src/lemon/dijkstra.h
author marci
Thu, 17 Feb 2005 15:14:13 +0000
changeset 1153 4b0468de3a31
parent 1132 ab5c81fcc31a
child 1155 fe0fcdb5687b
permissions -rw-r--r--
if you have a nuclear power plant and wanna compute small magic squares, then let's do it
alpar@906
     1
/* -*- C++ -*-
alpar@921
     2
 * src/lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@906
     4
 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@906
     5
 * (Egervary Combinatorial Optimization Research Group, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@921
    17
#ifndef LEMON_DIJKSTRA_H
alpar@921
    18
#define LEMON_DIJKSTRA_H
alpar@255
    19
alpar@758
    20
///\ingroup flowalgs
alpar@255
    21
///\file
alpar@255
    22
///\brief Dijkstra algorithm.
alpar@255
    23
alpar@953
    24
#include <lemon/list_graph.h>
alpar@921
    25
#include <lemon/bin_heap.h>
alpar@921
    26
#include <lemon/invalid.h>
alpar@1119
    27
#include <lemon/error.h>
alpar@1119
    28
#include <lemon/maps.h>
alpar@255
    29
alpar@921
    30
namespace lemon {
jacint@385
    31
alpar@1119
    32
alpar@1151
    33
  
alpar@954
    34
  ///Default traits class of Dijkstra class.
alpar@954
    35
alpar@954
    36
  ///Default traits class of Dijkstra class.
alpar@954
    37
  ///\param GR Graph type.
alpar@954
    38
  ///\param LM Type of length map.
alpar@953
    39
  template<class GR, class LM>
alpar@953
    40
  struct DijkstraDefaultTraits
alpar@953
    41
  {
alpar@954
    42
    ///The graph type the algorithm runs on. 
alpar@953
    43
    typedef GR Graph;
alpar@953
    44
    ///The type of the map that stores the edge lengths.
alpar@953
    45
hegyi@1124
    46
    ///The type of the map that stores the edge lengths.
alpar@967
    47
    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
alpar@953
    48
    typedef LM LengthMap;
alpar@954
    49
    //The type of the length of the edges.
alpar@987
    50
    typedef typename LM::Value Value;
alpar@954
    51
    ///The heap type used by Dijkstra algorithm.
alpar@967
    52
alpar@967
    53
    ///The heap type used by Dijkstra algorithm.
alpar@967
    54
    ///
alpar@967
    55
    ///\sa BinHeap
alpar@967
    56
    ///\sa Dijkstra
alpar@953
    57
    typedef BinHeap<typename Graph::Node,
alpar@987
    58
		    typename LM::Value,
alpar@953
    59
		    typename GR::template NodeMap<int>,
alpar@987
    60
		    std::less<Value> > Heap;
alpar@953
    61
alpar@953
    62
    ///\brief The type of the map that stores the last
alpar@953
    63
    ///edges of the shortest paths.
alpar@953
    64
    /// 
hegyi@1124
    65
    ///The type of the map that stores the last
hegyi@1124
    66
    ///edges of the shortest paths.
alpar@967
    67
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
    68
    ///
alpar@954
    69
    typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
alpar@954
    70
    ///Instantiates a PredMap.
alpar@953
    71
 
hegyi@1123
    72
    ///This function instantiates a \ref PredMap. 
hegyi@1123
    73
    ///\param G is the graph, to which we would like to define the PredMap.
alpar@1119
    74
    ///\todo The graph alone may be insufficient for the initialization
alpar@954
    75
    static PredMap *createPredMap(const GR &G) 
alpar@953
    76
    {
alpar@953
    77
      return new PredMap(G);
alpar@953
    78
    }
alpar@953
    79
    ///\brief The type of the map that stores the last but one
alpar@953
    80
    ///nodes of the shortest paths.
alpar@953
    81
    ///
hegyi@1124
    82
    ///The type of the map that stores the last but one
hegyi@1124
    83
    ///nodes of the shortest paths.
alpar@967
    84
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
    85
    ///
alpar@1130
    86
    typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
alpar@954
    87
    ///Instantiates a PredNodeMap.
alpar@1125
    88
    
hegyi@1123
    89
    ///This function instantiates a \ref PredNodeMap. 
hegyi@1123
    90
    ///\param G is the graph, to which we would like to define the \ref PredNodeMap
alpar@954
    91
    static PredNodeMap *createPredNodeMap(const GR &G)
alpar@953
    92
    {
alpar@1130
    93
      return new PredNodeMap();
alpar@953
    94
    }
alpar@1119
    95
alpar@1119
    96
    ///The type of the map that stores whether a nodes is reached.
alpar@1119
    97
 
hegyi@1124
    98
    ///The type of the map that stores whether a nodes is reached.
alpar@1119
    99
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1119
   100
    ///By default it is a NullMap.
alpar@1119
   101
    ///\todo If it is set to a real map, Dijkstra::reached() should read this.
alpar@1119
   102
    ///\todo named parameter to set this type, function to read and write.
alpar@1119
   103
    typedef NullMap<typename Graph::Node,bool> ReachedMap;
alpar@1119
   104
    ///Instantiates a ReachedMap.
alpar@1119
   105
 
hegyi@1123
   106
    ///This function instantiates a \ref ReachedMap. 
hegyi@1123
   107
    ///\param G is the graph, to which we would like to define the \ref ReachedMap
alpar@1119
   108
    static ReachedMap *createReachedMap(const GR &G)
alpar@1119
   109
    {
alpar@1119
   110
      return new ReachedMap();
alpar@1119
   111
    }
alpar@953
   112
    ///The type of the map that stores the dists of the nodes.
alpar@953
   113
 
hegyi@1124
   114
    ///The type of the map that stores the dists of the nodes.
alpar@967
   115
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
   116
    ///
alpar@987
   117
    typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
alpar@954
   118
    ///Instantiates a DistMap.
alpar@953
   119
 
hegyi@1123
   120
    ///This function instantiates a \ref DistMap. 
hegyi@1123
   121
    ///\param G is the graph, to which we would like to define the \ref DistMap
alpar@954
   122
    static DistMap *createDistMap(const GR &G)
alpar@953
   123
    {
alpar@953
   124
      return new DistMap(G);
alpar@953
   125
    }
alpar@953
   126
  };
alpar@953
   127
  
alpar@255
   128
  ///%Dijkstra algorithm class.
alpar@1125
   129
  
alpar@1151
   130
  /// \ingroup flowalgs
alpar@255
   131
  ///This class provides an efficient implementation of %Dijkstra algorithm.
alpar@255
   132
  ///The edge lengths are passed to the algorithm using a
klao@959
   133
  ///\ref concept::ReadMap "ReadMap",
alpar@255
   134
  ///so it is easy to change it to any kind of length.
alpar@255
   135
  ///
alpar@880
   136
  ///The type of the length is determined by the
alpar@987
   137
  ///\ref concept::ReadMap::Value "Value" of the length map.
alpar@255
   138
  ///
alpar@255
   139
  ///It is also possible to change the underlying priority heap.
alpar@255
   140
  ///
alpar@953
   141
  ///\param GR The graph type the algorithm runs on. The default value is
alpar@955
   142
  ///\ref ListGraph. The value of GR is not used directly by Dijkstra, it
alpar@954
   143
  ///is only passed to \ref DijkstraDefaultTraits.
alpar@584
   144
  ///\param LM This read-only
jacint@385
   145
  ///EdgeMap
jacint@385
   146
  ///determines the
jacint@385
   147
  ///lengths of the edges. It is read once for each edge, so the map
jacint@385
   148
  ///may involve in relatively time consuming process to compute the edge
jacint@385
   149
  ///length if it is necessary. The default map type is
klao@959
   150
  ///\ref concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".
alpar@955
   151
  ///The value of LM is not used directly by Dijkstra, it
alpar@954
   152
  ///is only passed to \ref DijkstraDefaultTraits.
alpar@954
   153
  ///\param TR Traits class to set various data types used by the algorithm.
alpar@954
   154
  ///The default traits class is
alpar@955
   155
  ///\ref DijkstraDefaultTraits "DijkstraDefaultTraits<GR,LM>".
alpar@954
   156
  ///See \ref DijkstraDefaultTraits for the documentation of
alpar@954
   157
  ///a Dijkstra traits class.
alpar@456
   158
  ///
alpar@689
   159
  ///\author Jacint Szabo and Alpar Juttner
alpar@1128
   160
  ///\todo A compare object would be nice.
alpar@584
   161
alpar@255
   162
#ifdef DOXYGEN
alpar@584
   163
  template <typename GR,
alpar@584
   164
	    typename LM,
alpar@953
   165
	    typename TR>
alpar@255
   166
#else
alpar@953
   167
  template <typename GR=ListGraph,
alpar@584
   168
	    typename LM=typename GR::template EdgeMap<int>,
alpar@953
   169
	    typename TR=DijkstraDefaultTraits<GR,LM> >
alpar@255
   170
#endif
alpar@1116
   171
  class Dijkstra {
alpar@255
   172
  public:
alpar@1125
   173
    /**
alpar@1125
   174
     * \brief \ref Exception for uninitialized parameters.
alpar@1125
   175
     *
alpar@1125
   176
     * This error represents problems in the initialization
alpar@1125
   177
     * of the parameters of the algorithms.
alpar@1125
   178
     */
alpar@1125
   179
    class UninitializedParameter : public lemon::UninitializedParameter {
alpar@1125
   180
    public:
alpar@1125
   181
      virtual const char* exceptionName() const {
alpar@1125
   182
	return "lemon::Dijsktra::UninitializedParameter";
alpar@1125
   183
      }
alpar@1125
   184
    };
alpar@1119
   185
alpar@953
   186
    typedef TR Traits;
alpar@584
   187
    ///The type of the underlying graph.
alpar@954
   188
    typedef typename TR::Graph Graph;
alpar@911
   189
    ///\e
alpar@255
   190
    typedef typename Graph::Node Node;
alpar@911
   191
    ///\e
alpar@255
   192
    typedef typename Graph::NodeIt NodeIt;
alpar@911
   193
    ///\e
alpar@255
   194
    typedef typename Graph::Edge Edge;
alpar@911
   195
    ///\e
alpar@255
   196
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@255
   197
    
alpar@584
   198
    ///The type of the length of the edges.
alpar@987
   199
    typedef typename TR::LengthMap::Value Value;
alpar@693
   200
    ///The type of the map that stores the edge lengths.
alpar@954
   201
    typedef typename TR::LengthMap LengthMap;
alpar@693
   202
    ///\brief The type of the map that stores the last
alpar@584
   203
    ///edges of the shortest paths.
alpar@953
   204
    typedef typename TR::PredMap PredMap;
alpar@693
   205
    ///\brief The type of the map that stores the last but one
alpar@584
   206
    ///nodes of the shortest paths.
alpar@953
   207
    typedef typename TR::PredNodeMap PredNodeMap;
alpar@1119
   208
    ///The type of the map indicating if a node is reached.
alpar@1119
   209
    typedef typename TR::ReachedMap ReachedMap;
alpar@693
   210
    ///The type of the map that stores the dists of the nodes.
alpar@953
   211
    typedef typename TR::DistMap DistMap;
alpar@953
   212
    ///The heap type used by the dijkstra algorithm.
alpar@953
   213
    typedef typename TR::Heap Heap;
alpar@255
   214
  private:
alpar@802
   215
    /// Pointer to the underlying graph.
alpar@688
   216
    const Graph *G;
alpar@802
   217
    /// Pointer to the length map
alpar@954
   218
    const LengthMap *length;
alpar@802
   219
    ///Pointer to the map of predecessors edges.
alpar@1119
   220
    PredMap *_pred;
alpar@1119
   221
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
alpar@1119
   222
    bool local_pred;
alpar@802
   223
    ///Pointer to the map of predecessors nodes.
alpar@1130
   224
    PredNodeMap *_predNode;
alpar@1130
   225
    ///Indicates if \ref _predNode is locally allocated (\c true) or not.
alpar@1130
   226
    bool local_predNode;
alpar@802
   227
    ///Pointer to the map of distances.
alpar@1130
   228
    DistMap *_dist;
alpar@1130
   229
    ///Indicates if \ref _dist is locally allocated (\c true) or not.
alpar@1130
   230
    bool local_dist;
alpar@1119
   231
    ///Pointer to the map of reached status of the nodes.
alpar@1119
   232
    ReachedMap *_reached;
alpar@1119
   233
    ///Indicates if \ref _reached is locally allocated (\c true) or not.
alpar@1119
   234
    bool local_reached;
alpar@688
   235
alpar@802
   236
    ///The source node of the last execution.
alpar@774
   237
    Node source;
alpar@774
   238
alpar@1128
   239
    ///Creates the maps if necessary.
alpar@688
   240
    
alpar@694
   241
    ///\todo Error if \c G or are \c NULL. What about \c length?
alpar@688
   242
    ///\todo Better memory allocation (instead of new).
alpar@1128
   243
    void create_maps() 
alpar@688
   244
    {
alpar@1119
   245
      if(!_pred) {
alpar@1119
   246
	local_pred = true;
alpar@1119
   247
	_pred = Traits::createPredMap(*G);
alpar@688
   248
      }
alpar@1130
   249
      if(!_predNode) {
alpar@1130
   250
	local_predNode = true;
alpar@1130
   251
	_predNode = Traits::createPredNodeMap(*G);
alpar@688
   252
      }
alpar@1130
   253
      if(!_dist) {
alpar@1130
   254
	local_dist = true;
alpar@1130
   255
	_dist = Traits::createDistMap(*G);
alpar@688
   256
      }
alpar@1119
   257
      if(!_reached) {
alpar@1119
   258
	local_reached = true;
alpar@1119
   259
	_reached = Traits::createReachedMap(*G);
alpar@1119
   260
      }
alpar@688
   261
    }
alpar@255
   262
    
alpar@255
   263
  public :
alpar@1116
   264
 
alpar@1128
   265
    ///\name Named template parameters
alpar@1128
   266
alpar@1128
   267
    ///@{
alpar@1128
   268
alpar@953
   269
    template <class T>
alpar@1116
   270
    struct DefPredMapTraits : public Traits {
alpar@953
   271
      typedef T PredMap;
alpar@953
   272
      static PredMap *createPredMap(const Graph &G) 
alpar@953
   273
      {
alpar@1126
   274
	throw UninitializedParameter();
alpar@953
   275
      }
alpar@953
   276
    };
alpar@954
   277
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@954
   278
alpar@954
   279
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@1043
   280
    ///
alpar@953
   281
    template <class T>
alpar@1116
   282
    class DefPredMap : public Dijkstra< Graph,
alpar@953
   283
					LengthMap,
alpar@1116
   284
					DefPredMapTraits<T> > { };
alpar@953
   285
    
alpar@953
   286
    template <class T>
alpar@1116
   287
    struct DefPredNodeMapTraits : public Traits {
alpar@953
   288
      typedef T PredNodeMap;
alpar@953
   289
      static PredNodeMap *createPredNodeMap(const Graph &G) 
alpar@953
   290
      {
alpar@1126
   291
	throw UninitializedParameter();
alpar@953
   292
      }
alpar@953
   293
    };
alpar@954
   294
    ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
alpar@954
   295
alpar@954
   296
    ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
alpar@1043
   297
    ///
alpar@953
   298
    template <class T>
alpar@1116
   299
    class DefPredNodeMap : public Dijkstra< Graph,
alpar@953
   300
					    LengthMap,
alpar@1116
   301
					    DefPredNodeMapTraits<T> > { };
alpar@953
   302
    
alpar@953
   303
    template <class T>
alpar@1116
   304
    struct DefDistMapTraits : public Traits {
alpar@953
   305
      typedef T DistMap;
alpar@953
   306
      static DistMap *createDistMap(const Graph &G) 
alpar@953
   307
      {
alpar@1126
   308
	throw UninitializedParameter();
alpar@953
   309
      }
alpar@953
   310
    };
alpar@954
   311
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@954
   312
alpar@954
   313
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@1043
   314
    ///
alpar@953
   315
    template <class T>
alpar@1116
   316
    class DefDistMap : public Dijkstra< Graph,
alpar@953
   317
					LengthMap,
alpar@1116
   318
					DefDistMapTraits<T> > { };
alpar@953
   319
    
alpar@1128
   320
    template <class T>
alpar@1128
   321
    struct DefReachedMapTraits : public Traits {
alpar@1128
   322
      typedef T ReachedMap;
alpar@1128
   323
      static ReachedMap *createReachedMap(const Graph &G) 
alpar@1128
   324
      {
alpar@1128
   325
	throw UninitializedParameter();
alpar@1128
   326
      }
alpar@1128
   327
    };
alpar@1128
   328
    ///\ref named-templ-param "Named parameter" for setting ReachedMap type
alpar@1128
   329
alpar@1128
   330
    ///\ref named-templ-param "Named parameter" for setting ReachedMap type
alpar@1128
   331
    ///
alpar@1128
   332
    template <class T>
alpar@1128
   333
    class DefReachedMap : public Dijkstra< Graph,
alpar@1128
   334
					LengthMap,
alpar@1128
   335
					DefReachedMapTraits<T> > { };
alpar@1128
   336
    
alpar@1128
   337
    struct DefGraphReachedMapTraits : public Traits {
alpar@1128
   338
      typedef typename Graph::NodeMap<bool> ReachedMap;
alpar@1128
   339
      static ReachedMap *createReachedMap(const Graph &G) 
alpar@1128
   340
      {
alpar@1128
   341
	return new ReachedMap(G);
alpar@1128
   342
      }
alpar@1128
   343
    };
alpar@1128
   344
    ///\brief \ref named-templ-param "Named parameter"
alpar@1128
   345
    ///for setting the ReachedMap type to be Graph::NodeMap<bool>.
alpar@1128
   346
    ///
alpar@1128
   347
    ///\ref named-templ-param "Named parameter"
alpar@1128
   348
    ///for setting the ReachedMap type to be Graph::NodeMap<bool>.
alpar@1128
   349
    ///If you don't set it explicitely, it will be automatically allocated.
alpar@1128
   350
    template <class T>
alpar@1128
   351
    class DefReachedMapToBeDefaultMap :
alpar@1128
   352
      public Dijkstra< Graph,
alpar@1128
   353
		       LengthMap,
alpar@1128
   354
		       DefGraphReachedMapTraits> { };
alpar@1128
   355
    
alpar@1128
   356
    ///@}
alpar@1128
   357
alpar@1128
   358
alpar@1128
   359
  private:
alpar@1128
   360
    typename Graph::template NodeMap<int> _heap_map;
alpar@1128
   361
    Heap _heap;
alpar@1128
   362
  public:      
alpar@1128
   363
    
alpar@802
   364
    ///Constructor.
alpar@255
   365
    
alpar@802
   366
    ///\param _G the graph the algorithm will run on.
alpar@802
   367
    ///\param _length the length map used by the algorithm.
alpar@954
   368
    Dijkstra(const Graph& _G, const LengthMap& _length) :
alpar@688
   369
      G(&_G), length(&_length),
alpar@1119
   370
      _pred(NULL), local_pred(false),
alpar@1130
   371
      _predNode(NULL), local_predNode(false),
alpar@1130
   372
      _dist(NULL), local_dist(false),
alpar@1128
   373
      _reached(NULL), local_reached(false),
alpar@1128
   374
      _heap_map(*G,-1),_heap(_heap_map)
alpar@688
   375
    { }
alpar@688
   376
    
alpar@802
   377
    ///Destructor.
alpar@688
   378
    ~Dijkstra() 
alpar@688
   379
    {
alpar@1119
   380
      if(local_pred) delete _pred;
alpar@1130
   381
      if(local_predNode) delete _predNode;
alpar@1130
   382
      if(local_dist) delete _dist;
alpar@1119
   383
      if(local_reached) delete _reached;
alpar@688
   384
    }
alpar@688
   385
alpar@688
   386
    ///Sets the length map.
alpar@688
   387
alpar@688
   388
    ///Sets the length map.
alpar@688
   389
    ///\return <tt> (*this) </tt>
alpar@1116
   390
    Dijkstra &lengthMap(const LengthMap &m) 
alpar@688
   391
    {
alpar@688
   392
      length = &m;
alpar@688
   393
      return *this;
alpar@688
   394
    }
alpar@688
   395
alpar@688
   396
    ///Sets the map storing the predecessor edges.
alpar@688
   397
alpar@688
   398
    ///Sets the map storing the predecessor edges.
alpar@688
   399
    ///If you don't use this function before calling \ref run(),
alpar@688
   400
    ///it will allocate one. The destuctor deallocates this
alpar@688
   401
    ///automatically allocated map, of course.
alpar@688
   402
    ///\return <tt> (*this) </tt>
alpar@1116
   403
    Dijkstra &predMap(PredMap &m) 
alpar@688
   404
    {
alpar@1119
   405
      if(local_pred) {
alpar@1119
   406
	delete _pred;
alpar@1119
   407
	local_pred=false;
alpar@688
   408
      }
alpar@1119
   409
      _pred = &m;
alpar@688
   410
      return *this;
alpar@688
   411
    }
alpar@688
   412
alpar@688
   413
    ///Sets the map storing the predecessor nodes.
alpar@688
   414
alpar@688
   415
    ///Sets the map storing the predecessor nodes.
alpar@688
   416
    ///If you don't use this function before calling \ref run(),
alpar@688
   417
    ///it will allocate one. The destuctor deallocates this
alpar@688
   418
    ///automatically allocated map, of course.
alpar@688
   419
    ///\return <tt> (*this) </tt>
alpar@1116
   420
    Dijkstra &predNodeMap(PredNodeMap &m) 
alpar@688
   421
    {
alpar@1130
   422
      if(local_predNode) {
alpar@1130
   423
	delete _predNode;
alpar@1130
   424
	local_predNode=false;
alpar@688
   425
      }
alpar@1130
   426
      _predNode = &m;
alpar@688
   427
      return *this;
alpar@688
   428
    }
alpar@688
   429
alpar@688
   430
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   431
alpar@688
   432
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   433
    ///If you don't use this function before calling \ref run(),
alpar@688
   434
    ///it will allocate one. The destuctor deallocates this
alpar@688
   435
    ///automatically allocated map, of course.
alpar@688
   436
    ///\return <tt> (*this) </tt>
alpar@1116
   437
    Dijkstra &distMap(DistMap &m) 
alpar@688
   438
    {
alpar@1130
   439
      if(local_dist) {
alpar@1130
   440
	delete _dist;
alpar@1130
   441
	local_dist=false;
alpar@688
   442
      }
alpar@1130
   443
      _dist = &m;
alpar@688
   444
      return *this;
alpar@688
   445
    }
alpar@694
   446
alpar@1130
   447
  private:
alpar@1130
   448
    void finalizeNodeData(Node v,Value dst)
alpar@1130
   449
    {
alpar@1130
   450
      _reached->set(v,true);
alpar@1130
   451
      _dist->set(v, dst);
alpar@1130
   452
      _predNode->set(v,G->source((*_pred)[v]));
alpar@1130
   453
    }
alpar@1130
   454
alpar@1130
   455
  public:
alpar@1128
   456
    ///\name Excetution control
alpar@1128
   457
    ///The simplest way to execute the algorithm is to use
alpar@1128
   458
    ///\ref run().
alpar@1128
   459
    ///\n
alpar@1128
   460
    ///It you need more control on the execution,
alpar@1128
   461
    ///first you must call \ref init(), then you can add several source nodes
alpar@1128
   462
    ///with \ref addSource(). Finally \ref start() will perform the actual path
alpar@1128
   463
    ///computation.
alpar@1128
   464
alpar@1128
   465
    ///@{
alpar@1128
   466
alpar@1128
   467
    ///Initializes the internal data structures.
alpar@1128
   468
alpar@1128
   469
    ///Initializes the internal data structures.
alpar@1128
   470
    ///
alpar@1128
   471
    ///\todo _heap_map's type could also be in the traits class.
alpar@1128
   472
    void init()
alpar@1128
   473
    {
alpar@1128
   474
      create_maps();
alpar@774
   475
      
alpar@774
   476
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
alpar@1119
   477
	_pred->set(u,INVALID);
alpar@1130
   478
	_predNode->set(u,INVALID);
alpar@1119
   479
	///\todo *_reached is not set to false.
alpar@1128
   480
	_heap_map.set(u,Heap::PRE_HEAP);
alpar@694
   481
      }
alpar@1128
   482
    }
alpar@1128
   483
    
alpar@1128
   484
    ///Adds a new source node.
alpar@1128
   485
alpar@1128
   486
    ///Adds a new source node the the priority heap.
alpar@1128
   487
    ///It checks if the node has already been added to the heap.
alpar@1128
   488
    ///
alpar@1128
   489
    ///The optional second parameter is the initial distance of the node.
alpar@1128
   490
    ///
alpar@1128
   491
    ///\todo Do we really want to check it?
alpar@1128
   492
    void addSource(Node s,Value dst=0)
alpar@1128
   493
    {
alpar@1128
   494
      source = s;
alpar@1128
   495
      if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst);
alpar@1128
   496
    }
alpar@1128
   497
    
alpar@1151
   498
    void processNextNode()
alpar@1128
   499
    {
alpar@1128
   500
      Node v=_heap.top(); 
alpar@1128
   501
      Value oldvalue=_heap[v];
alpar@1128
   502
      _heap.pop();
alpar@1130
   503
      finalizeNodeData(v,oldvalue);
alpar@694
   504
      
alpar@1128
   505
      for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
alpar@1128
   506
	Node w=G->target(e); 
alpar@1128
   507
	switch(_heap.state(w)) {
alpar@1128
   508
	case Heap::PRE_HEAP:
alpar@1128
   509
	  _heap.push(w,oldvalue+(*length)[e]); 
alpar@1128
   510
	  _pred->set(w,e);
alpar@1130
   511
//  	  _predNode->set(w,v);
alpar@1128
   512
	  break;
alpar@1128
   513
	case Heap::IN_HEAP:
alpar@1128
   514
	  if ( oldvalue+(*length)[e] < _heap[w] ) {
alpar@1128
   515
	    _heap.decrease(w, oldvalue+(*length)[e]); 
alpar@1119
   516
	    _pred->set(w,e);
alpar@1130
   517
// 	    _predNode->set(w,v);
alpar@694
   518
	  }
alpar@1128
   519
	  break;
alpar@1128
   520
	case Heap::POST_HEAP:
alpar@1128
   521
	  break;
alpar@694
   522
	}
alpar@694
   523
      }
alpar@694
   524
    }
alpar@1128
   525
alpar@1130
   526
    ///Executes the algorithm.
alpar@1128
   527
alpar@1130
   528
    ///Executes the algorithm.
alpar@1128
   529
    ///
alpar@1130
   530
    ///\pre init() must be called and at least one node should be added
alpar@1130
   531
    ///with addSource() before using this function.
alpar@1128
   532
    ///
alpar@1128
   533
    ///This method runs the %Dijkstra algorithm from the root node(s)
alpar@1128
   534
    ///in order to
alpar@1128
   535
    ///compute the
alpar@1128
   536
    ///shortest path to each node. The algorithm computes
alpar@1128
   537
    ///- The shortest path tree.
alpar@1128
   538
    ///- The distance of each node from the root(s).
alpar@1128
   539
    ///
alpar@1128
   540
    void start()
alpar@1128
   541
    {
alpar@1151
   542
      while ( !_heap.empty() ) processNextNode();
alpar@1128
   543
    }
alpar@255
   544
    
alpar@1130
   545
    ///Executes the algorithm until \c dest is reached.
alpar@1128
   546
alpar@1130
   547
    ///Executes the algorithm until \c dest is reached.
alpar@1128
   548
    ///
alpar@1130
   549
    ///\pre init() must be called and at least one node should be added
alpar@1130
   550
    ///with addSource() before using this function.
alpar@1128
   551
    ///
alpar@1128
   552
    ///This method runs the %Dijkstra algorithm from the root node(s)
alpar@1128
   553
    ///in order to
alpar@1128
   554
    ///compute the
alpar@1128
   555
    ///shortest path to \c dest. The algorithm computes
alpar@1128
   556
    ///- The shortest path to \c  dest.
alpar@1128
   557
    ///- The distance of \c dest from the root(s).
alpar@1128
   558
    ///
alpar@1128
   559
    void start(Node dest)
alpar@1128
   560
    {
alpar@1151
   561
      while ( !_heap.empty() && _heap.top()!=dest ) processNextNode();
alpar@1130
   562
      if ( _heap.top()==dest ) finalizeNodeData(_heap.top());
alpar@1130
   563
    }
alpar@1130
   564
    
alpar@1130
   565
    ///Executes the algorithm until a condition is met.
alpar@1130
   566
alpar@1130
   567
    ///Executes the algorithm until a condition is met.
alpar@1130
   568
    ///
alpar@1130
   569
    ///\pre init() must be called and at least one node should be added
alpar@1130
   570
    ///with addSource() before using this function.
alpar@1130
   571
    ///
alpar@1130
   572
    ///\param nm must be a bool (or convertible) node map. The algorithm
alpar@1130
   573
    ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
alpar@1130
   574
    template<class NM>
alpar@1130
   575
    void start(const NM &nm)
alpar@1130
   576
    {
alpar@1151
   577
      while ( !_heap.empty() && !mn[_heap.top()] ) processNextNode();
alpar@1130
   578
      if ( !_heap.empty() ) finalizeNodeData(_heap.top());
alpar@1128
   579
    }
alpar@1128
   580
    
alpar@1128
   581
    ///Runs %Dijkstra algorithm from node \c s.
alpar@1128
   582
    
alpar@1128
   583
    ///This method runs the %Dijkstra algorithm from a root node \c s
alpar@1128
   584
    ///in order to
alpar@1128
   585
    ///compute the
alpar@1128
   586
    ///shortest path to each node. The algorithm computes
alpar@1128
   587
    ///- The shortest path tree.
alpar@1128
   588
    ///- The distance of each node from the root.
alpar@1128
   589
    ///
alpar@1128
   590
    ///\note d.run(s) is just a shortcut of the following code.
alpar@1128
   591
    ///\code
alpar@1128
   592
    ///  d.init();
alpar@1128
   593
    ///  d.addSource(s);
alpar@1128
   594
    ///  d.start();
alpar@1128
   595
    ///\endcode
alpar@1128
   596
    void run(Node s) {
alpar@1128
   597
      init();
alpar@1128
   598
      addSource(s);
alpar@1128
   599
      start();
alpar@1128
   600
    }
alpar@1128
   601
    
alpar@1130
   602
    ///Finds the shortest path between \c s and \c t.
alpar@1130
   603
    
alpar@1130
   604
    ///Finds the shortest path between \c s and \c t.
alpar@1130
   605
    ///
alpar@1130
   606
    ///\return The length of the shortest s---t path if there exists one,
alpar@1130
   607
    ///0 otherwise.
alpar@1130
   608
    ///\note Apart from the return value, d.run(s) is
alpar@1130
   609
    ///just a shortcut of the following code.
alpar@1130
   610
    ///\code
alpar@1130
   611
    ///  d.init();
alpar@1130
   612
    ///  d.addSource(s);
alpar@1130
   613
    ///  d.start(t);
alpar@1130
   614
    ///\endcode
alpar@1130
   615
    Value run(Node s,Node t) {
alpar@1130
   616
      init();
alpar@1130
   617
      addSource(s);
alpar@1130
   618
      start(t);
alpar@1130
   619
      return (*_pred)[t]==INVALID?0:(*_dist)[t];
alpar@1130
   620
    }
alpar@1130
   621
    
alpar@1128
   622
    ///@}
alpar@1128
   623
alpar@1128
   624
    ///\name Query Functions
alpar@1128
   625
    ///The result of the %Dijkstra algorithm can be obtained using these
alpar@1128
   626
    ///functions.\n
alpar@1128
   627
    ///Before the use of these functions,
alpar@1128
   628
    ///either run() or start() must be called.
alpar@1128
   629
    
alpar@1128
   630
    ///@{
alpar@1128
   631
jacint@385
   632
    ///The distance of a node from the root.
alpar@255
   633
jacint@385
   634
    ///Returns the distance of a node from the root.
alpar@255
   635
    ///\pre \ref run() must be called before using this function.
jacint@385
   636
    ///\warning If node \c v in unreachable from the root the return value
alpar@255
   637
    ///of this funcion is undefined.
alpar@1130
   638
    Value dist(Node v) const { return (*_dist)[v]; }
jacint@373
   639
alpar@584
   640
    ///Returns the 'previous edge' of the shortest path tree.
alpar@255
   641
alpar@584
   642
    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
alpar@785
   643
    ///i.e. it returns the last edge of a shortest path from the root to \c
alpar@688
   644
    ///v. It is \ref INVALID
alpar@688
   645
    ///if \c v is unreachable from the root or if \c v=s. The
jacint@385
   646
    ///shortest path tree used here is equal to the shortest path tree used in
jacint@385
   647
    ///\ref predNode(Node v).  \pre \ref run() must be called before using
jacint@385
   648
    ///this function.
alpar@780
   649
    ///\todo predEdge could be a better name.
alpar@1119
   650
    Edge pred(Node v) const { return (*_pred)[v]; }
jacint@373
   651
alpar@584
   652
    ///Returns the 'previous node' of the shortest path tree.
alpar@255
   653
alpar@584
   654
    ///For a node \c v it returns the 'previous node' of the shortest path tree,
jacint@385
   655
    ///i.e. it returns the last but one node from a shortest path from the
jacint@385
   656
    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
jacint@385
   657
    ///\c v=s. The shortest path tree used here is equal to the shortest path
jacint@385
   658
    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
jacint@385
   659
    ///using this function.
alpar@1130
   660
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
alpar@1130
   661
				  G->source((*_pred)[v]); }
alpar@255
   662
    
alpar@255
   663
    ///Returns a reference to the NodeMap of distances.
alpar@255
   664
jacint@385
   665
    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
jacint@385
   666
    ///be called before using this function.
alpar@1130
   667
    const DistMap &distMap() const { return *_dist;}
jacint@385
   668
 
alpar@255
   669
    ///Returns a reference to the shortest path tree map.
alpar@255
   670
alpar@255
   671
    ///Returns a reference to the NodeMap of the edges of the
alpar@255
   672
    ///shortest path tree.
alpar@255
   673
    ///\pre \ref run() must be called before using this function.
alpar@1119
   674
    const PredMap &predMap() const { return *_pred;}
jacint@385
   675
 
jacint@385
   676
    ///Returns a reference to the map of nodes of shortest paths.
alpar@255
   677
alpar@255
   678
    ///Returns a reference to the NodeMap of the last but one nodes of the
jacint@385
   679
    ///shortest path tree.
alpar@255
   680
    ///\pre \ref run() must be called before using this function.
alpar@1130
   681
    const PredNodeMap &predNodeMap() const { return *_predNode;}
alpar@255
   682
jacint@385
   683
    ///Checks if a node is reachable from the root.
alpar@255
   684
jacint@385
   685
    ///Returns \c true if \c v is reachable from the root.
alpar@1128
   686
    ///\warning If the algorithm is started from multiple nodes,
alpar@1128
   687
    ///this function may give false result for the source nodes.
alpar@255
   688
    ///\pre \ref run() must be called before using this function.
jacint@385
   689
    ///
alpar@1119
   690
    bool reached(Node v) { return v==source || (*_pred)[v]!=INVALID; }
alpar@255
   691
    
alpar@1128
   692
    ///@}
alpar@255
   693
  };
alpar@953
   694
hegyi@1123
   695
  /// Default traits used by \ref DijkstraWizard
hegyi@1123
   696
alpar@1151
   697
  /// To make it easier to use Dijkstra algorithm
alpar@1151
   698
  ///we have created a wizard class.
alpar@1151
   699
  /// This \ref DijkstraWizard class needs default traits,
alpar@1151
   700
  ///as well as the \ref Dijkstra class.
hegyi@1123
   701
  /// The \ref DijkstraWizardBase is a class to be the default traits of the
hegyi@1123
   702
  /// \ref DijkstraWizard class.
alpar@1116
   703
  template<class GR,class LM>
alpar@1116
   704
  class DijkstraWizardBase : public DijkstraDefaultTraits<GR,LM>
alpar@1116
   705
  {
alpar@1116
   706
alpar@1116
   707
    typedef DijkstraDefaultTraits<GR,LM> Base;
alpar@1116
   708
  protected:
alpar@1116
   709
    /// Pointer to the underlying graph.
alpar@1116
   710
    void *_g;
alpar@1116
   711
    /// Pointer to the length map
alpar@1116
   712
    void *_length;
alpar@1116
   713
    ///Pointer to the map of predecessors edges.
alpar@1116
   714
    void *_pred;
alpar@1116
   715
    ///Pointer to the map of predecessors nodes.
alpar@1116
   716
    void *_predNode;
alpar@1116
   717
    ///Pointer to the map of distances.
alpar@1116
   718
    void *_dist;
alpar@1116
   719
    ///Pointer to the source node.
alpar@1116
   720
    void *_source;
alpar@1116
   721
hegyi@1123
   722
    /// Type of the nodes in the graph.
alpar@1116
   723
    typedef typename Base::Graph::Node Node;
alpar@1116
   724
alpar@1116
   725
    public:
hegyi@1123
   726
    /// Constructor.
hegyi@1123
   727
    
hegyi@1123
   728
    /// This constructor does not require parameters, therefore it initiates
hegyi@1123
   729
    /// all of the attributes to default values (0, INVALID).
alpar@1116
   730
    DijkstraWizardBase() : _g(0), _length(0), _pred(0), _predNode(0),
alpar@1116
   731
		       _dist(0), _source(INVALID) {}
alpar@1116
   732
hegyi@1123
   733
    /// Constructor.
hegyi@1123
   734
    
hegyi@1123
   735
    /// This constructor requires some parameters, listed in the parameters list.
hegyi@1123
   736
    /// Others are initiated to 0.
hegyi@1123
   737
    /// \param g is the initial value of  \ref _g
hegyi@1123
   738
    /// \param l is the initial value of  \ref _length
hegyi@1123
   739
    /// \param s is the initial value of  \ref _source
alpar@1116
   740
    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
alpar@1116
   741
      _g((void *)&g), _length((void *)&l), _pred(0), _predNode(0),
alpar@1116
   742
		  _dist(0), _source((void *)&s) {}
alpar@1116
   743
alpar@1116
   744
  };
alpar@1116
   745
  
hegyi@1123
   746
  /// A class to make easier the usage of Dijkstra algorithm
alpar@953
   747
alpar@1151
   748
  /// \ingroup flowalgs
hegyi@1123
   749
  /// This class is created to make it easier to use Dijkstra algorithm.
hegyi@1123
   750
  /// It uses the functions and features of the plain \ref Dijkstra,
alpar@1151
   751
  /// but it is much simpler to use it.
alpar@953
   752
  ///
hegyi@1123
   753
  /// Simplicity means that the way to change the types defined
hegyi@1123
   754
  /// in the traits class is based on functions that returns the new class
alpar@1151
   755
  /// and not on templatable built-in classes.
alpar@1151
   756
  /// When using the plain \ref Dijkstra
alpar@1151
   757
  /// the new class with the modified type comes from
alpar@1151
   758
  /// the original class by using the ::
alpar@1151
   759
  /// operator. In the case of \ref DijkstraWizard only
alpar@1151
   760
  /// a function have to be called and it will
hegyi@1123
   761
  /// return the needed class.
hegyi@1123
   762
  ///
hegyi@1123
   763
  /// It does not have own \ref run method. When its \ref run method is called
hegyi@1123
   764
  /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
hegyi@1123
   765
  /// method of it.
alpar@953
   766
  template<class TR>
alpar@1116
   767
  class DijkstraWizard : public TR
alpar@953
   768
  {
alpar@1116
   769
    typedef TR Base;
alpar@953
   770
hegyi@1123
   771
    ///The type of the underlying graph.
alpar@953
   772
    typedef typename TR::Graph Graph;
alpar@1119
   773
    //\e
alpar@953
   774
    typedef typename Graph::Node Node;
alpar@1119
   775
    //\e
alpar@953
   776
    typedef typename Graph::NodeIt NodeIt;
alpar@1119
   777
    //\e
alpar@953
   778
    typedef typename Graph::Edge Edge;
alpar@1119
   779
    //\e
alpar@953
   780
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@953
   781
    
hegyi@1123
   782
    ///The type of the map that stores the edge lengths.
alpar@953
   783
    typedef typename TR::LengthMap LengthMap;
hegyi@1123
   784
    ///The type of the length of the edges.
alpar@987
   785
    typedef typename LengthMap::Value Value;
hegyi@1123
   786
    ///\brief The type of the map that stores the last
hegyi@1123
   787
    ///edges of the shortest paths.
alpar@953
   788
    typedef typename TR::PredMap PredMap;
hegyi@1123
   789
    ///\brief The type of the map that stores the last but one
hegyi@1123
   790
    ///nodes of the shortest paths.
alpar@953
   791
    typedef typename TR::PredNodeMap PredNodeMap;
hegyi@1123
   792
    ///The type of the map that stores the dists of the nodes.
alpar@953
   793
    typedef typename TR::DistMap DistMap;
alpar@953
   794
hegyi@1123
   795
    ///The heap type used by the dijkstra algorithm.
alpar@953
   796
    typedef typename TR::Heap Heap;
alpar@1116
   797
public:
hegyi@1123
   798
    /// Constructor.
alpar@1116
   799
    DijkstraWizard() : TR() {}
alpar@953
   800
hegyi@1123
   801
    /// Constructor that requires parameters.
hegyi@1124
   802
hegyi@1124
   803
    /// Constructor that requires parameters.
hegyi@1123
   804
    /// These parameters will be the default values for the traits class.
alpar@1116
   805
    DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
alpar@1116
   806
      TR(g,l,s) {}
alpar@953
   807
hegyi@1123
   808
    ///Copy constructor
alpar@1116
   809
    DijkstraWizard(const TR &b) : TR(b) {}
alpar@953
   810
alpar@1116
   811
    ~DijkstraWizard() {}
alpar@1116
   812
hegyi@1123
   813
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
   814
    
hegyi@1123
   815
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
   816
    ///The node can be given by the \ref source function.
alpar@1116
   817
    void run()
alpar@953
   818
    {
alpar@1126
   819
      if(_source==0) throw UninitializedParameter();
alpar@1116
   820
      Dijkstra<Graph,LengthMap,TR> Dij(*(Graph*)_g,*(LengthMap*)_length);
alpar@1116
   821
      if(_pred) Dij.predMap(*(PredMap*)_pred);
alpar@1116
   822
      if(_predNode) Dij.predNodeMap(*(PredNodeMap*)_predNode);
alpar@1116
   823
      if(_dist) Dij.distMap(*(DistMap*)_dist);
alpar@1116
   824
      Dij.run(*(Node*)_source);
alpar@1116
   825
    }
alpar@1116
   826
hegyi@1124
   827
    ///Runs Dijkstra algorithm from the given node.
hegyi@1123
   828
hegyi@1124
   829
    ///Runs Dijkstra algorithm from the given node.
hegyi@1123
   830
    ///\param s is the given source.
alpar@1116
   831
    void run(Node s)
alpar@1116
   832
    {
alpar@1116
   833
      _source=(void *)&s;
alpar@1116
   834
      run();
alpar@953
   835
    }
alpar@953
   836
alpar@953
   837
    template<class T>
alpar@1116
   838
    struct DefPredMapBase : public Base {
alpar@1116
   839
      typedef T PredMap;
alpar@1117
   840
      static PredMap *createPredMap(const Graph &G) { return 0; };
alpar@1117
   841
      DefPredMapBase(const Base &b) : Base(b) {}
alpar@1116
   842
    };
alpar@953
   843
    
hegyi@1123
   844
    /// \ref named-templ-param "Named parameter" function for setting PredMap type
hegyi@1123
   845
hegyi@1123
   846
    /// \ref named-templ-param "Named parameter" function for setting PredMap type
hegyi@1124
   847
    ///
alpar@953
   848
    template<class T>
alpar@1116
   849
    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
alpar@953
   850
    {
alpar@1116
   851
      _pred=(void *)&t;
alpar@1116
   852
      return DijkstraWizard<DefPredMapBase<T> >(*this);
alpar@953
   853
    }
alpar@953
   854
    
alpar@1116
   855
alpar@953
   856
    template<class T>
alpar@1116
   857
    struct DefPredNodeMapBase : public Base {
alpar@1116
   858
      typedef T PredNodeMap;
alpar@1117
   859
      static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
alpar@1117
   860
      DefPredNodeMapBase(const Base &b) : Base(b) {}
alpar@1116
   861
    };
alpar@1116
   862
    
hegyi@1123
   863
    /// \ref named-templ-param "Named parameter" function for setting PredNodeMap type
hegyi@1123
   864
hegyi@1123
   865
    /// \ref named-templ-param "Named parameter" function for setting PredNodeMap type
hegyi@1124
   866
    ///
alpar@953
   867
    template<class T>
alpar@1116
   868
    DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t) 
alpar@953
   869
    {
alpar@1116
   870
      _predNode=(void *)&t;
alpar@1116
   871
      return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
alpar@953
   872
    }
alpar@1116
   873
   
alpar@1116
   874
    template<class T>
alpar@1116
   875
    struct DefDistMapBase : public Base {
alpar@1116
   876
      typedef T DistMap;
alpar@1117
   877
      static DistMap *createDistMap(const Graph &G) { return 0; };
alpar@1117
   878
      DefDistMapBase(const Base &b) : Base(b) {}
alpar@1116
   879
    };
alpar@953
   880
    
hegyi@1123
   881
    /// \ref named-templ-param "Named parameter" function for setting DistMap type
hegyi@1123
   882
hegyi@1123
   883
    /// \ref named-templ-param "Named parameter" function for setting DistMap type
hegyi@1124
   884
    ///
alpar@953
   885
    template<class T>
alpar@1116
   886
    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
alpar@953
   887
    {
alpar@1116
   888
      _dist=(void *)&t;
alpar@1116
   889
      return DijkstraWizard<DefDistMapBase<T> >(*this);
alpar@953
   890
    }
alpar@1117
   891
    
hegyi@1123
   892
    /// Sets the source node, from which the Dijkstra algorithm runs.
hegyi@1123
   893
hegyi@1123
   894
    /// Sets the source node, from which the Dijkstra algorithm runs.
hegyi@1123
   895
    /// \param s is the source node.
alpar@1117
   896
    DijkstraWizard<TR> &source(Node s) 
alpar@953
   897
    {
alpar@1116
   898
      source=(void *)&s;
alpar@953
   899
      return *this;
alpar@953
   900
    }
alpar@953
   901
    
alpar@953
   902
  };
alpar@255
   903
  
alpar@953
   904
  ///\e
alpar@953
   905
alpar@1151
   906
  /// \ingroup flowalgs
alpar@954
   907
  ///\todo Please document...
alpar@953
   908
  ///
alpar@953
   909
  template<class GR, class LM>
alpar@1116
   910
  DijkstraWizard<DijkstraWizardBase<GR,LM> >
alpar@1116
   911
  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
alpar@953
   912
  {
alpar@1116
   913
    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
alpar@953
   914
  }
alpar@953
   915
alpar@430
   916
/// @}
alpar@255
   917
  
alpar@921
   918
} //END OF NAMESPACE LEMON
alpar@255
   919
alpar@255
   920
#endif
alpar@255
   921