lemon/dijkstra.h
author athos
Fri, 01 Jul 2005 10:33:27 +0000
changeset 1527 7ceab500e1f6
parent 1435 8e85e6bbefdf
child 1536 308150155bb5
permissions -rw-r--r--
Doc review+corrections in my own documentation according to the reviewers comments.
alpar@906
     1
/* -*- C++ -*-
ladanyi@1435
     2
 * lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@1164
     4
 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     5
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@921
    17
#ifndef LEMON_DIJKSTRA_H
alpar@921
    18
#define LEMON_DIJKSTRA_H
alpar@255
    19
alpar@758
    20
///\ingroup flowalgs
alpar@255
    21
///\file
alpar@255
    22
///\brief Dijkstra algorithm.
alpar@1283
    23
///
alpar@1283
    24
///\todo getPath() should be implemented! (also for BFS and DFS)
alpar@255
    25
alpar@953
    26
#include <lemon/list_graph.h>
alpar@921
    27
#include <lemon/bin_heap.h>
alpar@921
    28
#include <lemon/invalid.h>
alpar@1119
    29
#include <lemon/error.h>
alpar@1119
    30
#include <lemon/maps.h>
alpar@255
    31
alpar@921
    32
namespace lemon {
jacint@385
    33
alpar@1119
    34
alpar@1151
    35
  
alpar@954
    36
  ///Default traits class of Dijkstra class.
alpar@954
    37
alpar@954
    38
  ///Default traits class of Dijkstra class.
alpar@954
    39
  ///\param GR Graph type.
alpar@954
    40
  ///\param LM Type of length map.
alpar@953
    41
  template<class GR, class LM>
alpar@953
    42
  struct DijkstraDefaultTraits
alpar@953
    43
  {
alpar@954
    44
    ///The graph type the algorithm runs on. 
alpar@953
    45
    typedef GR Graph;
alpar@953
    46
    ///The type of the map that stores the edge lengths.
alpar@953
    47
hegyi@1124
    48
    ///The type of the map that stores the edge lengths.
alpar@967
    49
    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
alpar@953
    50
    typedef LM LengthMap;
alpar@954
    51
    //The type of the length of the edges.
alpar@987
    52
    typedef typename LM::Value Value;
alpar@954
    53
    ///The heap type used by Dijkstra algorithm.
alpar@967
    54
alpar@967
    55
    ///The heap type used by Dijkstra algorithm.
alpar@967
    56
    ///
alpar@967
    57
    ///\sa BinHeap
alpar@967
    58
    ///\sa Dijkstra
alpar@953
    59
    typedef BinHeap<typename Graph::Node,
alpar@987
    60
		    typename LM::Value,
alpar@953
    61
		    typename GR::template NodeMap<int>,
alpar@987
    62
		    std::less<Value> > Heap;
alpar@953
    63
alpar@953
    64
    ///\brief The type of the map that stores the last
alpar@953
    65
    ///edges of the shortest paths.
alpar@953
    66
    /// 
hegyi@1124
    67
    ///The type of the map that stores the last
hegyi@1124
    68
    ///edges of the shortest paths.
alpar@967
    69
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
    70
    ///
alpar@954
    71
    typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
alpar@954
    72
    ///Instantiates a PredMap.
alpar@953
    73
 
hegyi@1123
    74
    ///This function instantiates a \ref PredMap. 
hegyi@1123
    75
    ///\param G is the graph, to which we would like to define the PredMap.
alpar@1119
    76
    ///\todo The graph alone may be insufficient for the initialization
alpar@954
    77
    static PredMap *createPredMap(const GR &G) 
alpar@953
    78
    {
alpar@953
    79
      return new PredMap(G);
alpar@953
    80
    }
alpar@1218
    81
//     ///\brief The type of the map that stores the last but one
alpar@1218
    82
//     ///nodes of the shortest paths.
alpar@1218
    83
//     ///
alpar@1218
    84
//     ///The type of the map that stores the last but one
alpar@1218
    85
//     ///nodes of the shortest paths.
alpar@1218
    86
//     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
    87
//     ///
alpar@1218
    88
//     typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
alpar@1218
    89
//     ///Instantiates a PredNodeMap.
alpar@1125
    90
    
alpar@1218
    91
//     ///This function instantiates a \ref PredNodeMap. 
alpar@1218
    92
//     ///\param G is the graph, to which
alpar@1218
    93
//     ///we would like to define the \ref PredNodeMap
alpar@1218
    94
//     static PredNodeMap *createPredNodeMap(const GR &G)
alpar@1218
    95
//     {
alpar@1218
    96
//       return new PredNodeMap();
alpar@1218
    97
//     }
alpar@1119
    98
alpar@1218
    99
    ///The type of the map that stores whether a nodes is processed.
alpar@1119
   100
 
alpar@1218
   101
    ///The type of the map that stores whether a nodes is processed.
alpar@1119
   102
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1119
   103
    ///By default it is a NullMap.
alpar@1218
   104
    ///\todo If it is set to a real map,
alpar@1218
   105
    ///Dijkstra::processed() should read this.
alpar@1119
   106
    ///\todo named parameter to set this type, function to read and write.
alpar@1218
   107
    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
alpar@1218
   108
    ///Instantiates a ProcessedMap.
alpar@1119
   109
 
alpar@1218
   110
    ///This function instantiates a \ref ProcessedMap. 
alpar@1156
   111
    ///\param G is the graph, to which
alpar@1218
   112
    ///we would like to define the \ref ProcessedMap
alpar@1366
   113
    static ProcessedMap *createProcessedMap(const GR &)
alpar@1119
   114
    {
alpar@1218
   115
      return new ProcessedMap();
alpar@1119
   116
    }
alpar@953
   117
    ///The type of the map that stores the dists of the nodes.
alpar@953
   118
 
hegyi@1124
   119
    ///The type of the map that stores the dists of the nodes.
alpar@967
   120
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
   121
    ///
alpar@987
   122
    typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
alpar@954
   123
    ///Instantiates a DistMap.
alpar@953
   124
 
hegyi@1123
   125
    ///This function instantiates a \ref DistMap. 
hegyi@1123
   126
    ///\param G is the graph, to which we would like to define the \ref DistMap
alpar@954
   127
    static DistMap *createDistMap(const GR &G)
alpar@953
   128
    {
alpar@953
   129
      return new DistMap(G);
alpar@953
   130
    }
alpar@953
   131
  };
alpar@953
   132
  
alpar@255
   133
  ///%Dijkstra algorithm class.
alpar@1125
   134
  
alpar@1151
   135
  /// \ingroup flowalgs
alpar@255
   136
  ///This class provides an efficient implementation of %Dijkstra algorithm.
alpar@255
   137
  ///The edge lengths are passed to the algorithm using a
klao@959
   138
  ///\ref concept::ReadMap "ReadMap",
alpar@255
   139
  ///so it is easy to change it to any kind of length.
alpar@255
   140
  ///
alpar@880
   141
  ///The type of the length is determined by the
alpar@987
   142
  ///\ref concept::ReadMap::Value "Value" of the length map.
alpar@255
   143
  ///
alpar@255
   144
  ///It is also possible to change the underlying priority heap.
alpar@255
   145
  ///
alpar@1218
   146
  ///\param GR The graph type the algorithm runs on. The default value
alpar@1218
   147
  ///is \ref ListGraph. The value of GR is not used directly by
alpar@1218
   148
  ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
alpar@1218
   149
  ///\param LM This read-only EdgeMap determines the lengths of the
alpar@1218
   150
  ///edges. It is read once for each edge, so the map may involve in
alpar@1218
   151
  ///relatively time consuming process to compute the edge length if
alpar@1218
   152
  ///it is necessary. The default map type is \ref
alpar@1218
   153
  ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
alpar@1218
   154
  ///of LM is not used directly by Dijkstra, it is only passed to \ref
alpar@1218
   155
  ///DijkstraDefaultTraits.  \param TR Traits class to set
alpar@1218
   156
  ///various data types used by the algorithm.  The default traits
alpar@1218
   157
  ///class is \ref DijkstraDefaultTraits
alpar@1218
   158
  ///"DijkstraDefaultTraits<GR,LM>".  See \ref
alpar@1218
   159
  ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
alpar@1218
   160
  ///class.
alpar@456
   161
  ///
alpar@689
   162
  ///\author Jacint Szabo and Alpar Juttner
alpar@1128
   163
  ///\todo A compare object would be nice.
alpar@584
   164
alpar@255
   165
#ifdef DOXYGEN
alpar@584
   166
  template <typename GR,
alpar@584
   167
	    typename LM,
alpar@953
   168
	    typename TR>
alpar@255
   169
#else
alpar@953
   170
  template <typename GR=ListGraph,
alpar@584
   171
	    typename LM=typename GR::template EdgeMap<int>,
alpar@953
   172
	    typename TR=DijkstraDefaultTraits<GR,LM> >
alpar@255
   173
#endif
alpar@1116
   174
  class Dijkstra {
alpar@255
   175
  public:
alpar@1125
   176
    /**
alpar@1125
   177
     * \brief \ref Exception for uninitialized parameters.
alpar@1125
   178
     *
alpar@1125
   179
     * This error represents problems in the initialization
alpar@1125
   180
     * of the parameters of the algorithms.
alpar@1125
   181
     */
alpar@1125
   182
    class UninitializedParameter : public lemon::UninitializedParameter {
alpar@1125
   183
    public:
alpar@1125
   184
      virtual const char* exceptionName() const {
alpar@1218
   185
	return "lemon::Dijkstra::UninitializedParameter";
alpar@1125
   186
      }
alpar@1125
   187
    };
alpar@1119
   188
alpar@953
   189
    typedef TR Traits;
alpar@584
   190
    ///The type of the underlying graph.
alpar@954
   191
    typedef typename TR::Graph Graph;
alpar@911
   192
    ///\e
alpar@255
   193
    typedef typename Graph::Node Node;
alpar@911
   194
    ///\e
alpar@255
   195
    typedef typename Graph::NodeIt NodeIt;
alpar@911
   196
    ///\e
alpar@255
   197
    typedef typename Graph::Edge Edge;
alpar@911
   198
    ///\e
alpar@255
   199
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@255
   200
    
alpar@584
   201
    ///The type of the length of the edges.
alpar@987
   202
    typedef typename TR::LengthMap::Value Value;
alpar@693
   203
    ///The type of the map that stores the edge lengths.
alpar@954
   204
    typedef typename TR::LengthMap LengthMap;
alpar@693
   205
    ///\brief The type of the map that stores the last
alpar@584
   206
    ///edges of the shortest paths.
alpar@953
   207
    typedef typename TR::PredMap PredMap;
alpar@1218
   208
//     ///\brief The type of the map that stores the last but one
alpar@1218
   209
//     ///nodes of the shortest paths.
alpar@1218
   210
//     typedef typename TR::PredNodeMap PredNodeMap;
alpar@1218
   211
    ///The type of the map indicating if a node is processed.
alpar@1218
   212
    typedef typename TR::ProcessedMap ProcessedMap;
alpar@693
   213
    ///The type of the map that stores the dists of the nodes.
alpar@953
   214
    typedef typename TR::DistMap DistMap;
alpar@953
   215
    ///The heap type used by the dijkstra algorithm.
alpar@953
   216
    typedef typename TR::Heap Heap;
alpar@255
   217
  private:
alpar@802
   218
    /// Pointer to the underlying graph.
alpar@688
   219
    const Graph *G;
alpar@802
   220
    /// Pointer to the length map
alpar@954
   221
    const LengthMap *length;
alpar@802
   222
    ///Pointer to the map of predecessors edges.
alpar@1119
   223
    PredMap *_pred;
alpar@1119
   224
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
alpar@1119
   225
    bool local_pred;
alpar@1218
   226
//     ///Pointer to the map of predecessors nodes.
alpar@1218
   227
//     PredNodeMap *_predNode;
alpar@1218
   228
//     ///Indicates if \ref _predNode is locally allocated (\c true) or not.
alpar@1218
   229
//     bool local_predNode;
alpar@802
   230
    ///Pointer to the map of distances.
alpar@1130
   231
    DistMap *_dist;
alpar@1130
   232
    ///Indicates if \ref _dist is locally allocated (\c true) or not.
alpar@1130
   233
    bool local_dist;
alpar@1218
   234
    ///Pointer to the map of processed status of the nodes.
alpar@1218
   235
    ProcessedMap *_processed;
alpar@1218
   236
    ///Indicates if \ref _processed is locally allocated (\c true) or not.
alpar@1218
   237
    bool local_processed;
alpar@688
   238
alpar@1218
   239
//     ///The source node of the last execution.
alpar@1218
   240
//     Node source;
alpar@774
   241
alpar@1128
   242
    ///Creates the maps if necessary.
alpar@688
   243
    
alpar@694
   244
    ///\todo Error if \c G or are \c NULL. What about \c length?
alpar@688
   245
    ///\todo Better memory allocation (instead of new).
alpar@1128
   246
    void create_maps() 
alpar@688
   247
    {
alpar@1119
   248
      if(!_pred) {
alpar@1119
   249
	local_pred = true;
alpar@1119
   250
	_pred = Traits::createPredMap(*G);
alpar@688
   251
      }
alpar@1218
   252
//       if(!_predNode) {
alpar@1218
   253
// 	local_predNode = true;
alpar@1218
   254
// 	_predNode = Traits::createPredNodeMap(*G);
alpar@1218
   255
//       }
alpar@1130
   256
      if(!_dist) {
alpar@1130
   257
	local_dist = true;
alpar@1130
   258
	_dist = Traits::createDistMap(*G);
alpar@688
   259
      }
alpar@1218
   260
      if(!_processed) {
alpar@1218
   261
	local_processed = true;
alpar@1218
   262
	_processed = Traits::createProcessedMap(*G);
alpar@1119
   263
      }
alpar@688
   264
    }
alpar@255
   265
    
alpar@255
   266
  public :
alpar@1116
   267
 
alpar@1128
   268
    ///\name Named template parameters
alpar@1128
   269
alpar@1128
   270
    ///@{
alpar@1128
   271
alpar@953
   272
    template <class T>
alpar@1116
   273
    struct DefPredMapTraits : public Traits {
alpar@953
   274
      typedef T PredMap;
alpar@953
   275
      static PredMap *createPredMap(const Graph &G) 
alpar@953
   276
      {
alpar@1126
   277
	throw UninitializedParameter();
alpar@953
   278
      }
alpar@953
   279
    };
alpar@954
   280
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@954
   281
alpar@954
   282
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@1043
   283
    ///
alpar@953
   284
    template <class T>
alpar@1116
   285
    class DefPredMap : public Dijkstra< Graph,
alpar@953
   286
					LengthMap,
alpar@1116
   287
					DefPredMapTraits<T> > { };
alpar@953
   288
    
alpar@1218
   289
//     template <class T>
alpar@1218
   290
//     struct DefPredNodeMapTraits : public Traits {
alpar@1218
   291
//       typedef T PredNodeMap;
alpar@1218
   292
//       static PredNodeMap *createPredNodeMap(const Graph &G) 
alpar@1218
   293
//       {
alpar@1218
   294
// 	throw UninitializedParameter();
alpar@1218
   295
//       }
alpar@1218
   296
//     };
alpar@1218
   297
//     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
alpar@954
   298
alpar@1218
   299
//     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
alpar@1218
   300
//     ///
alpar@1218
   301
//     template <class T>
alpar@1218
   302
//     class DefPredNodeMap : public Dijkstra< Graph,
alpar@1218
   303
// 					    LengthMap,
alpar@1218
   304
// 					    DefPredNodeMapTraits<T> > { };
alpar@953
   305
    
alpar@953
   306
    template <class T>
alpar@1116
   307
    struct DefDistMapTraits : public Traits {
alpar@953
   308
      typedef T DistMap;
alpar@953
   309
      static DistMap *createDistMap(const Graph &G) 
alpar@953
   310
      {
alpar@1126
   311
	throw UninitializedParameter();
alpar@953
   312
      }
alpar@953
   313
    };
alpar@954
   314
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@954
   315
alpar@954
   316
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@1043
   317
    ///
alpar@953
   318
    template <class T>
alpar@1116
   319
    class DefDistMap : public Dijkstra< Graph,
alpar@953
   320
					LengthMap,
alpar@1116
   321
					DefDistMapTraits<T> > { };
alpar@953
   322
    
alpar@1128
   323
    template <class T>
alpar@1218
   324
    struct DefProcessedMapTraits : public Traits {
alpar@1218
   325
      typedef T ProcessedMap;
alpar@1218
   326
      static ProcessedMap *createProcessedMap(const Graph &G) 
alpar@1128
   327
      {
alpar@1128
   328
	throw UninitializedParameter();
alpar@1128
   329
      }
alpar@1128
   330
    };
alpar@1218
   331
    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
alpar@1128
   332
alpar@1218
   333
    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
alpar@1128
   334
    ///
alpar@1128
   335
    template <class T>
alpar@1218
   336
    class DefProcessedMap : public Dijkstra< Graph,
alpar@1128
   337
					LengthMap,
alpar@1218
   338
					DefProcessedMapTraits<T> > { };
alpar@1128
   339
    
alpar@1218
   340
    struct DefGraphProcessedMapTraits : public Traits {
alpar@1218
   341
      typedef typename Graph::template NodeMap<bool> ProcessedMap;
alpar@1218
   342
      static ProcessedMap *createProcessedMap(const Graph &G) 
alpar@1128
   343
      {
alpar@1218
   344
	return new ProcessedMap(G);
alpar@1128
   345
      }
alpar@1128
   346
    };
alpar@1128
   347
    ///\brief \ref named-templ-param "Named parameter"
alpar@1218
   348
    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
alpar@1128
   349
    ///
alpar@1128
   350
    ///\ref named-templ-param "Named parameter"
alpar@1218
   351
    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
alpar@1128
   352
    ///If you don't set it explicitely, it will be automatically allocated.
alpar@1128
   353
    template <class T>
alpar@1218
   354
    class DefProcessedMapToBeDefaultMap :
alpar@1128
   355
      public Dijkstra< Graph,
alpar@1128
   356
		       LengthMap,
alpar@1218
   357
		       DefGraphProcessedMapTraits> { };
alpar@1128
   358
    
alpar@1128
   359
    ///@}
alpar@1128
   360
alpar@1128
   361
alpar@1128
   362
  private:
alpar@1128
   363
    typename Graph::template NodeMap<int> _heap_map;
alpar@1128
   364
    Heap _heap;
alpar@1128
   365
  public:      
alpar@1128
   366
    
alpar@802
   367
    ///Constructor.
alpar@255
   368
    
alpar@802
   369
    ///\param _G the graph the algorithm will run on.
alpar@802
   370
    ///\param _length the length map used by the algorithm.
alpar@954
   371
    Dijkstra(const Graph& _G, const LengthMap& _length) :
alpar@688
   372
      G(&_G), length(&_length),
alpar@1119
   373
      _pred(NULL), local_pred(false),
alpar@1218
   374
//       _predNode(NULL), local_predNode(false),
alpar@1130
   375
      _dist(NULL), local_dist(false),
alpar@1218
   376
      _processed(NULL), local_processed(false),
alpar@1128
   377
      _heap_map(*G,-1),_heap(_heap_map)
alpar@688
   378
    { }
alpar@688
   379
    
alpar@802
   380
    ///Destructor.
alpar@688
   381
    ~Dijkstra() 
alpar@688
   382
    {
alpar@1119
   383
      if(local_pred) delete _pred;
alpar@1218
   384
//       if(local_predNode) delete _predNode;
alpar@1130
   385
      if(local_dist) delete _dist;
alpar@1218
   386
      if(local_processed) delete _processed;
alpar@688
   387
    }
alpar@688
   388
alpar@688
   389
    ///Sets the length map.
alpar@688
   390
alpar@688
   391
    ///Sets the length map.
alpar@688
   392
    ///\return <tt> (*this) </tt>
alpar@1116
   393
    Dijkstra &lengthMap(const LengthMap &m) 
alpar@688
   394
    {
alpar@688
   395
      length = &m;
alpar@688
   396
      return *this;
alpar@688
   397
    }
alpar@688
   398
alpar@688
   399
    ///Sets the map storing the predecessor edges.
alpar@688
   400
alpar@688
   401
    ///Sets the map storing the predecessor edges.
alpar@688
   402
    ///If you don't use this function before calling \ref run(),
alpar@688
   403
    ///it will allocate one. The destuctor deallocates this
alpar@688
   404
    ///automatically allocated map, of course.
alpar@688
   405
    ///\return <tt> (*this) </tt>
alpar@1116
   406
    Dijkstra &predMap(PredMap &m) 
alpar@688
   407
    {
alpar@1119
   408
      if(local_pred) {
alpar@1119
   409
	delete _pred;
alpar@1119
   410
	local_pred=false;
alpar@688
   411
      }
alpar@1119
   412
      _pred = &m;
alpar@688
   413
      return *this;
alpar@688
   414
    }
alpar@688
   415
alpar@1218
   416
//     ///Sets the map storing the predecessor nodes.
alpar@688
   417
alpar@1218
   418
//     ///Sets the map storing the predecessor nodes.
alpar@1218
   419
//     ///If you don't use this function before calling \ref run(),
alpar@1218
   420
//     ///it will allocate one. The destuctor deallocates this
alpar@1218
   421
//     ///automatically allocated map, of course.
alpar@1218
   422
//     ///\return <tt> (*this) </tt>
alpar@1218
   423
//     Dijkstra &predNodeMap(PredNodeMap &m) 
alpar@1218
   424
//     {
alpar@1218
   425
//       if(local_predNode) {
alpar@1218
   426
// 	delete _predNode;
alpar@1218
   427
// 	local_predNode=false;
alpar@1218
   428
//       }
alpar@1218
   429
//       _predNode = &m;
alpar@1218
   430
//       return *this;
alpar@1218
   431
//     }
alpar@688
   432
alpar@688
   433
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   434
alpar@688
   435
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   436
    ///If you don't use this function before calling \ref run(),
alpar@688
   437
    ///it will allocate one. The destuctor deallocates this
alpar@688
   438
    ///automatically allocated map, of course.
alpar@688
   439
    ///\return <tt> (*this) </tt>
alpar@1116
   440
    Dijkstra &distMap(DistMap &m) 
alpar@688
   441
    {
alpar@1130
   442
      if(local_dist) {
alpar@1130
   443
	delete _dist;
alpar@1130
   444
	local_dist=false;
alpar@688
   445
      }
alpar@1130
   446
      _dist = &m;
alpar@688
   447
      return *this;
alpar@688
   448
    }
alpar@694
   449
alpar@1130
   450
  private:
alpar@1130
   451
    void finalizeNodeData(Node v,Value dst)
alpar@1130
   452
    {
alpar@1218
   453
      _processed->set(v,true);
alpar@1130
   454
      _dist->set(v, dst);
alpar@1218
   455
//       if((*_pred)[v]!=INVALID)
alpar@1218
   456
//       _predNode->set(v,G->source((*_pred)[v])); ///\todo What to do?
alpar@1130
   457
    }
alpar@1130
   458
alpar@1130
   459
  public:
alpar@1218
   460
    ///\name Execution control
alpar@1128
   461
    ///The simplest way to execute the algorithm is to use
alpar@1156
   462
    ///one of the member functions called \c run(...).
alpar@1128
   463
    ///\n
alpar@1218
   464
    ///If you need more control on the execution,
alpar@1128
   465
    ///first you must call \ref init(), then you can add several source nodes
alpar@1218
   466
    ///with \ref addSource().
alpar@1218
   467
    ///Finally \ref start() will perform the actual path
alpar@1128
   468
    ///computation.
alpar@1128
   469
alpar@1128
   470
    ///@{
alpar@1128
   471
alpar@1128
   472
    ///Initializes the internal data structures.
alpar@1128
   473
alpar@1128
   474
    ///Initializes the internal data structures.
alpar@1128
   475
    ///
alpar@1128
   476
    ///\todo _heap_map's type could also be in the traits class.
alpar@1229
   477
    ///\todo The heaps should be able to make themselves empty directly.
alpar@1128
   478
    void init()
alpar@1128
   479
    {
alpar@1128
   480
      create_maps();
alpar@1229
   481
      while(!_heap.empty()) _heap.pop();
alpar@774
   482
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
alpar@1119
   483
	_pred->set(u,INVALID);
alpar@1218
   484
// 	_predNode->set(u,INVALID);
alpar@1218
   485
	_processed->set(u,false);
alpar@1128
   486
	_heap_map.set(u,Heap::PRE_HEAP);
alpar@694
   487
      }
alpar@1128
   488
    }
alpar@1128
   489
    
alpar@1128
   490
    ///Adds a new source node.
alpar@1128
   491
alpar@1155
   492
    ///Adds a new source node to the priority heap.
alpar@1128
   493
    ///
alpar@1128
   494
    ///The optional second parameter is the initial distance of the node.
alpar@1128
   495
    ///
alpar@1155
   496
    ///It checks if the node has already been added to the heap and
alpar@1155
   497
    ///It is pushed to the heap only if either it was not in the heap
alpar@1155
   498
    ///or the shortest path found till then is longer then \c dst.
alpar@1128
   499
    void addSource(Node s,Value dst=0)
alpar@1128
   500
    {
alpar@1218
   501
//       source = s;
alpar@1128
   502
      if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst);
alpar@1155
   503
      else if(_heap[s]<dst) {
alpar@1155
   504
	_heap.push(s,dst);
alpar@1155
   505
	_pred->set(s,INVALID);
alpar@1155
   506
      }
alpar@1128
   507
    }
alpar@1128
   508
    
alpar@1155
   509
    ///Processes the next node in the priority heap
alpar@1155
   510
alpar@1155
   511
    ///Processes the next node in the priority heap.
alpar@1155
   512
    ///
alpar@1516
   513
    ///\return The processed node.
alpar@1516
   514
    ///
alpar@1155
   515
    ///\warning The priority heap must not be empty!
alpar@1516
   516
    Node processNextNode()
alpar@1128
   517
    {
alpar@1128
   518
      Node v=_heap.top(); 
alpar@1128
   519
      Value oldvalue=_heap[v];
alpar@1128
   520
      _heap.pop();
alpar@1130
   521
      finalizeNodeData(v,oldvalue);
alpar@694
   522
      
alpar@1128
   523
      for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
alpar@1128
   524
	Node w=G->target(e); 
alpar@1128
   525
	switch(_heap.state(w)) {
alpar@1128
   526
	case Heap::PRE_HEAP:
alpar@1128
   527
	  _heap.push(w,oldvalue+(*length)[e]); 
alpar@1128
   528
	  _pred->set(w,e);
alpar@1130
   529
//  	  _predNode->set(w,v);
alpar@1128
   530
	  break;
alpar@1128
   531
	case Heap::IN_HEAP:
alpar@1128
   532
	  if ( oldvalue+(*length)[e] < _heap[w] ) {
alpar@1128
   533
	    _heap.decrease(w, oldvalue+(*length)[e]); 
alpar@1119
   534
	    _pred->set(w,e);
alpar@1130
   535
// 	    _predNode->set(w,v);
alpar@694
   536
	  }
alpar@1128
   537
	  break;
alpar@1128
   538
	case Heap::POST_HEAP:
alpar@1128
   539
	  break;
alpar@694
   540
	}
alpar@694
   541
      }
alpar@1516
   542
      return v;
alpar@694
   543
    }
alpar@1128
   544
alpar@1218
   545
    ///\brief Returns \c false if there are nodes
alpar@1218
   546
    ///to be processed in the priority heap
alpar@1155
   547
    ///
alpar@1218
   548
    ///Returns \c false if there are nodes
alpar@1218
   549
    ///to be processed in the priority heap
alpar@1218
   550
    bool emptyQueue() { return _heap.empty(); }
alpar@1155
   551
    ///Returns the number of the nodes to be processed in the priority heap
alpar@1155
   552
alpar@1155
   553
    ///Returns the number of the nodes to be processed in the priority heap
alpar@1155
   554
    ///
alpar@1218
   555
    int queueSize() { return _heap.size(); }
alpar@1155
   556
    
alpar@1130
   557
    ///Executes the algorithm.
alpar@1128
   558
alpar@1130
   559
    ///Executes the algorithm.
alpar@1128
   560
    ///
alpar@1130
   561
    ///\pre init() must be called and at least one node should be added
alpar@1130
   562
    ///with addSource() before using this function.
alpar@1128
   563
    ///
alpar@1128
   564
    ///This method runs the %Dijkstra algorithm from the root node(s)
alpar@1128
   565
    ///in order to
alpar@1128
   566
    ///compute the
alpar@1128
   567
    ///shortest path to each node. The algorithm computes
alpar@1128
   568
    ///- The shortest path tree.
alpar@1128
   569
    ///- The distance of each node from the root(s).
alpar@1128
   570
    ///
alpar@1128
   571
    void start()
alpar@1128
   572
    {
alpar@1151
   573
      while ( !_heap.empty() ) processNextNode();
alpar@1128
   574
    }
alpar@255
   575
    
alpar@1130
   576
    ///Executes the algorithm until \c dest is reached.
alpar@1128
   577
alpar@1130
   578
    ///Executes the algorithm until \c dest is reached.
alpar@1128
   579
    ///
alpar@1130
   580
    ///\pre init() must be called and at least one node should be added
alpar@1130
   581
    ///with addSource() before using this function.
alpar@1128
   582
    ///
alpar@1128
   583
    ///This method runs the %Dijkstra algorithm from the root node(s)
alpar@1128
   584
    ///in order to
alpar@1128
   585
    ///compute the
alpar@1128
   586
    ///shortest path to \c dest. The algorithm computes
alpar@1128
   587
    ///- The shortest path to \c  dest.
alpar@1128
   588
    ///- The distance of \c dest from the root(s).
alpar@1128
   589
    ///
alpar@1128
   590
    void start(Node dest)
alpar@1128
   591
    {
alpar@1151
   592
      while ( !_heap.empty() && _heap.top()!=dest ) processNextNode();
alpar@1229
   593
      if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
alpar@1130
   594
    }
alpar@1130
   595
    
alpar@1130
   596
    ///Executes the algorithm until a condition is met.
alpar@1130
   597
alpar@1130
   598
    ///Executes the algorithm until a condition is met.
alpar@1130
   599
    ///
alpar@1130
   600
    ///\pre init() must be called and at least one node should be added
alpar@1130
   601
    ///with addSource() before using this function.
alpar@1130
   602
    ///
alpar@1130
   603
    ///\param nm must be a bool (or convertible) node map. The algorithm
alpar@1130
   604
    ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
deba@1345
   605
    template<class NodeBoolMap>
deba@1345
   606
    void start(const NodeBoolMap &nm)
alpar@1130
   607
    {
deba@1193
   608
      while ( !_heap.empty() && !nm[_heap.top()] ) processNextNode();
alpar@1229
   609
      if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
alpar@1128
   610
    }
alpar@1128
   611
    
alpar@1128
   612
    ///Runs %Dijkstra algorithm from node \c s.
alpar@1128
   613
    
alpar@1128
   614
    ///This method runs the %Dijkstra algorithm from a root node \c s
alpar@1128
   615
    ///in order to
alpar@1128
   616
    ///compute the
alpar@1128
   617
    ///shortest path to each node. The algorithm computes
alpar@1128
   618
    ///- The shortest path tree.
alpar@1128
   619
    ///- The distance of each node from the root.
alpar@1128
   620
    ///
alpar@1128
   621
    ///\note d.run(s) is just a shortcut of the following code.
alpar@1128
   622
    ///\code
alpar@1128
   623
    ///  d.init();
alpar@1128
   624
    ///  d.addSource(s);
alpar@1128
   625
    ///  d.start();
alpar@1128
   626
    ///\endcode
alpar@1128
   627
    void run(Node s) {
alpar@1128
   628
      init();
alpar@1128
   629
      addSource(s);
alpar@1128
   630
      start();
alpar@1128
   631
    }
alpar@1128
   632
    
alpar@1130
   633
    ///Finds the shortest path between \c s and \c t.
alpar@1130
   634
    
alpar@1130
   635
    ///Finds the shortest path between \c s and \c t.
alpar@1130
   636
    ///
alpar@1130
   637
    ///\return The length of the shortest s---t path if there exists one,
alpar@1130
   638
    ///0 otherwise.
alpar@1130
   639
    ///\note Apart from the return value, d.run(s) is
alpar@1130
   640
    ///just a shortcut of the following code.
alpar@1130
   641
    ///\code
alpar@1130
   642
    ///  d.init();
alpar@1130
   643
    ///  d.addSource(s);
alpar@1130
   644
    ///  d.start(t);
alpar@1130
   645
    ///\endcode
alpar@1130
   646
    Value run(Node s,Node t) {
alpar@1130
   647
      init();
alpar@1130
   648
      addSource(s);
alpar@1130
   649
      start(t);
alpar@1130
   650
      return (*_pred)[t]==INVALID?0:(*_dist)[t];
alpar@1130
   651
    }
alpar@1130
   652
    
alpar@1128
   653
    ///@}
alpar@1128
   654
alpar@1128
   655
    ///\name Query Functions
alpar@1128
   656
    ///The result of the %Dijkstra algorithm can be obtained using these
alpar@1128
   657
    ///functions.\n
alpar@1128
   658
    ///Before the use of these functions,
alpar@1128
   659
    ///either run() or start() must be called.
alpar@1128
   660
    
alpar@1128
   661
    ///@{
alpar@1128
   662
alpar@1283
   663
    ///Copies the shortest path to \c t into \c p
alpar@1283
   664
    
alpar@1283
   665
    ///This function copies the shortest path to \c t into \c p.
alpar@1283
   666
    ///If it \c \t is a source itself or unreachable, then it does not
alpar@1283
   667
    ///alter \c p.
alpar@1283
   668
    ///\todo Is it the right way to handle unreachable nodes?
alpar@1283
   669
    ///\return Returns \c true if a path to \c t was actually copied to \c p,
alpar@1283
   670
    ///\c false otherwise.
alpar@1283
   671
    ///\sa DirPath
alpar@1283
   672
    template<class P>
alpar@1283
   673
    bool getPath(P &p,Node t) 
alpar@1283
   674
    {
alpar@1283
   675
      if(reached(t)) {
alpar@1283
   676
	p.clear();
alpar@1283
   677
	typename P::Builder b(p);
alpar@1283
   678
	for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
alpar@1283
   679
	  b.pushFront(pred(t));
alpar@1283
   680
	b.commit();
alpar@1283
   681
	return true;
alpar@1283
   682
      }
alpar@1283
   683
      return false;
alpar@1283
   684
    }
alpar@1283
   685
	  
jacint@385
   686
    ///The distance of a node from the root.
alpar@255
   687
jacint@385
   688
    ///Returns the distance of a node from the root.
alpar@255
   689
    ///\pre \ref run() must be called before using this function.
jacint@385
   690
    ///\warning If node \c v in unreachable from the root the return value
alpar@255
   691
    ///of this funcion is undefined.
alpar@1130
   692
    Value dist(Node v) const { return (*_dist)[v]; }
jacint@373
   693
alpar@584
   694
    ///Returns the 'previous edge' of the shortest path tree.
alpar@255
   695
alpar@584
   696
    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
alpar@785
   697
    ///i.e. it returns the last edge of a shortest path from the root to \c
alpar@688
   698
    ///v. It is \ref INVALID
alpar@688
   699
    ///if \c v is unreachable from the root or if \c v=s. The
jacint@385
   700
    ///shortest path tree used here is equal to the shortest path tree used in
jacint@385
   701
    ///\ref predNode(Node v).  \pre \ref run() must be called before using
jacint@385
   702
    ///this function.
alpar@780
   703
    ///\todo predEdge could be a better name.
alpar@1119
   704
    Edge pred(Node v) const { return (*_pred)[v]; }
jacint@373
   705
alpar@584
   706
    ///Returns the 'previous node' of the shortest path tree.
alpar@255
   707
alpar@584
   708
    ///For a node \c v it returns the 'previous node' of the shortest path tree,
jacint@385
   709
    ///i.e. it returns the last but one node from a shortest path from the
jacint@385
   710
    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
jacint@385
   711
    ///\c v=s. The shortest path tree used here is equal to the shortest path
jacint@385
   712
    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
jacint@385
   713
    ///using this function.
alpar@1130
   714
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
alpar@1130
   715
				  G->source((*_pred)[v]); }
alpar@255
   716
    
alpar@255
   717
    ///Returns a reference to the NodeMap of distances.
alpar@255
   718
jacint@385
   719
    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
jacint@385
   720
    ///be called before using this function.
alpar@1130
   721
    const DistMap &distMap() const { return *_dist;}
jacint@385
   722
 
alpar@255
   723
    ///Returns a reference to the shortest path tree map.
alpar@255
   724
alpar@255
   725
    ///Returns a reference to the NodeMap of the edges of the
alpar@255
   726
    ///shortest path tree.
alpar@255
   727
    ///\pre \ref run() must be called before using this function.
alpar@1119
   728
    const PredMap &predMap() const { return *_pred;}
jacint@385
   729
 
alpar@1218
   730
//     ///Returns a reference to the map of nodes of shortest paths.
alpar@255
   731
alpar@1218
   732
//     ///Returns a reference to the NodeMap of the last but one nodes of the
alpar@1218
   733
//     ///shortest path tree.
alpar@1218
   734
//     ///\pre \ref run() must be called before using this function.
alpar@1218
   735
//     const PredNodeMap &predNodeMap() const { return *_predNode;}
alpar@255
   736
jacint@385
   737
    ///Checks if a node is reachable from the root.
alpar@255
   738
jacint@385
   739
    ///Returns \c true if \c v is reachable from the root.
alpar@1218
   740
    ///\warning The source nodes are inditated as unreached.
alpar@255
   741
    ///\pre \ref run() must be called before using this function.
jacint@385
   742
    ///
alpar@1218
   743
    bool reached(Node v) { return _heap_map[v]!=Heap::PRE_HEAP; }
alpar@255
   744
    
alpar@1128
   745
    ///@}
alpar@255
   746
  };
alpar@953
   747
alpar@1218
   748
alpar@1218
   749
alpar@1218
   750
alpar@1218
   751
 
alpar@1218
   752
  ///Default traits class of Dijkstra function.
alpar@1218
   753
alpar@1218
   754
  ///Default traits class of Dijkstra function.
alpar@1218
   755
  ///\param GR Graph type.
alpar@1218
   756
  ///\param LM Type of length map.
alpar@1218
   757
  template<class GR, class LM>
alpar@1218
   758
  struct DijkstraWizardDefaultTraits
alpar@1218
   759
  {
alpar@1218
   760
    ///The graph type the algorithm runs on. 
alpar@1218
   761
    typedef GR Graph;
alpar@1218
   762
    ///The type of the map that stores the edge lengths.
alpar@1218
   763
alpar@1218
   764
    ///The type of the map that stores the edge lengths.
alpar@1218
   765
    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
alpar@1218
   766
    typedef LM LengthMap;
alpar@1218
   767
    //The type of the length of the edges.
alpar@1218
   768
    typedef typename LM::Value Value;
alpar@1218
   769
    ///The heap type used by Dijkstra algorithm.
alpar@1218
   770
alpar@1218
   771
    ///The heap type used by Dijkstra algorithm.
alpar@1218
   772
    ///
alpar@1218
   773
    ///\sa BinHeap
alpar@1218
   774
    ///\sa Dijkstra
alpar@1218
   775
    typedef BinHeap<typename Graph::Node,
alpar@1218
   776
		    typename LM::Value,
alpar@1218
   777
		    typename GR::template NodeMap<int>,
alpar@1218
   778
		    std::less<Value> > Heap;
alpar@1218
   779
alpar@1218
   780
    ///\brief The type of the map that stores the last
alpar@1218
   781
    ///edges of the shortest paths.
alpar@1218
   782
    /// 
alpar@1218
   783
    ///The type of the map that stores the last
alpar@1218
   784
    ///edges of the shortest paths.
alpar@1218
   785
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
   786
    ///
alpar@1218
   787
    typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
alpar@1218
   788
    ///Instantiates a PredMap.
alpar@1218
   789
 
alpar@1218
   790
    ///This function instantiates a \ref PredMap. 
alpar@1218
   791
    ///\param G is the graph, to which we would like to define the PredMap.
alpar@1218
   792
    ///\todo The graph alone may be insufficient for the initialization
alpar@1367
   793
    static PredMap *createPredMap(const GR &) 
alpar@1218
   794
    {
alpar@1218
   795
      return new PredMap();
alpar@1218
   796
    }
alpar@1218
   797
    ///The type of the map that stores whether a nodes is processed.
alpar@1218
   798
 
alpar@1218
   799
    ///The type of the map that stores whether a nodes is processed.
alpar@1218
   800
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
   801
    ///By default it is a NullMap.
alpar@1218
   802
    ///\todo If it is set to a real map,
alpar@1218
   803
    ///Dijkstra::processed() should read this.
alpar@1218
   804
    ///\todo named parameter to set this type, function to read and write.
alpar@1218
   805
    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
alpar@1218
   806
    ///Instantiates a ProcessedMap.
alpar@1218
   807
 
alpar@1218
   808
    ///This function instantiates a \ref ProcessedMap. 
alpar@1218
   809
    ///\param G is the graph, to which
alpar@1218
   810
    ///we would like to define the \ref ProcessedMap
alpar@1367
   811
    static ProcessedMap *createProcessedMap(const GR &)
alpar@1218
   812
    {
alpar@1218
   813
      return new ProcessedMap();
alpar@1218
   814
    }
alpar@1218
   815
    ///The type of the map that stores the dists of the nodes.
alpar@1218
   816
 
alpar@1218
   817
    ///The type of the map that stores the dists of the nodes.
alpar@1218
   818
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
   819
    ///
alpar@1218
   820
    typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
alpar@1218
   821
    ///Instantiates a DistMap.
alpar@1218
   822
 
alpar@1218
   823
    ///This function instantiates a \ref DistMap. 
alpar@1218
   824
    ///\param G is the graph, to which we would like to define the \ref DistMap
alpar@1367
   825
    static DistMap *createDistMap(const GR &)
alpar@1218
   826
    {
alpar@1218
   827
      return new DistMap();
alpar@1218
   828
    }
alpar@1218
   829
  };
alpar@1218
   830
  
hegyi@1123
   831
  /// Default traits used by \ref DijkstraWizard
hegyi@1123
   832
alpar@1151
   833
  /// To make it easier to use Dijkstra algorithm
alpar@1151
   834
  ///we have created a wizard class.
alpar@1151
   835
  /// This \ref DijkstraWizard class needs default traits,
alpar@1151
   836
  ///as well as the \ref Dijkstra class.
hegyi@1123
   837
  /// The \ref DijkstraWizardBase is a class to be the default traits of the
hegyi@1123
   838
  /// \ref DijkstraWizard class.
alpar@1220
   839
  /// \todo More named parameters are required...
alpar@1116
   840
  template<class GR,class LM>
alpar@1218
   841
  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
alpar@1116
   842
  {
alpar@1116
   843
alpar@1218
   844
    typedef DijkstraWizardDefaultTraits<GR,LM> Base;
alpar@1116
   845
  protected:
alpar@1201
   846
    /// Type of the nodes in the graph.
alpar@1201
   847
    typedef typename Base::Graph::Node Node;
alpar@1201
   848
alpar@1116
   849
    /// Pointer to the underlying graph.
alpar@1116
   850
    void *_g;
alpar@1116
   851
    /// Pointer to the length map
alpar@1116
   852
    void *_length;
alpar@1116
   853
    ///Pointer to the map of predecessors edges.
alpar@1116
   854
    void *_pred;
alpar@1218
   855
//     ///Pointer to the map of predecessors nodes.
alpar@1218
   856
//     void *_predNode;
alpar@1116
   857
    ///Pointer to the map of distances.
alpar@1116
   858
    void *_dist;
alpar@1116
   859
    ///Pointer to the source node.
alpar@1201
   860
    Node _source;
alpar@1116
   861
alpar@1116
   862
    public:
hegyi@1123
   863
    /// Constructor.
hegyi@1123
   864
    
hegyi@1123
   865
    /// This constructor does not require parameters, therefore it initiates
hegyi@1123
   866
    /// all of the attributes to default values (0, INVALID).
alpar@1218
   867
    DijkstraWizardBase() : _g(0), _length(0), _pred(0),
alpar@1218
   868
// 			   _predNode(0),
alpar@1218
   869
			   _dist(0), _source(INVALID) {}
alpar@1116
   870
hegyi@1123
   871
    /// Constructor.
hegyi@1123
   872
    
alpar@1156
   873
    /// This constructor requires some parameters,
alpar@1156
   874
    /// listed in the parameters list.
hegyi@1123
   875
    /// Others are initiated to 0.
hegyi@1123
   876
    /// \param g is the initial value of  \ref _g
hegyi@1123
   877
    /// \param l is the initial value of  \ref _length
hegyi@1123
   878
    /// \param s is the initial value of  \ref _source
alpar@1116
   879
    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
alpar@1218
   880
      _g((void *)&g), _length((void *)&l), _pred(0),
alpar@1218
   881
//       _predNode(0),
alpar@1218
   882
      _dist(0), _source(s) {}
alpar@1116
   883
alpar@1116
   884
  };
alpar@1116
   885
  
alpar@1229
   886
  /// A class to make the usage of Dijkstra algorithm easier
alpar@953
   887
hegyi@1123
   888
  /// This class is created to make it easier to use Dijkstra algorithm.
hegyi@1123
   889
  /// It uses the functions and features of the plain \ref Dijkstra,
alpar@1151
   890
  /// but it is much simpler to use it.
alpar@953
   891
  ///
hegyi@1123
   892
  /// Simplicity means that the way to change the types defined
hegyi@1123
   893
  /// in the traits class is based on functions that returns the new class
alpar@1151
   894
  /// and not on templatable built-in classes.
alpar@1151
   895
  /// When using the plain \ref Dijkstra
alpar@1151
   896
  /// the new class with the modified type comes from
alpar@1151
   897
  /// the original class by using the ::
alpar@1151
   898
  /// operator. In the case of \ref DijkstraWizard only
alpar@1151
   899
  /// a function have to be called and it will
hegyi@1123
   900
  /// return the needed class.
hegyi@1123
   901
  ///
hegyi@1123
   902
  /// It does not have own \ref run method. When its \ref run method is called
hegyi@1123
   903
  /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
hegyi@1123
   904
  /// method of it.
alpar@953
   905
  template<class TR>
alpar@1116
   906
  class DijkstraWizard : public TR
alpar@953
   907
  {
alpar@1116
   908
    typedef TR Base;
alpar@953
   909
hegyi@1123
   910
    ///The type of the underlying graph.
alpar@953
   911
    typedef typename TR::Graph Graph;
alpar@1119
   912
    //\e
alpar@953
   913
    typedef typename Graph::Node Node;
alpar@1119
   914
    //\e
alpar@953
   915
    typedef typename Graph::NodeIt NodeIt;
alpar@1119
   916
    //\e
alpar@953
   917
    typedef typename Graph::Edge Edge;
alpar@1119
   918
    //\e
alpar@953
   919
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@953
   920
    
hegyi@1123
   921
    ///The type of the map that stores the edge lengths.
alpar@953
   922
    typedef typename TR::LengthMap LengthMap;
hegyi@1123
   923
    ///The type of the length of the edges.
alpar@987
   924
    typedef typename LengthMap::Value Value;
hegyi@1123
   925
    ///\brief The type of the map that stores the last
hegyi@1123
   926
    ///edges of the shortest paths.
alpar@953
   927
    typedef typename TR::PredMap PredMap;
alpar@1218
   928
//     ///\brief The type of the map that stores the last but one
alpar@1218
   929
//     ///nodes of the shortest paths.
alpar@1218
   930
//     typedef typename TR::PredNodeMap PredNodeMap;
hegyi@1123
   931
    ///The type of the map that stores the dists of the nodes.
alpar@953
   932
    typedef typename TR::DistMap DistMap;
alpar@953
   933
hegyi@1123
   934
    ///The heap type used by the dijkstra algorithm.
alpar@953
   935
    typedef typename TR::Heap Heap;
alpar@1116
   936
public:
hegyi@1123
   937
    /// Constructor.
alpar@1116
   938
    DijkstraWizard() : TR() {}
alpar@953
   939
hegyi@1123
   940
    /// Constructor that requires parameters.
hegyi@1124
   941
hegyi@1124
   942
    /// Constructor that requires parameters.
hegyi@1123
   943
    /// These parameters will be the default values for the traits class.
alpar@1116
   944
    DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
alpar@1116
   945
      TR(g,l,s) {}
alpar@953
   946
hegyi@1123
   947
    ///Copy constructor
alpar@1116
   948
    DijkstraWizard(const TR &b) : TR(b) {}
alpar@953
   949
alpar@1116
   950
    ~DijkstraWizard() {}
alpar@1116
   951
hegyi@1123
   952
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
   953
    
hegyi@1123
   954
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
   955
    ///The node can be given by the \ref source function.
alpar@1116
   956
    void run()
alpar@953
   957
    {
alpar@1201
   958
      if(Base::_source==INVALID) throw UninitializedParameter();
deba@1193
   959
      Dijkstra<Graph,LengthMap,TR> 
deba@1345
   960
	dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
deba@1345
   961
      if(Base::_pred) dij.predMap(*(PredMap*)Base::_pred);
alpar@1218
   962
//       if(Base::_predNode) Dij.predNodeMap(*(PredNodeMap*)Base::_predNode);
deba@1345
   963
      if(Base::_dist) dij.distMap(*(DistMap*)Base::_dist);
deba@1345
   964
      dij.run(Base::_source);
alpar@1116
   965
    }
alpar@1116
   966
hegyi@1124
   967
    ///Runs Dijkstra algorithm from the given node.
hegyi@1123
   968
hegyi@1124
   969
    ///Runs Dijkstra algorithm from the given node.
hegyi@1123
   970
    ///\param s is the given source.
alpar@1116
   971
    void run(Node s)
alpar@1116
   972
    {
alpar@1201
   973
      Base::_source=s;
alpar@1116
   974
      run();
alpar@953
   975
    }
alpar@953
   976
alpar@953
   977
    template<class T>
alpar@1116
   978
    struct DefPredMapBase : public Base {
alpar@1116
   979
      typedef T PredMap;
alpar@1367
   980
      static PredMap *createPredMap(const Graph &) { return 0; };
alpar@1236
   981
      DefPredMapBase(const TR &b) : TR(b) {}
alpar@1116
   982
    };
alpar@953
   983
    
alpar@1156
   984
    ///\brief \ref named-templ-param "Named parameter"
alpar@1156
   985
    ///function for setting PredMap type
alpar@1156
   986
    ///
alpar@1156
   987
    /// \ref named-templ-param "Named parameter"
alpar@1156
   988
    ///function for setting PredMap type
hegyi@1124
   989
    ///
alpar@953
   990
    template<class T>
alpar@1116
   991
    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
alpar@953
   992
    {
deba@1193
   993
      Base::_pred=(void *)&t;
alpar@1116
   994
      return DijkstraWizard<DefPredMapBase<T> >(*this);
alpar@953
   995
    }
alpar@953
   996
    
alpar@1116
   997
alpar@1218
   998
//     template<class T>
alpar@1218
   999
//     struct DefPredNodeMapBase : public Base {
alpar@1218
  1000
//       typedef T PredNodeMap;
alpar@1218
  1001
//       static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
alpar@1236
  1002
//       DefPredNodeMapBase(const TR &b) : TR(b) {}
alpar@1218
  1003
//     };
alpar@1116
  1004
    
alpar@1218
  1005
//     ///\brief \ref named-templ-param "Named parameter"
alpar@1218
  1006
//     ///function for setting PredNodeMap type
alpar@1218
  1007
//     ///
alpar@1218
  1008
//     /// \ref named-templ-param "Named parameter"
alpar@1218
  1009
//     ///function for setting PredNodeMap type
alpar@1218
  1010
//     ///
alpar@1218
  1011
//     template<class T>
alpar@1218
  1012
//     DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t) 
alpar@1218
  1013
//     {
alpar@1218
  1014
//       Base::_predNode=(void *)&t;
alpar@1218
  1015
//       return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
alpar@1218
  1016
//     }
alpar@1116
  1017
   
alpar@1116
  1018
    template<class T>
alpar@1116
  1019
    struct DefDistMapBase : public Base {
alpar@1116
  1020
      typedef T DistMap;
alpar@1367
  1021
      static DistMap *createDistMap(const Graph &) { return 0; };
alpar@1236
  1022
      DefDistMapBase(const TR &b) : TR(b) {}
alpar@1116
  1023
    };
alpar@953
  1024
    
alpar@1156
  1025
    ///\brief \ref named-templ-param "Named parameter"
alpar@1156
  1026
    ///function for setting DistMap type
alpar@1156
  1027
    ///
alpar@1156
  1028
    /// \ref named-templ-param "Named parameter"
alpar@1156
  1029
    ///function for setting DistMap type
hegyi@1124
  1030
    ///
alpar@953
  1031
    template<class T>
alpar@1116
  1032
    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
alpar@953
  1033
    {
deba@1193
  1034
      Base::_dist=(void *)&t;
alpar@1116
  1035
      return DijkstraWizard<DefDistMapBase<T> >(*this);
alpar@953
  1036
    }
alpar@1117
  1037
    
hegyi@1123
  1038
    /// Sets the source node, from which the Dijkstra algorithm runs.
hegyi@1123
  1039
hegyi@1123
  1040
    /// Sets the source node, from which the Dijkstra algorithm runs.
hegyi@1123
  1041
    /// \param s is the source node.
alpar@1117
  1042
    DijkstraWizard<TR> &source(Node s) 
alpar@953
  1043
    {
alpar@1201
  1044
      Base::_source=s;
alpar@953
  1045
      return *this;
alpar@953
  1046
    }
alpar@953
  1047
    
alpar@953
  1048
  };
alpar@255
  1049
  
alpar@1218
  1050
  ///Function type interface for Dijkstra algorithm.
alpar@953
  1051
alpar@1151
  1052
  /// \ingroup flowalgs
alpar@1218
  1053
  ///Function type interface for Dijkstra algorithm.
alpar@953
  1054
  ///
alpar@1218
  1055
  ///This function also has several
alpar@1218
  1056
  ///\ref named-templ-func-param "named parameters",
alpar@1218
  1057
  ///they are declared as the members of class \ref DijkstraWizard.
alpar@1218
  1058
  ///The following
alpar@1218
  1059
  ///example shows how to use these parameters.
alpar@1218
  1060
  ///\code
alpar@1218
  1061
  ///  dijkstra(g,length,source).predMap(preds).run();
alpar@1218
  1062
  ///\endcode
alpar@1218
  1063
  ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
alpar@1218
  1064
  ///to the end of the parameter list.
alpar@1218
  1065
  ///\sa DijkstraWizard
alpar@1218
  1066
  ///\sa Dijkstra
alpar@953
  1067
  template<class GR, class LM>
alpar@1116
  1068
  DijkstraWizard<DijkstraWizardBase<GR,LM> >
alpar@1116
  1069
  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
alpar@953
  1070
  {
alpar@1116
  1071
    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
alpar@953
  1072
  }
alpar@953
  1073
alpar@921
  1074
} //END OF NAMESPACE LEMON
alpar@255
  1075
alpar@255
  1076
#endif
alpar@255
  1077