
   489
    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
jacint@385
   490
    ///using this function.
alpar@688
   491
    Node predNode(Node v) const { return (*pred_node)[v]; }
alpar@255
   492
    
alpar@255
   493
    ///Returns a reference to the NodeMap of distances.
alpar@255
   494
jacint@385
   495
    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
jacint@385
   496
    ///be called before using this function.
alpar@688
   497
    const DistMap &distMap() const { return *distance;}
jacint@385
   498
 
alpar@255
   499
    ///Returns a reference to the shortest path tree map.
alpar@255
   500
alpar@255
   501
    ///Returns a reference to the NodeMap of the edges of the
alpar@255
   502
    ///shortest path tree.
alpar@255
   503
    ///\pre \ref run() must be called before using this function.
alpar@1119
   504
    const PredMap &predMap() const { return *_pred;}
jacint@385
   505
 
jacint@385
   506
    ///Returns a reference to the map of nodes of shortest paths.
alpar@255
   507
alpar@255
   508
    ///Returns a reference to the NodeMap of the last but one nodes of the
jacint@385
   509
    ///shortest path tree.
alpar@255
   510
    ///\pre \ref run() must be called before using this function.
alpar@688
   511
    const PredNodeMap &predNodeMap() const { return *pred_node;}
alpar@255
   512
jacint@385
   513
    ///Checks if a node is reachable from the root.
alpar@255
   514
jacint@385
   515
    ///Returns \c true if \c v is reachable from the root.
alpar@802
   516
    ///\note The root node is reported to be reached!
alpar@255
   517
    ///\pre \ref run() must be called before using this function.
jacint@385
   518
    ///
alpar@1119
   519
    bool reached(Node v) { return v==source || (*_pred)[v]!=INVALID; }
alpar@255
   520
    
alpar@255
   521
  };
alpar@953
   522
hegyi@1123
   523
  /// Default traits used by \ref DijkstraWizard
hegyi@1123
   524
hegyi@1124
   525
  /// To make it easier to use Dijkstra algorithm we have created a wizard class.
hegyi@1124
   526
  /// This \ref DijkstraWizard class needs default traits, as well as the \ref Dijkstra class.
hegyi@1123
   527
  /// The \ref DijkstraWizardBase is a class to be the default traits of the
hegyi@1123
   528
  /// \ref DijkstraWizard class.
alpar@1116
   529
  template<class GR,class LM>
alpar@1116
   530
  class DijkstraWizardBase : public DijkstraDefaultTraits<GR,LM>
alpar@1116
   531
  {
alpar@1116
   532
alpar@1116
   533
    typedef DijkstraDefaultTraits<GR,LM> Base;
alpar@1116
   534
  protected:
alpar@1116
   535
    /// Pointer to the underlying graph.
alpar@1116
   536
    void *_g;
alpar@1116
   537
    /// Pointer to the length map
alpar@1116
   538
    void *_length;
alpar@1116
   539
    ///Pointer to the map of predecessors edges.
alpar@1116
   540
    void *_pred;
alpar@1116
   541
    ///Pointer to the map of predecessors nodes.
alpar@1116
   542
    void *_predNode;
alpar@1116
   543
    ///Pointer to the map of distances.
alpar@1116
   544
    void *_dist;
alpar@1116
   545
    ///Pointer to the source node.
alpar@1116
   546
    void *_source;
alpar@1116
   547
hegyi@1123
   548
    /// Type of the nodes in the graph.
alpar@1116
   549
    typedef typename Base::Graph::Node Node;
alpar@1116
   550
alpar@1116
   551
    public:
hegyi@1123
   552
    /// Constructor.
hegyi@1123
   553
    
hegyi@1123
   554
    /// This constructor does not require parameters, therefore it initiates
hegyi@1123
   555
    /// all of the attributes to default values (0, INVALID).
alpar@1116
   556
    DijkstraWizardBase() : _g(0), _length(0), _pred(0), _predNode(0),
alpar@1116
   557
		       _dist(0), _source(INVALID) {}
alpar@1116
   558
hegyi@1123
   559
    /// Constructor.
hegyi@1123
   560
    
hegyi@1123
   561
    /// This constructor requires some parameters, listed in the parameters list.
hegyi@1123
   562
    /// Others are initiated to 0.
hegyi@1123
   563
    /// \param g is the initial value of  \ref _g
hegyi@1123
   564
    /// \param l is the initial value of  \ref _length
hegyi@1123
   565
    /// \param s is the initial value of  \ref _source
alpar@1116
   566
    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
alpar@1116
   567
      _g((void *)&g), _length((void *)&l), _pred(0), _predNode(0),
alpar@1116
   568
		  _dist(0), _source((void *)&s) {}
alpar@1116
   569
alpar@1116
   570
  };
alpar@1116
   571
  
hegyi@1123
   572
  /// A class to make easier the usage of Dijkstra algorithm
alpar@953
   573
hegyi@1123
   574
  /// This class is created to make it easier to use Dijkstra algorithm.
hegyi@1123
   575
  /// It uses the functions and features of the plain \ref Dijkstra,
hegyi@1123
   576
  /// but it is much more simple to use it.
alpar@953
   577
  ///
hegyi@1123
   578
  /// Simplicity means that the way to change the types defined
hegyi@1123
   579
  /// in the traits class is based on functions that returns the new class
hegyi@1124
   580
  /// and not on templatable built-in classes. When using the plain \ref Dijkstra
hegyi@1124
   581
  /// the new class with the modified type comes from the original class by using the ::
hegyi@1124
   582
  /// operator. In the case of \ref DijkstraWizard only a function have to be called and it will
hegyi@1123
   583
  /// return the needed class.
hegyi@1123
   584
  ///
hegyi@1123
   585
  /// It does not have own \ref run method. When its \ref run method is called
hegyi@1123
   586
  /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
hegyi@1123
   587
  /// method of it.
alpar@953
   588
  template<class TR>
alpar@1116
   589
  class DijkstraWizard : public TR
alpar@953
   590
  {
alpar@1116
   591
    typedef TR Base;
alpar@953
   592
hegyi@1123
   593
    ///The type of the underlying graph.
alpar@953
   594
    typedef typename TR::Graph Graph;
alpar@1119
   595
    //\e
alpar@953
   596
    typedef typename Graph::Node Node;
alpar@1119
   597
    //\e
alpar@953
   598
    typedef typename Graph::NodeIt NodeIt;
alpar@1119
   599
    //\e
alpar@953
   600
    typedef typename Graph::Edge Edge;
alpar@1119
   601
    //\e
alpar@953
   602
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@953
   603
    
hegyi@1123
   604
    ///The type of the map that stores the edge lengths.
alpar@953
   605
    typedef typename TR::LengthMap LengthMap;
hegyi@1123
   606
    ///The type of the length of the edges.
alpar@987
   607
    typedef typename LengthMap::Value Value;
hegyi@1123
   608
    ///\brief The type of the map that stores the last
hegyi@1123
   609
    ///edges of the shortest paths.
alpar@953
   610
    typedef typename TR::PredMap PredMap;
hegyi@1123
   611
    ///\brief The type of the map that stores the last but one
hegyi@1123
   612
    ///nodes of the shortest paths.
alpar@953
   613
    typedef typename TR::PredNodeMap PredNodeMap;
hegyi@1123
   614
    ///The type of the map that stores the dists of the nodes.
alpar@953
   615
    typedef typename TR::DistMap DistMap;
alpar@953
   616
hegyi@1123
   617
    ///The heap type used by the dijkstra algorithm.
alpar@953
   618
    typedef typename TR::Heap Heap;
alpar@1116
   619
public:
hegyi@1123
   620
    /// Constructor.
alpar@1116
   621
    DijkstraWizard() : TR() {}
alpar@953
   622
hegyi@1123
   623
    /// Constructor that requires parameters.
hegyi@1124
   624
hegyi@1124
   625
    /// Constructor that requires parameters.
hegyi@1123
   626
    /// These parameters will be the default values for the traits class.
alpar@1116
   627
    DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
alpar@1116
   628
      TR(g,l,s) {}
alpar@953
   629
hegyi@1123
   630
    ///Copy constructor
alpar@1116
   631
    DijkstraWizard(const TR &b) : TR(b) {}
alpar@953
   632
alpar@1116
   633
    ~DijkstraWizard() {}
alpar@1116
   634
hegyi@1123
   635
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
   636
    
hegyi@1123
   637
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
   638
    ///The node can be given by the \ref source function.
alpar@1116
   639
    void run()
alpar@953
   640
    {
alpar@1119
   641
      if(_source==0) throw UninitializedData();
alpar@1116
   642
      Dijkstra<Graph,LengthMap,TR> Dij(*(Graph*)_g,*(LengthMap*)_length);
alpar@1116
   643
      if(_pred) Dij.predMap(*(PredMap*)_pred);
alpar@1116
   644
      if(_predNode) Dij.predNodeMap(*(PredNodeMap*)_predNode);
alpar@1116
   645
      if(_dist) Dij.distMap(*(DistMap*)_dist);
alpar@1116
   646
      Dij.run(*(Node*)_source);
alpar@1116
   647
    }
alpar@1116
   648
hegyi@1124
   649
    ///Runs Dijkstra algorithm from the given node.
hegyi@1123
   650
hegyi@1124
   651
    ///Runs Dijkstra algorithm from the given node.
hegyi@1123
   652
    ///\param s is the given source.
alpar@1116
   653
    void run(Node s)
alpar@1116
   654
    {
alpar@1116
   655
      _source=(void *)&s;
alpar@1116
   656
      run();
alpar@953
   657
    }
alpar@953
   658
alpar@953
   659
    template<class T>
alpar@1116
   660
    struct DefPredMapBase : public Base {
alpar@1116
   661
      typedef T PredMap;
alpar@1117
   662
      static PredMap *createPredMap(const Graph &G) { return 0; };
alpar@1117
   663
      DefPredMapBase(const Base &b) : Base(b) {}
alpar@1116
   664
    };
alpar@953
   665
    
hegyi@1123
   666
    /// \ref named-templ-param "Named parameter" function for setting PredMap type
hegyi@1123
   667
hegyi@1123
   668
    /// \ref named-templ-param "Named parameter" function for setting PredMap type
hegyi@1124
   669
    ///
alpar@953
   670
    template<class T>
alpar@1116
   671
    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
alpar@953
   672
    {
alpar@1116
   673
      _pred=(void *)&t;
alpar@1116
   674
      return DijkstraWizard<DefPredMapBase<T> >(*this);
alpar@953
   675
    }
alpar@953
   676
    
alpar@1116
   677
alpar@953
   678
    template<class T>
alpar@1116
   679
    struct DefPredNodeMapBase : public Base {
alpar@1116
   680
      typedef T PredNodeMap;
alpar@1117
   681
      static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
alpar@1117
   682
      DefPredNodeMapBase(const Base &b) : Base(b) {}
alpar@1116
   683
    };
alpar@1116
   684
    
hegyi@1123
   685
    /// \ref named-templ-param "Named parameter" function for setting PredNodeMap type
hegyi@1123
   686
hegyi@1123
   687
    /// \ref named-templ-param "Named parameter" function for setting PredNodeMap type
hegyi@1124
   688
    ///
alpar@953
   689
    template<class T>
alpar@1116
   690
    DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t) 
alpar@953
   691
    {
alpar@1116
   692
      _predNode=(void *)&t;
alpar@1116
   693
      return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
alpar@953
   694
    }
alpar@1116
   695
   
alpar@1116
   696
    template<class T>
alpar@1116
   697
    struct DefDistMapBase : public Base {
alpar@1116
   698
      typedef T DistMap;
alpar@1117
   699
      static DistMap *createDistMap(const Graph &G) { return 0; };
alpar@1117
   700
      DefDistMapBase(const Base &b) : Base(b) {}
alpar@1116
   701
    };
alpar@953
   702
    
hegyi@1123
   703
    /// \ref named-templ-param "Named parameter" function for setting DistMap type
hegyi@1123
   704
hegyi@1123
   705
    /// \ref named-templ-param "Named parameter" function for setting DistMap type
hegyi@1124
   706
    ///
alpar@953
   707
    template<class T>
alpar@1116
   708
    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
alpar@953
   709
    {
alpar@1116
   710
      _dist=(void *)&t;
alpar@1116
   711
      return DijkstraWizard<DefDistMapBase<T> >(*this);
alpar@953
   712
    }
alpar@1117
   713
    
hegyi@1123
   714
    /// Sets the source node, from which the Dijkstra algorithm runs.
hegyi@1123
   715
hegyi@1123
   716
    /// Sets the source node, from which the Dijkstra algorithm runs.
hegyi@1123
   717
    /// \param s is the source node.
alpar@1117
   718
    DijkstraWizard<TR> &source(Node s) 
alpar@953
   719
    {
alpar@1116
   720
      source=(void *)&s;
alpar@953
   721
      return *this;
alpar@953
   722
    }
alpar@953
   723
    
alpar@953
   724
  };
alpar@255
   725
  
alpar@953
   726
  ///\e
alpar@953
   727
alpar@954
   728
  ///\todo Please document...
alpar@953
   729
  ///
alpar@953
   730
  template<class GR, class LM>
alpar@1116
   731
  DijkstraWizard<DijkstraWizardBase<GR,LM> >
alpar@1116
   732
  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
alpar@953
   733
  {
alpar@1116
   734
    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
alpar@953
   735
  }
alpar@953
   736
alpar@430
   737
/// @}
alpar@255
   738
  
alpar@921
   739
} //END OF NAMESPACE LEMON
alpar@255
   740
alpar@255
   741
#endif
alpar@255
   742