lemon/dijkstra.h
author klao
Fri, 10 Mar 2006 18:06:26 +0000
changeset 2003 cf012a7c7f69
parent 1988 875fe3f689e0
child 2010 08464643a658
permissions -rw-r--r--
UnionFindEnum revision:

* 0 is _not_ convertible to list<...>::iterator, so we have to use other means
to define/check validity
* standard LEMON iterator interface for ClassIt and ItemIt
alpar@906
     1
/* -*- C++ -*-
alpar@906
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     8
 *
alpar@906
     9
 * Permission to use, modify and distribute this software is granted
alpar@906
    10
 * provided that this copyright notice appears in all copies. For
alpar@906
    11
 * precise terms see the accompanying LICENSE file.
alpar@906
    12
 *
alpar@906
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    14
 * express or implied, and with no claim as to its suitability for any
alpar@906
    15
 * purpose.
alpar@906
    16
 *
alpar@906
    17
 */
alpar@906
    18
alpar@921
    19
#ifndef LEMON_DIJKSTRA_H
alpar@921
    20
#define LEMON_DIJKSTRA_H
alpar@255
    21
alpar@758
    22
///\ingroup flowalgs
alpar@255
    23
///\file
alpar@255
    24
///\brief Dijkstra algorithm.
alpar@1283
    25
///
alpar@1734
    26
///\todo dijkstraZero() solution should be revised.
alpar@255
    27
alpar@953
    28
#include <lemon/list_graph.h>
alpar@921
    29
#include <lemon/bin_heap.h>
deba@1993
    30
#include <lemon/bits/invalid.h>
alpar@1119
    31
#include <lemon/error.h>
alpar@1119
    32
#include <lemon/maps.h>
alpar@255
    33
alpar@921
    34
namespace lemon {
jacint@385
    35
alpar@1734
    36
  template<class T> T dijkstraZero() {return 0;}
alpar@1151
    37
  
alpar@954
    38
  ///Default traits class of Dijkstra class.
alpar@954
    39
alpar@954
    40
  ///Default traits class of Dijkstra class.
alpar@954
    41
  ///\param GR Graph type.
alpar@954
    42
  ///\param LM Type of length map.
alpar@953
    43
  template<class GR, class LM>
alpar@953
    44
  struct DijkstraDefaultTraits
alpar@953
    45
  {
alpar@954
    46
    ///The graph type the algorithm runs on. 
alpar@953
    47
    typedef GR Graph;
alpar@953
    48
    ///The type of the map that stores the edge lengths.
alpar@953
    49
hegyi@1124
    50
    ///The type of the map that stores the edge lengths.
alpar@967
    51
    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
alpar@953
    52
    typedef LM LengthMap;
alpar@954
    53
    //The type of the length of the edges.
alpar@987
    54
    typedef typename LM::Value Value;
deba@1721
    55
    /// The cross reference type used by heap.
deba@1721
    56
deba@1721
    57
    /// The cross reference type used by heap.
deba@1721
    58
    /// Usually it is \c Graph::NodeMap<int>.
deba@1721
    59
    typedef typename Graph::template NodeMap<int> HeapCrossRef;
deba@1721
    60
    ///Instantiates a HeapCrossRef.
deba@1721
    61
deba@1721
    62
    ///This function instantiates a \ref HeapCrossRef. 
deba@1721
    63
    /// \param G is the graph, to which we would like to define the 
deba@1721
    64
    /// HeapCrossRef.
deba@1721
    65
    static HeapCrossRef *createHeapCrossRef(const GR &G) 
deba@1721
    66
    {
deba@1721
    67
      return new HeapCrossRef(G);
deba@1721
    68
    }
deba@1721
    69
    
alpar@954
    70
    ///The heap type used by Dijkstra algorithm.
alpar@967
    71
alpar@967
    72
    ///The heap type used by Dijkstra algorithm.
alpar@967
    73
    ///
alpar@967
    74
    ///\sa BinHeap
alpar@967
    75
    ///\sa Dijkstra
deba@1709
    76
    typedef BinHeap<typename Graph::Node, typename LM::Value,
deba@1741
    77
		    HeapCrossRef, std::less<Value> > Heap;
alpar@953
    78
deba@1721
    79
    static Heap *createHeap(HeapCrossRef& R) 
deba@1721
    80
    {
deba@1721
    81
      return new Heap(R);
deba@1721
    82
    }
deba@1721
    83
alpar@953
    84
    ///\brief The type of the map that stores the last
alpar@953
    85
    ///edges of the shortest paths.
alpar@953
    86
    /// 
hegyi@1124
    87
    ///The type of the map that stores the last
hegyi@1124
    88
    ///edges of the shortest paths.
alpar@967
    89
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
    90
    ///
alpar@954
    91
    typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
alpar@954
    92
    ///Instantiates a PredMap.
alpar@953
    93
 
hegyi@1123
    94
    ///This function instantiates a \ref PredMap. 
hegyi@1123
    95
    ///\param G is the graph, to which we would like to define the PredMap.
alpar@1119
    96
    ///\todo The graph alone may be insufficient for the initialization
alpar@954
    97
    static PredMap *createPredMap(const GR &G) 
alpar@953
    98
    {
alpar@953
    99
      return new PredMap(G);
alpar@953
   100
    }
alpar@1119
   101
alpar@1218
   102
    ///The type of the map that stores whether a nodes is processed.
alpar@1119
   103
 
alpar@1218
   104
    ///The type of the map that stores whether a nodes is processed.
alpar@1119
   105
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1119
   106
    ///By default it is a NullMap.
alpar@1218
   107
    ///\todo If it is set to a real map,
alpar@1218
   108
    ///Dijkstra::processed() should read this.
alpar@1119
   109
    ///\todo named parameter to set this type, function to read and write.
alpar@1218
   110
    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
alpar@1218
   111
    ///Instantiates a ProcessedMap.
alpar@1119
   112
 
alpar@1218
   113
    ///This function instantiates a \ref ProcessedMap. 
alpar@1536
   114
    ///\param g is the graph, to which
alpar@1218
   115
    ///we would like to define the \ref ProcessedMap
alpar@1536
   116
#ifdef DOXYGEN
alpar@1536
   117
    static ProcessedMap *createProcessedMap(const GR &g)
alpar@1536
   118
#else
alpar@1366
   119
    static ProcessedMap *createProcessedMap(const GR &)
alpar@1536
   120
#endif
alpar@1119
   121
    {
alpar@1218
   122
      return new ProcessedMap();
alpar@1119
   123
    }
alpar@953
   124
    ///The type of the map that stores the dists of the nodes.
alpar@953
   125
 
hegyi@1124
   126
    ///The type of the map that stores the dists of the nodes.
alpar@967
   127
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
   128
    ///
alpar@987
   129
    typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
alpar@954
   130
    ///Instantiates a DistMap.
alpar@953
   131
 
hegyi@1123
   132
    ///This function instantiates a \ref DistMap. 
hegyi@1123
   133
    ///\param G is the graph, to which we would like to define the \ref DistMap
alpar@954
   134
    static DistMap *createDistMap(const GR &G)
alpar@953
   135
    {
alpar@953
   136
      return new DistMap(G);
alpar@953
   137
    }
alpar@953
   138
  };
alpar@953
   139
  
alpar@255
   140
  ///%Dijkstra algorithm class.
alpar@1125
   141
  
alpar@1151
   142
  /// \ingroup flowalgs
alpar@255
   143
  ///This class provides an efficient implementation of %Dijkstra algorithm.
alpar@255
   144
  ///The edge lengths are passed to the algorithm using a
klao@959
   145
  ///\ref concept::ReadMap "ReadMap",
alpar@255
   146
  ///so it is easy to change it to any kind of length.
alpar@255
   147
  ///
alpar@880
   148
  ///The type of the length is determined by the
alpar@987
   149
  ///\ref concept::ReadMap::Value "Value" of the length map.
alpar@255
   150
  ///
alpar@255
   151
  ///It is also possible to change the underlying priority heap.
alpar@255
   152
  ///
alpar@1218
   153
  ///\param GR The graph type the algorithm runs on. The default value
alpar@1218
   154
  ///is \ref ListGraph. The value of GR is not used directly by
alpar@1218
   155
  ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
alpar@1218
   156
  ///\param LM This read-only EdgeMap determines the lengths of the
alpar@1218
   157
  ///edges. It is read once for each edge, so the map may involve in
alpar@1218
   158
  ///relatively time consuming process to compute the edge length if
alpar@1218
   159
  ///it is necessary. The default map type is \ref
alpar@1218
   160
  ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
alpar@1218
   161
  ///of LM is not used directly by Dijkstra, it is only passed to \ref
alpar@1218
   162
  ///DijkstraDefaultTraits.  \param TR Traits class to set
alpar@1218
   163
  ///various data types used by the algorithm.  The default traits
alpar@1218
   164
  ///class is \ref DijkstraDefaultTraits
alpar@1218
   165
  ///"DijkstraDefaultTraits<GR,LM>".  See \ref
alpar@1218
   166
  ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
alpar@1218
   167
  ///class.
alpar@456
   168
  ///
alpar@689
   169
  ///\author Jacint Szabo and Alpar Juttner
alpar@584
   170
alpar@255
   171
#ifdef DOXYGEN
alpar@584
   172
  template <typename GR,
alpar@584
   173
	    typename LM,
alpar@953
   174
	    typename TR>
alpar@255
   175
#else
alpar@953
   176
  template <typename GR=ListGraph,
alpar@584
   177
	    typename LM=typename GR::template EdgeMap<int>,
alpar@953
   178
	    typename TR=DijkstraDefaultTraits<GR,LM> >
alpar@255
   179
#endif
alpar@1116
   180
  class Dijkstra {
alpar@255
   181
  public:
alpar@1125
   182
    /**
alpar@1125
   183
     * \brief \ref Exception for uninitialized parameters.
alpar@1125
   184
     *
alpar@1125
   185
     * This error represents problems in the initialization
alpar@1125
   186
     * of the parameters of the algorithms.
alpar@1125
   187
     */
alpar@1125
   188
    class UninitializedParameter : public lemon::UninitializedParameter {
alpar@1125
   189
    public:
alpar@1125
   190
      virtual const char* exceptionName() const {
alpar@1218
   191
	return "lemon::Dijkstra::UninitializedParameter";
alpar@1125
   192
      }
alpar@1125
   193
    };
alpar@1119
   194
alpar@953
   195
    typedef TR Traits;
alpar@584
   196
    ///The type of the underlying graph.
alpar@954
   197
    typedef typename TR::Graph Graph;
alpar@911
   198
    ///\e
alpar@255
   199
    typedef typename Graph::Node Node;
alpar@911
   200
    ///\e
alpar@255
   201
    typedef typename Graph::NodeIt NodeIt;
alpar@911
   202
    ///\e
alpar@255
   203
    typedef typename Graph::Edge Edge;
alpar@911
   204
    ///\e
alpar@255
   205
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@255
   206
    
alpar@584
   207
    ///The type of the length of the edges.
alpar@987
   208
    typedef typename TR::LengthMap::Value Value;
alpar@693
   209
    ///The type of the map that stores the edge lengths.
alpar@954
   210
    typedef typename TR::LengthMap LengthMap;
alpar@693
   211
    ///\brief The type of the map that stores the last
alpar@584
   212
    ///edges of the shortest paths.
alpar@953
   213
    typedef typename TR::PredMap PredMap;
alpar@1218
   214
    ///The type of the map indicating if a node is processed.
alpar@1218
   215
    typedef typename TR::ProcessedMap ProcessedMap;
alpar@693
   216
    ///The type of the map that stores the dists of the nodes.
alpar@953
   217
    typedef typename TR::DistMap DistMap;
deba@1721
   218
    ///The cross reference type used for the current heap.
deba@1721
   219
    typedef typename TR::HeapCrossRef HeapCrossRef;
alpar@953
   220
    ///The heap type used by the dijkstra algorithm.
alpar@953
   221
    typedef typename TR::Heap Heap;
alpar@255
   222
  private:
alpar@802
   223
    /// Pointer to the underlying graph.
alpar@688
   224
    const Graph *G;
alpar@802
   225
    /// Pointer to the length map
alpar@954
   226
    const LengthMap *length;
alpar@802
   227
    ///Pointer to the map of predecessors edges.
alpar@1119
   228
    PredMap *_pred;
alpar@1119
   229
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
alpar@1119
   230
    bool local_pred;
alpar@802
   231
    ///Pointer to the map of distances.
alpar@1130
   232
    DistMap *_dist;
alpar@1130
   233
    ///Indicates if \ref _dist is locally allocated (\c true) or not.
alpar@1130
   234
    bool local_dist;
alpar@1218
   235
    ///Pointer to the map of processed status of the nodes.
alpar@1218
   236
    ProcessedMap *_processed;
alpar@1218
   237
    ///Indicates if \ref _processed is locally allocated (\c true) or not.
alpar@1218
   238
    bool local_processed;
deba@1721
   239
    ///Pointer to the heap cross references.
deba@1721
   240
    HeapCrossRef *_heap_cross_ref;
deba@1721
   241
    ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
deba@1721
   242
    bool local_heap_cross_ref;
deba@1721
   243
    ///Pointer to the heap.
deba@1721
   244
    Heap *_heap;
deba@1721
   245
    ///Indicates if \ref _heap is locally allocated (\c true) or not.
deba@1721
   246
    bool local_heap;
alpar@688
   247
alpar@1128
   248
    ///Creates the maps if necessary.
alpar@688
   249
    
alpar@688
   250
    ///\todo Better memory allocation (instead of new).
alpar@1128
   251
    void create_maps() 
alpar@688
   252
    {
alpar@1119
   253
      if(!_pred) {
alpar@1119
   254
	local_pred = true;
alpar@1119
   255
	_pred = Traits::createPredMap(*G);
alpar@688
   256
      }
alpar@1130
   257
      if(!_dist) {
alpar@1130
   258
	local_dist = true;
alpar@1130
   259
	_dist = Traits::createDistMap(*G);
alpar@688
   260
      }
alpar@1218
   261
      if(!_processed) {
alpar@1218
   262
	local_processed = true;
alpar@1218
   263
	_processed = Traits::createProcessedMap(*G);
alpar@1119
   264
      }
deba@1721
   265
      if (!_heap_cross_ref) {
deba@1721
   266
	local_heap_cross_ref = true;
deba@1721
   267
	_heap_cross_ref = Traits::createHeapCrossRef(*G);
deba@1721
   268
      }
deba@1721
   269
      if (!_heap) {
deba@1721
   270
	local_heap = true;
deba@1721
   271
	_heap = Traits::createHeap(*_heap_cross_ref);
deba@1721
   272
      }
alpar@688
   273
    }
alpar@255
   274
    
alpar@255
   275
  public :
deba@1710
   276
deba@1710
   277
    typedef Dijkstra Create;
alpar@1116
   278
 
alpar@1128
   279
    ///\name Named template parameters
alpar@1128
   280
alpar@1128
   281
    ///@{
alpar@1128
   282
alpar@953
   283
    template <class T>
alpar@1116
   284
    struct DefPredMapTraits : public Traits {
alpar@953
   285
      typedef T PredMap;
alpar@953
   286
      static PredMap *createPredMap(const Graph &G) 
alpar@953
   287
      {
alpar@1126
   288
	throw UninitializedParameter();
alpar@953
   289
      }
alpar@953
   290
    };
alpar@954
   291
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@954
   292
alpar@954
   293
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@1043
   294
    ///
alpar@953
   295
    template <class T>
deba@1709
   296
    struct DefPredMap 
deba@1709
   297
      : public Dijkstra< Graph,	LengthMap, DefPredMapTraits<T> > {
deba@1709
   298
      typedef Dijkstra< Graph,	LengthMap, DefPredMapTraits<T> > Create;
deba@1709
   299
    };
alpar@953
   300
    
alpar@953
   301
    template <class T>
alpar@1116
   302
    struct DefDistMapTraits : public Traits {
alpar@953
   303
      typedef T DistMap;
alpar@953
   304
      static DistMap *createDistMap(const Graph &G) 
alpar@953
   305
      {
alpar@1126
   306
	throw UninitializedParameter();
alpar@953
   307
      }
alpar@953
   308
    };
alpar@954
   309
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@954
   310
alpar@954
   311
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@1043
   312
    ///
alpar@953
   313
    template <class T>
deba@1709
   314
    struct DefDistMap 
deba@1709
   315
      : public Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > { 
deba@1709
   316
      typedef Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > Create;
deba@1709
   317
    };
alpar@953
   318
    
alpar@1128
   319
    template <class T>
alpar@1218
   320
    struct DefProcessedMapTraits : public Traits {
alpar@1218
   321
      typedef T ProcessedMap;
alpar@1218
   322
      static ProcessedMap *createProcessedMap(const Graph &G) 
alpar@1128
   323
      {
alpar@1128
   324
	throw UninitializedParameter();
alpar@1128
   325
      }
alpar@1128
   326
    };
alpar@1218
   327
    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
alpar@1128
   328
alpar@1218
   329
    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
alpar@1128
   330
    ///
alpar@1128
   331
    template <class T>
deba@1709
   332
    struct DefProcessedMap 
deba@1709
   333
      : public Dijkstra< Graph,	LengthMap, DefProcessedMapTraits<T> > { 
deba@1709
   334
      typedef Dijkstra< Graph,	LengthMap, DefProcessedMapTraits<T> > Create;
deba@1709
   335
    };
alpar@1128
   336
    
alpar@1218
   337
    struct DefGraphProcessedMapTraits : public Traits {
alpar@1218
   338
      typedef typename Graph::template NodeMap<bool> ProcessedMap;
alpar@1218
   339
      static ProcessedMap *createProcessedMap(const Graph &G) 
alpar@1128
   340
      {
alpar@1218
   341
	return new ProcessedMap(G);
alpar@1128
   342
      }
alpar@1128
   343
    };
alpar@1128
   344
    ///\brief \ref named-templ-param "Named parameter"
alpar@1218
   345
    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
alpar@1128
   346
    ///
alpar@1128
   347
    ///\ref named-templ-param "Named parameter"
alpar@1218
   348
    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
alpar@1128
   349
    ///If you don't set it explicitely, it will be automatically allocated.
alpar@1128
   350
    template <class T>
deba@1709
   351
    struct DefProcessedMapToBeDefaultMap 
deba@1709
   352
      : public Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> {
deba@1709
   353
      typedef Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> Create;
deba@1709
   354
    };
deba@1721
   355
deba@1721
   356
    template <class H, class CR>
deba@1721
   357
    struct DefHeapTraits : public Traits {
deba@1721
   358
      typedef CR HeapCrossRef;
deba@1721
   359
      typedef H Heap;
deba@1741
   360
      static HeapCrossRef *createHeapCrossRef(const Graph &) {
deba@1741
   361
	throw UninitializedParameter();
deba@1721
   362
      }
deba@1741
   363
      static Heap *createHeap(HeapCrossRef &) 
deba@1721
   364
      {
deba@1741
   365
	throw UninitializedParameter();
deba@1721
   366
      }
deba@1721
   367
    };
deba@1721
   368
    ///\ref named-templ-param "Named parameter" for setting heap and cross 
deba@1721
   369
    ///reference type
deba@1721
   370
deba@1721
   371
    ///\ref named-templ-param "Named parameter" for setting heap and cross 
deba@1721
   372
    ///reference type
deba@1721
   373
    ///
deba@1721
   374
    template <class H, class CR = typename Graph::template NodeMap<int> >
deba@1721
   375
    struct DefHeap
deba@1721
   376
      : public Dijkstra< Graph,	LengthMap, DefHeapTraits<H, CR> > { 
deba@1721
   377
      typedef Dijkstra< Graph,	LengthMap, DefHeapTraits<H, CR> > Create;
deba@1721
   378
    };
deba@1741
   379
deba@1741
   380
    template <class H, class CR>
deba@1741
   381
    struct DefStandardHeapTraits : public Traits {
deba@1741
   382
      typedef CR HeapCrossRef;
deba@1741
   383
      typedef H Heap;
deba@1741
   384
      static HeapCrossRef *createHeapCrossRef(const Graph &G) {
deba@1741
   385
	return new HeapCrossRef(G);
deba@1741
   386
      }
deba@1741
   387
      static Heap *createHeap(HeapCrossRef &R) 
deba@1741
   388
      {
deba@1741
   389
	return new Heap(R);
deba@1741
   390
      }
deba@1741
   391
    };
deba@1741
   392
    ///\ref named-templ-param "Named parameter" for setting heap and cross 
deba@1741
   393
    ///reference type with automatic allocation
deba@1741
   394
deba@1741
   395
    ///\ref named-templ-param "Named parameter" for setting heap and cross 
deba@1741
   396
    ///reference type. It can allocate the heap and the cross reference 
deba@1741
   397
    ///object if the cross reference's constructor waits for the graph as 
deba@1741
   398
    ///parameter and the heap's constructor waits for the cross reference.
deba@1741
   399
    template <class H, class CR = typename Graph::template NodeMap<int> >
deba@1741
   400
    struct DefStandardHeap
deba@1741
   401
      : public Dijkstra< Graph,	LengthMap, DefStandardHeapTraits<H, CR> > { 
deba@1741
   402
      typedef Dijkstra< Graph,	LengthMap, DefStandardHeapTraits<H, CR> > 
deba@1741
   403
      Create;
deba@1741
   404
    };
alpar@1128
   405
    
alpar@1128
   406
    ///@}
alpar@1128
   407
alpar@1128
   408
deba@1710
   409
  protected:
deba@1710
   410
deba@1710
   411
    Dijkstra() {}
deba@1710
   412
alpar@1128
   413
  public:      
alpar@1128
   414
    
alpar@802
   415
    ///Constructor.
alpar@255
   416
    
alpar@802
   417
    ///\param _G the graph the algorithm will run on.
alpar@802
   418
    ///\param _length the length map used by the algorithm.
alpar@954
   419
    Dijkstra(const Graph& _G, const LengthMap& _length) :
alpar@688
   420
      G(&_G), length(&_length),
alpar@1119
   421
      _pred(NULL), local_pred(false),
alpar@1130
   422
      _dist(NULL), local_dist(false),
alpar@1218
   423
      _processed(NULL), local_processed(false),
deba@1721
   424
      _heap_cross_ref(NULL), local_heap_cross_ref(false),
deba@1721
   425
      _heap(NULL), local_heap(false)
alpar@688
   426
    { }
alpar@688
   427
    
alpar@802
   428
    ///Destructor.
alpar@688
   429
    ~Dijkstra() 
alpar@688
   430
    {
alpar@1119
   431
      if(local_pred) delete _pred;
alpar@1130
   432
      if(local_dist) delete _dist;
alpar@1218
   433
      if(local_processed) delete _processed;
deba@1721
   434
      if(local_heap_cross_ref) delete _heap_cross_ref;
deba@1721
   435
      if(local_heap) delete _heap;
alpar@688
   436
    }
alpar@688
   437
alpar@688
   438
    ///Sets the length map.
alpar@688
   439
alpar@688
   440
    ///Sets the length map.
alpar@688
   441
    ///\return <tt> (*this) </tt>
alpar@1116
   442
    Dijkstra &lengthMap(const LengthMap &m) 
alpar@688
   443
    {
alpar@688
   444
      length = &m;
alpar@688
   445
      return *this;
alpar@688
   446
    }
alpar@688
   447
alpar@688
   448
    ///Sets the map storing the predecessor edges.
alpar@688
   449
alpar@688
   450
    ///Sets the map storing the predecessor edges.
alpar@688
   451
    ///If you don't use this function before calling \ref run(),
alpar@688
   452
    ///it will allocate one. The destuctor deallocates this
alpar@688
   453
    ///automatically allocated map, of course.
alpar@688
   454
    ///\return <tt> (*this) </tt>
alpar@1116
   455
    Dijkstra &predMap(PredMap &m) 
alpar@688
   456
    {
alpar@1119
   457
      if(local_pred) {
alpar@1119
   458
	delete _pred;
alpar@1119
   459
	local_pred=false;
alpar@688
   460
      }
alpar@1119
   461
      _pred = &m;
alpar@688
   462
      return *this;
alpar@688
   463
    }
alpar@688
   464
alpar@688
   465
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   466
alpar@688
   467
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   468
    ///If you don't use this function before calling \ref run(),
alpar@688
   469
    ///it will allocate one. The destuctor deallocates this
alpar@688
   470
    ///automatically allocated map, of course.
alpar@688
   471
    ///\return <tt> (*this) </tt>
alpar@1116
   472
    Dijkstra &distMap(DistMap &m) 
alpar@688
   473
    {
alpar@1130
   474
      if(local_dist) {
alpar@1130
   475
	delete _dist;
alpar@1130
   476
	local_dist=false;
alpar@688
   477
      }
alpar@1130
   478
      _dist = &m;
alpar@688
   479
      return *this;
alpar@688
   480
    }
alpar@694
   481
deba@1741
   482
    ///Sets the heap and the cross reference used by algorithm.
deba@1741
   483
deba@1741
   484
    ///Sets the heap and the cross reference used by algorithm.
deba@1741
   485
    ///If you don't use this function before calling \ref run(),
deba@1741
   486
    ///it will allocate one. The destuctor deallocates this
deba@1981
   487
    ///automatically allocated heap and cross reference, of course.
deba@1741
   488
    ///\return <tt> (*this) </tt>
deba@1741
   489
    Dijkstra &heap(Heap& heap, HeapCrossRef &crossRef)
deba@1741
   490
    {
deba@1741
   491
      if(local_heap_cross_ref) {
deba@1741
   492
	delete _heap_cross_ref;
deba@1741
   493
	local_heap_cross_ref=false;
deba@1741
   494
      }
deba@1741
   495
      _heap_cross_ref = &crossRef;
deba@1741
   496
      if(local_heap) {
deba@1741
   497
	delete _heap;
deba@1741
   498
	local_heap=false;
deba@1741
   499
      }
deba@1741
   500
      _heap = &heap;
deba@1741
   501
      return *this;
deba@1741
   502
    }
deba@1741
   503
alpar@1130
   504
  private:
alpar@1130
   505
    void finalizeNodeData(Node v,Value dst)
alpar@1130
   506
    {
alpar@1218
   507
      _processed->set(v,true);
alpar@1130
   508
      _dist->set(v, dst);
alpar@1130
   509
    }
alpar@1130
   510
alpar@1130
   511
  public:
alpar@1218
   512
    ///\name Execution control
alpar@1128
   513
    ///The simplest way to execute the algorithm is to use
alpar@1156
   514
    ///one of the member functions called \c run(...).
alpar@1128
   515
    ///\n
alpar@1218
   516
    ///If you need more control on the execution,
alpar@1128
   517
    ///first you must call \ref init(), then you can add several source nodes
alpar@1218
   518
    ///with \ref addSource().
alpar@1218
   519
    ///Finally \ref start() will perform the actual path
alpar@1128
   520
    ///computation.
alpar@1128
   521
alpar@1128
   522
    ///@{
alpar@1128
   523
alpar@1128
   524
    ///Initializes the internal data structures.
alpar@1128
   525
alpar@1128
   526
    ///Initializes the internal data structures.
alpar@1128
   527
    ///
alpar@1128
   528
    void init()
alpar@1128
   529
    {
alpar@1128
   530
      create_maps();
deba@1721
   531
      _heap->clear();
alpar@774
   532
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
alpar@1119
   533
	_pred->set(u,INVALID);
alpar@1218
   534
	_processed->set(u,false);
deba@1721
   535
	_heap_cross_ref->set(u,Heap::PRE_HEAP);
alpar@694
   536
      }
alpar@1128
   537
    }
alpar@1128
   538
    
alpar@1128
   539
    ///Adds a new source node.
alpar@1128
   540
alpar@1155
   541
    ///Adds a new source node to the priority heap.
alpar@1128
   542
    ///
alpar@1128
   543
    ///The optional second parameter is the initial distance of the node.
alpar@1128
   544
    ///
alpar@1155
   545
    ///It checks if the node has already been added to the heap and
deba@1988
   546
    ///it is pushed to the heap only if either it was not in the heap
deba@1988
   547
    ///or the shortest path found till then is shorter than \c dst.
alpar@1734
   548
    void addSource(Node s,Value dst=dijkstraZero<Value>())
alpar@1128
   549
    {
deba@1721
   550
      if(_heap->state(s) != Heap::IN_HEAP) {
deba@1721
   551
	_heap->push(s,dst);
deba@1721
   552
      } else if((*_heap)[s]<dst) {
deba@1988
   553
	_heap->set(s,dst);
alpar@1155
   554
	_pred->set(s,INVALID);
alpar@1155
   555
      }
alpar@1128
   556
    }
alpar@1128
   557
    
alpar@1155
   558
    ///Processes the next node in the priority heap
alpar@1155
   559
alpar@1155
   560
    ///Processes the next node in the priority heap.
alpar@1155
   561
    ///
alpar@1516
   562
    ///\return The processed node.
alpar@1516
   563
    ///
alpar@1155
   564
    ///\warning The priority heap must not be empty!
alpar@1516
   565
    Node processNextNode()
alpar@1128
   566
    {
deba@1721
   567
      Node v=_heap->top(); 
deba@1721
   568
      Value oldvalue=_heap->prio();
deba@1721
   569
      _heap->pop();
alpar@1130
   570
      finalizeNodeData(v,oldvalue);
alpar@694
   571
      
alpar@1128
   572
      for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
alpar@1128
   573
	Node w=G->target(e); 
deba@1721
   574
	switch(_heap->state(w)) {
alpar@1128
   575
	case Heap::PRE_HEAP:
deba@1721
   576
	  _heap->push(w,oldvalue+(*length)[e]); 
alpar@1128
   577
	  _pred->set(w,e);
alpar@1128
   578
	  break;
alpar@1128
   579
	case Heap::IN_HEAP:
deba@1721
   580
	  if ( oldvalue+(*length)[e] < (*_heap)[w] ) {
deba@1721
   581
	    _heap->decrease(w, oldvalue+(*length)[e]); 
alpar@1119
   582
	    _pred->set(w,e);
alpar@694
   583
	  }
alpar@1128
   584
	  break;
alpar@1128
   585
	case Heap::POST_HEAP:
alpar@1128
   586
	  break;
alpar@694
   587
	}
alpar@694
   588
      }
alpar@1516
   589
      return v;
alpar@694
   590
    }
alpar@1128
   591
alpar@1665
   592
    ///Next node to be processed.
alpar@1665
   593
    
alpar@1665
   594
    ///Next node to be processed.
alpar@1665
   595
    ///
alpar@1665
   596
    ///\return The next node to be processed or INVALID if the priority heap
alpar@1665
   597
    /// is empty.
deba@1694
   598
    Node nextNode()
alpar@1665
   599
    { 
deba@1721
   600
      return _heap->empty()?_heap->top():INVALID;
alpar@1665
   601
    }
alpar@1665
   602
 
alpar@1218
   603
    ///\brief Returns \c false if there are nodes
alpar@1218
   604
    ///to be processed in the priority heap
alpar@1155
   605
    ///
alpar@1218
   606
    ///Returns \c false if there are nodes
alpar@1218
   607
    ///to be processed in the priority heap
deba@1721
   608
    bool emptyQueue() { return _heap->empty(); }
alpar@1155
   609
    ///Returns the number of the nodes to be processed in the priority heap
alpar@1155
   610
alpar@1155
   611
    ///Returns the number of the nodes to be processed in the priority heap
alpar@1155
   612
    ///
deba@1721
   613
    int queueSize() { return _heap->size(); }
alpar@1155
   614
    
alpar@1130
   615
    ///Executes the algorithm.
alpar@1128
   616
alpar@1130
   617
    ///Executes the algorithm.
alpar@1128
   618
    ///
alpar@1130
   619
    ///\pre init() must be called and at least one node should be added
alpar@1130
   620
    ///with addSource() before using this function.
alpar@1128
   621
    ///
alpar@1128
   622
    ///This method runs the %Dijkstra algorithm from the root node(s)
alpar@1128
   623
    ///in order to
alpar@1128
   624
    ///compute the
alpar@1128
   625
    ///shortest path to each node. The algorithm computes
alpar@1128
   626
    ///- The shortest path tree.
alpar@1128
   627
    ///- The distance of each node from the root(s).
alpar@1128
   628
    ///
alpar@1128
   629
    void start()
alpar@1128
   630
    {
deba@1721
   631
      while ( !_heap->empty() ) processNextNode();
alpar@1128
   632
    }
alpar@255
   633
    
alpar@1130
   634
    ///Executes the algorithm until \c dest is reached.
alpar@1128
   635
alpar@1130
   636
    ///Executes the algorithm until \c dest is reached.
alpar@1128
   637
    ///
alpar@1130
   638
    ///\pre init() must be called and at least one node should be added
alpar@1130
   639
    ///with addSource() before using this function.
alpar@1128
   640
    ///
alpar@1128
   641
    ///This method runs the %Dijkstra algorithm from the root node(s)
alpar@1128
   642
    ///in order to
alpar@1128
   643
    ///compute the
alpar@1128
   644
    ///shortest path to \c dest. The algorithm computes
alpar@1128
   645
    ///- The shortest path to \c  dest.
alpar@1128
   646
    ///- The distance of \c dest from the root(s).
alpar@1128
   647
    ///
alpar@1128
   648
    void start(Node dest)
alpar@1128
   649
    {
deba@1721
   650
      while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
deba@1721
   651
      if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
alpar@1130
   652
    }
alpar@1130
   653
    
alpar@1130
   654
    ///Executes the algorithm until a condition is met.
alpar@1130
   655
alpar@1130
   656
    ///Executes the algorithm until a condition is met.
alpar@1130
   657
    ///
alpar@1130
   658
    ///\pre init() must be called and at least one node should be added
alpar@1130
   659
    ///with addSource() before using this function.
alpar@1130
   660
    ///
alpar@1130
   661
    ///\param nm must be a bool (or convertible) node map. The algorithm
alpar@1130
   662
    ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
deba@1345
   663
    template<class NodeBoolMap>
deba@1345
   664
    void start(const NodeBoolMap &nm)
alpar@1130
   665
    {
deba@1721
   666
      while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
deba@1721
   667
      if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
alpar@1128
   668
    }
alpar@1128
   669
    
alpar@1128
   670
    ///Runs %Dijkstra algorithm from node \c s.
alpar@1128
   671
    
alpar@1128
   672
    ///This method runs the %Dijkstra algorithm from a root node \c s
alpar@1128
   673
    ///in order to
alpar@1128
   674
    ///compute the
alpar@1128
   675
    ///shortest path to each node. The algorithm computes
alpar@1128
   676
    ///- The shortest path tree.
alpar@1128
   677
    ///- The distance of each node from the root.
alpar@1128
   678
    ///
alpar@1128
   679
    ///\note d.run(s) is just a shortcut of the following code.
alpar@1128
   680
    ///\code
alpar@1128
   681
    ///  d.init();
alpar@1128
   682
    ///  d.addSource(s);
alpar@1128
   683
    ///  d.start();
alpar@1128
   684
    ///\endcode
alpar@1128
   685
    void run(Node s) {
alpar@1128
   686
      init();
alpar@1128
   687
      addSource(s);
alpar@1128
   688
      start();
alpar@1128
   689
    }
alpar@1128
   690
    
alpar@1130
   691
    ///Finds the shortest path between \c s and \c t.
alpar@1130
   692
    
alpar@1130
   693
    ///Finds the shortest path between \c s and \c t.
alpar@1130
   694
    ///
alpar@1130
   695
    ///\return The length of the shortest s---t path if there exists one,
alpar@1130
   696
    ///0 otherwise.
alpar@1130
   697
    ///\note Apart from the return value, d.run(s) is
alpar@1130
   698
    ///just a shortcut of the following code.
alpar@1130
   699
    ///\code
alpar@1130
   700
    ///  d.init();
alpar@1130
   701
    ///  d.addSource(s);
alpar@1130
   702
    ///  d.start(t);
alpar@1130
   703
    ///\endcode
alpar@1130
   704
    Value run(Node s,Node t) {
alpar@1130
   705
      init();
alpar@1130
   706
      addSource(s);
alpar@1130
   707
      start(t);
alpar@1734
   708
      return (*_pred)[t]==INVALID?dijkstraZero<Value>():(*_dist)[t];
alpar@1130
   709
    }
alpar@1130
   710
    
alpar@1128
   711
    ///@}
alpar@1128
   712
alpar@1128
   713
    ///\name Query Functions
alpar@1128
   714
    ///The result of the %Dijkstra algorithm can be obtained using these
alpar@1128
   715
    ///functions.\n
alpar@1128
   716
    ///Before the use of these functions,
alpar@1128
   717
    ///either run() or start() must be called.
alpar@1128
   718
    
alpar@1128
   719
    ///@{
alpar@1128
   720
alpar@1283
   721
    ///Copies the shortest path to \c t into \c p
alpar@1283
   722
    
alpar@1283
   723
    ///This function copies the shortest path to \c t into \c p.
alpar@1536
   724
    ///If it \c t is a source itself or unreachable, then it does not
alpar@1283
   725
    ///alter \c p.
alpar@1283
   726
    ///\return Returns \c true if a path to \c t was actually copied to \c p,
alpar@1283
   727
    ///\c false otherwise.
alpar@1283
   728
    ///\sa DirPath
alpar@1283
   729
    template<class P>
alpar@1283
   730
    bool getPath(P &p,Node t) 
alpar@1283
   731
    {
alpar@1283
   732
      if(reached(t)) {
alpar@1283
   733
	p.clear();
alpar@1283
   734
	typename P::Builder b(p);
deba@1763
   735
	for(b.setStartNode(t);predEdge(t)!=INVALID;t=predNode(t))
deba@1763
   736
	  b.pushFront(predEdge(t));
alpar@1283
   737
	b.commit();
alpar@1283
   738
	return true;
alpar@1283
   739
      }
alpar@1283
   740
      return false;
alpar@1283
   741
    }
alpar@1283
   742
	  
jacint@385
   743
    ///The distance of a node from the root.
alpar@255
   744
jacint@385
   745
    ///Returns the distance of a node from the root.
alpar@255
   746
    ///\pre \ref run() must be called before using this function.
jacint@385
   747
    ///\warning If node \c v in unreachable from the root the return value
alpar@255
   748
    ///of this funcion is undefined.
alpar@1130
   749
    Value dist(Node v) const { return (*_dist)[v]; }
jacint@373
   750
alpar@584
   751
    ///Returns the 'previous edge' of the shortest path tree.
alpar@255
   752
alpar@584
   753
    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
alpar@785
   754
    ///i.e. it returns the last edge of a shortest path from the root to \c
alpar@688
   755
    ///v. It is \ref INVALID
alpar@688
   756
    ///if \c v is unreachable from the root or if \c v=s. The
jacint@385
   757
    ///shortest path tree used here is equal to the shortest path tree used in
alpar@1631
   758
    ///\ref predNode().  \pre \ref run() must be called before using
jacint@385
   759
    ///this function.
deba@1763
   760
    Edge predEdge(Node v) const { return (*_pred)[v]; }
jacint@373
   761
alpar@584
   762
    ///Returns the 'previous node' of the shortest path tree.
alpar@255
   763
alpar@584
   764
    ///For a node \c v it returns the 'previous node' of the shortest path tree,
jacint@385
   765
    ///i.e. it returns the last but one node from a shortest path from the
jacint@385
   766
    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
jacint@385
   767
    ///\c v=s. The shortest path tree used here is equal to the shortest path
deba@1763
   768
    ///tree used in \ref predEdge().  \pre \ref run() must be called before
jacint@385
   769
    ///using this function.
alpar@1130
   770
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
alpar@1130
   771
				  G->source((*_pred)[v]); }
alpar@255
   772
    
alpar@255
   773
    ///Returns a reference to the NodeMap of distances.
alpar@255
   774
jacint@385
   775
    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
jacint@385
   776
    ///be called before using this function.
alpar@1130
   777
    const DistMap &distMap() const { return *_dist;}
jacint@385
   778
 
alpar@255
   779
    ///Returns a reference to the shortest path tree map.
alpar@255
   780
alpar@255
   781
    ///Returns a reference to the NodeMap of the edges of the
alpar@255
   782
    ///shortest path tree.
alpar@255
   783
    ///\pre \ref run() must be called before using this function.
alpar@1119
   784
    const PredMap &predMap() const { return *_pred;}
jacint@385
   785
 
jacint@385
   786
    ///Checks if a node is reachable from the root.
alpar@255
   787
jacint@385
   788
    ///Returns \c true if \c v is reachable from the root.
alpar@1218
   789
    ///\warning The source nodes are inditated as unreached.
alpar@255
   790
    ///\pre \ref run() must be called before using this function.
jacint@385
   791
    ///
deba@1721
   792
    bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
alpar@1734
   793
alpar@1734
   794
    ///Checks if a node is processed.
alpar@1734
   795
alpar@1734
   796
    ///Returns \c true if \c v is processed, i.e. the shortest
alpar@1734
   797
    ///path to \c v has already found.
alpar@1734
   798
    ///\pre \ref run() must be called before using this function.
alpar@1734
   799
    ///
alpar@1734
   800
    bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
alpar@255
   801
    
alpar@1128
   802
    ///@}
alpar@255
   803
  };
alpar@953
   804
alpar@1218
   805
alpar@1218
   806
alpar@1218
   807
alpar@1218
   808
 
alpar@1218
   809
  ///Default traits class of Dijkstra function.
alpar@1218
   810
alpar@1218
   811
  ///Default traits class of Dijkstra function.
alpar@1218
   812
  ///\param GR Graph type.
alpar@1218
   813
  ///\param LM Type of length map.
alpar@1218
   814
  template<class GR, class LM>
alpar@1218
   815
  struct DijkstraWizardDefaultTraits
alpar@1218
   816
  {
alpar@1218
   817
    ///The graph type the algorithm runs on. 
alpar@1218
   818
    typedef GR Graph;
alpar@1218
   819
    ///The type of the map that stores the edge lengths.
alpar@1218
   820
alpar@1218
   821
    ///The type of the map that stores the edge lengths.
alpar@1218
   822
    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
alpar@1218
   823
    typedef LM LengthMap;
alpar@1218
   824
    //The type of the length of the edges.
alpar@1218
   825
    typedef typename LM::Value Value;
alpar@1218
   826
    ///The heap type used by Dijkstra algorithm.
alpar@1218
   827
deba@1721
   828
    /// The cross reference type used by heap.
deba@1721
   829
deba@1721
   830
    /// The cross reference type used by heap.
deba@1721
   831
    /// Usually it is \c Graph::NodeMap<int>.
deba@1721
   832
    typedef typename Graph::template NodeMap<int> HeapCrossRef;
deba@1721
   833
    ///Instantiates a HeapCrossRef.
deba@1721
   834
deba@1721
   835
    ///This function instantiates a \ref HeapCrossRef. 
deba@1721
   836
    /// \param G is the graph, to which we would like to define the 
deba@1721
   837
    /// HeapCrossRef.
deba@1721
   838
    /// \todo The graph alone may be insufficient for the initialization
deba@1721
   839
    static HeapCrossRef *createHeapCrossRef(const GR &G) 
deba@1721
   840
    {
deba@1721
   841
      return new HeapCrossRef(G);
deba@1721
   842
    }
deba@1721
   843
    
deba@1721
   844
    ///The heap type used by Dijkstra algorithm.
deba@1721
   845
alpar@1218
   846
    ///The heap type used by Dijkstra algorithm.
alpar@1218
   847
    ///
alpar@1218
   848
    ///\sa BinHeap
alpar@1218
   849
    ///\sa Dijkstra
deba@1721
   850
    typedef BinHeap<typename Graph::Node, typename LM::Value,
alpar@1218
   851
		    typename GR::template NodeMap<int>,
alpar@1218
   852
		    std::less<Value> > Heap;
alpar@1218
   853
deba@1721
   854
    static Heap *createHeap(HeapCrossRef& R) 
deba@1721
   855
    {
deba@1721
   856
      return new Heap(R);
deba@1721
   857
    }
deba@1721
   858
alpar@1218
   859
    ///\brief The type of the map that stores the last
alpar@1218
   860
    ///edges of the shortest paths.
alpar@1218
   861
    /// 
alpar@1218
   862
    ///The type of the map that stores the last
alpar@1218
   863
    ///edges of the shortest paths.
alpar@1218
   864
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
   865
    ///
alpar@1218
   866
    typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
alpar@1218
   867
    ///Instantiates a PredMap.
alpar@1218
   868
 
alpar@1218
   869
    ///This function instantiates a \ref PredMap. 
alpar@1536
   870
    ///\param g is the graph, to which we would like to define the PredMap.
alpar@1218
   871
    ///\todo The graph alone may be insufficient for the initialization
alpar@1536
   872
#ifdef DOXYGEN
alpar@1536
   873
    static PredMap *createPredMap(const GR &g) 
alpar@1536
   874
#else
alpar@1367
   875
    static PredMap *createPredMap(const GR &) 
alpar@1536
   876
#endif
alpar@1218
   877
    {
alpar@1218
   878
      return new PredMap();
alpar@1218
   879
    }
alpar@1218
   880
    ///The type of the map that stores whether a nodes is processed.
alpar@1218
   881
 
alpar@1218
   882
    ///The type of the map that stores whether a nodes is processed.
alpar@1218
   883
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
   884
    ///By default it is a NullMap.
alpar@1218
   885
    ///\todo If it is set to a real map,
alpar@1218
   886
    ///Dijkstra::processed() should read this.
alpar@1218
   887
    ///\todo named parameter to set this type, function to read and write.
alpar@1218
   888
    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
alpar@1218
   889
    ///Instantiates a ProcessedMap.
alpar@1218
   890
 
alpar@1218
   891
    ///This function instantiates a \ref ProcessedMap. 
alpar@1536
   892
    ///\param g is the graph, to which
alpar@1218
   893
    ///we would like to define the \ref ProcessedMap
alpar@1536
   894
#ifdef DOXYGEN
alpar@1536
   895
    static ProcessedMap *createProcessedMap(const GR &g)
alpar@1536
   896
#else
alpar@1367
   897
    static ProcessedMap *createProcessedMap(const GR &)
alpar@1536
   898
#endif
alpar@1218
   899
    {
alpar@1218
   900
      return new ProcessedMap();
alpar@1218
   901
    }
alpar@1218
   902
    ///The type of the map that stores the dists of the nodes.
alpar@1218
   903
 
alpar@1218
   904
    ///The type of the map that stores the dists of the nodes.
alpar@1218
   905
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
   906
    ///
alpar@1218
   907
    typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
alpar@1218
   908
    ///Instantiates a DistMap.
alpar@1218
   909
 
alpar@1218
   910
    ///This function instantiates a \ref DistMap. 
alpar@1536
   911
    ///\param g is the graph, to which we would like to define the \ref DistMap
alpar@1536
   912
#ifdef DOXYGEN
alpar@1536
   913
    static DistMap *createDistMap(const GR &g)
alpar@1536
   914
#else
alpar@1367
   915
    static DistMap *createDistMap(const GR &)
alpar@1536
   916
#endif
alpar@1218
   917
    {
alpar@1218
   918
      return new DistMap();
alpar@1218
   919
    }
alpar@1218
   920
  };
alpar@1218
   921
  
hegyi@1123
   922
  /// Default traits used by \ref DijkstraWizard
hegyi@1123
   923
alpar@1151
   924
  /// To make it easier to use Dijkstra algorithm
alpar@1151
   925
  ///we have created a wizard class.
alpar@1151
   926
  /// This \ref DijkstraWizard class needs default traits,
alpar@1151
   927
  ///as well as the \ref Dijkstra class.
hegyi@1123
   928
  /// The \ref DijkstraWizardBase is a class to be the default traits of the
hegyi@1123
   929
  /// \ref DijkstraWizard class.
alpar@1220
   930
  /// \todo More named parameters are required...
alpar@1116
   931
  template<class GR,class LM>
alpar@1218
   932
  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
alpar@1116
   933
  {
alpar@1116
   934
alpar@1218
   935
    typedef DijkstraWizardDefaultTraits<GR,LM> Base;
alpar@1116
   936
  protected:
alpar@1201
   937
    /// Type of the nodes in the graph.
alpar@1201
   938
    typedef typename Base::Graph::Node Node;
alpar@1201
   939
alpar@1116
   940
    /// Pointer to the underlying graph.
alpar@1116
   941
    void *_g;
alpar@1116
   942
    /// Pointer to the length map
alpar@1116
   943
    void *_length;
alpar@1116
   944
    ///Pointer to the map of predecessors edges.
alpar@1116
   945
    void *_pred;
alpar@1116
   946
    ///Pointer to the map of distances.
alpar@1116
   947
    void *_dist;
alpar@1116
   948
    ///Pointer to the source node.
alpar@1201
   949
    Node _source;
alpar@1116
   950
alpar@1116
   951
    public:
hegyi@1123
   952
    /// Constructor.
hegyi@1123
   953
    
hegyi@1123
   954
    /// This constructor does not require parameters, therefore it initiates
hegyi@1123
   955
    /// all of the attributes to default values (0, INVALID).
alpar@1218
   956
    DijkstraWizardBase() : _g(0), _length(0), _pred(0),
alpar@1218
   957
			   _dist(0), _source(INVALID) {}
alpar@1116
   958
hegyi@1123
   959
    /// Constructor.
hegyi@1123
   960
    
alpar@1156
   961
    /// This constructor requires some parameters,
alpar@1156
   962
    /// listed in the parameters list.
hegyi@1123
   963
    /// Others are initiated to 0.
hegyi@1123
   964
    /// \param g is the initial value of  \ref _g
hegyi@1123
   965
    /// \param l is the initial value of  \ref _length
hegyi@1123
   966
    /// \param s is the initial value of  \ref _source
alpar@1116
   967
    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
alpar@1218
   968
      _g((void *)&g), _length((void *)&l), _pred(0),
alpar@1218
   969
      _dist(0), _source(s) {}
alpar@1116
   970
alpar@1116
   971
  };
alpar@1116
   972
  
alpar@1229
   973
  /// A class to make the usage of Dijkstra algorithm easier
alpar@953
   974
hegyi@1123
   975
  /// This class is created to make it easier to use Dijkstra algorithm.
hegyi@1123
   976
  /// It uses the functions and features of the plain \ref Dijkstra,
alpar@1151
   977
  /// but it is much simpler to use it.
alpar@953
   978
  ///
hegyi@1123
   979
  /// Simplicity means that the way to change the types defined
hegyi@1123
   980
  /// in the traits class is based on functions that returns the new class
alpar@1151
   981
  /// and not on templatable built-in classes.
alpar@1151
   982
  /// When using the plain \ref Dijkstra
alpar@1151
   983
  /// the new class with the modified type comes from
alpar@1151
   984
  /// the original class by using the ::
alpar@1151
   985
  /// operator. In the case of \ref DijkstraWizard only
alpar@1151
   986
  /// a function have to be called and it will
hegyi@1123
   987
  /// return the needed class.
hegyi@1123
   988
  ///
hegyi@1123
   989
  /// It does not have own \ref run method. When its \ref run method is called
deba@1721
   990
  /// it initiates a plain \ref Dijkstra class, and calls the \ref 
deba@1721
   991
  /// Dijkstra::run method of it.
alpar@953
   992
  template<class TR>
alpar@1116
   993
  class DijkstraWizard : public TR
alpar@953
   994
  {
alpar@1116
   995
    typedef TR Base;
alpar@953
   996
hegyi@1123
   997
    ///The type of the underlying graph.
alpar@953
   998
    typedef typename TR::Graph Graph;
alpar@1119
   999
    //\e
alpar@953
  1000
    typedef typename Graph::Node Node;
alpar@1119
  1001
    //\e
alpar@953
  1002
    typedef typename Graph::NodeIt NodeIt;
alpar@1119
  1003
    //\e
alpar@953
  1004
    typedef typename Graph::Edge Edge;
alpar@1119
  1005
    //\e
alpar@953
  1006
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@953
  1007
    
hegyi@1123
  1008
    ///The type of the map that stores the edge lengths.
alpar@953
  1009
    typedef typename TR::LengthMap LengthMap;
hegyi@1123
  1010
    ///The type of the length of the edges.
alpar@987
  1011
    typedef typename LengthMap::Value Value;
hegyi@1123
  1012
    ///\brief The type of the map that stores the last
hegyi@1123
  1013
    ///edges of the shortest paths.
alpar@953
  1014
    typedef typename TR::PredMap PredMap;
hegyi@1123
  1015
    ///The type of the map that stores the dists of the nodes.
alpar@953
  1016
    typedef typename TR::DistMap DistMap;
hegyi@1123
  1017
    ///The heap type used by the dijkstra algorithm.
alpar@953
  1018
    typedef typename TR::Heap Heap;
alpar@1116
  1019
public:
hegyi@1123
  1020
    /// Constructor.
alpar@1116
  1021
    DijkstraWizard() : TR() {}
alpar@953
  1022
hegyi@1123
  1023
    /// Constructor that requires parameters.
hegyi@1124
  1024
hegyi@1124
  1025
    /// Constructor that requires parameters.
hegyi@1123
  1026
    /// These parameters will be the default values for the traits class.
alpar@1116
  1027
    DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
alpar@1116
  1028
      TR(g,l,s) {}
alpar@953
  1029
hegyi@1123
  1030
    ///Copy constructor
alpar@1116
  1031
    DijkstraWizard(const TR &b) : TR(b) {}
alpar@953
  1032
alpar@1116
  1033
    ~DijkstraWizard() {}
alpar@1116
  1034
hegyi@1123
  1035
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
  1036
    
hegyi@1123
  1037
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
  1038
    ///The node can be given by the \ref source function.
alpar@1116
  1039
    void run()
alpar@953
  1040
    {
alpar@1201
  1041
      if(Base::_source==INVALID) throw UninitializedParameter();
deba@1193
  1042
      Dijkstra<Graph,LengthMap,TR> 
deba@1345
  1043
	dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
deba@1345
  1044
      if(Base::_pred) dij.predMap(*(PredMap*)Base::_pred);
deba@1345
  1045
      if(Base::_dist) dij.distMap(*(DistMap*)Base::_dist);
deba@1345
  1046
      dij.run(Base::_source);
alpar@1116
  1047
    }
alpar@1116
  1048
hegyi@1124
  1049
    ///Runs Dijkstra algorithm from the given node.
hegyi@1123
  1050
hegyi@1124
  1051
    ///Runs Dijkstra algorithm from the given node.
hegyi@1123
  1052
    ///\param s is the given source.
alpar@1116
  1053
    void run(Node s)
alpar@1116
  1054
    {
alpar@1201
  1055
      Base::_source=s;
alpar@1116
  1056
      run();
alpar@953
  1057
    }
alpar@953
  1058
alpar@953
  1059
    template<class T>
alpar@1116
  1060
    struct DefPredMapBase : public Base {
alpar@1116
  1061
      typedef T PredMap;
alpar@1367
  1062
      static PredMap *createPredMap(const Graph &) { return 0; };
alpar@1236
  1063
      DefPredMapBase(const TR &b) : TR(b) {}
alpar@1116
  1064
    };
alpar@953
  1065
    
alpar@1156
  1066
    ///\brief \ref named-templ-param "Named parameter"
alpar@1156
  1067
    ///function for setting PredMap type
alpar@1156
  1068
    ///
alpar@1156
  1069
    /// \ref named-templ-param "Named parameter"
alpar@1156
  1070
    ///function for setting PredMap type
hegyi@1124
  1071
    ///
alpar@953
  1072
    template<class T>
alpar@1116
  1073
    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
alpar@953
  1074
    {
deba@1193
  1075
      Base::_pred=(void *)&t;
alpar@1116
  1076
      return DijkstraWizard<DefPredMapBase<T> >(*this);
alpar@953
  1077
    }
alpar@953
  1078
    
alpar@1116
  1079
    template<class T>
alpar@1116
  1080
    struct DefDistMapBase : public Base {
alpar@1116
  1081
      typedef T DistMap;
alpar@1367
  1082
      static DistMap *createDistMap(const Graph &) { return 0; };
alpar@1236
  1083
      DefDistMapBase(const TR &b) : TR(b) {}
alpar@1116
  1084
    };
alpar@953
  1085
    
alpar@1156
  1086
    ///\brief \ref named-templ-param "Named parameter"
alpar@1156
  1087
    ///function for setting DistMap type
alpar@1156
  1088
    ///
alpar@1156
  1089
    /// \ref named-templ-param "Named parameter"
alpar@1156
  1090
    ///function for setting DistMap type
hegyi@1124
  1091
    ///
alpar@953
  1092
    template<class T>
alpar@1116
  1093
    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
alpar@953
  1094
    {
deba@1193
  1095
      Base::_dist=(void *)&t;
alpar@1116
  1096
      return DijkstraWizard<DefDistMapBase<T> >(*this);
alpar@953
  1097
    }
alpar@1117
  1098
    
hegyi@1123
  1099
    /// Sets the source node, from which the Dijkstra algorithm runs.
hegyi@1123
  1100
hegyi@1123
  1101
    /// Sets the source node, from which the Dijkstra algorithm runs.
hegyi@1123
  1102
    /// \param s is the source node.
alpar@1117
  1103
    DijkstraWizard<TR> &source(Node s) 
alpar@953
  1104
    {
alpar@1201
  1105
      Base::_source=s;
alpar@953
  1106
      return *this;
alpar@953
  1107
    }
alpar@953
  1108
    
alpar@953
  1109
  };
alpar@255
  1110
  
alpar@1218
  1111
  ///Function type interface for Dijkstra algorithm.
alpar@953
  1112
alpar@1151
  1113
  /// \ingroup flowalgs
alpar@1218
  1114
  ///Function type interface for Dijkstra algorithm.
alpar@953
  1115
  ///
alpar@1218
  1116
  ///This function also has several
alpar@1218
  1117
  ///\ref named-templ-func-param "named parameters",
alpar@1218
  1118
  ///they are declared as the members of class \ref DijkstraWizard.
alpar@1218
  1119
  ///The following
alpar@1218
  1120
  ///example shows how to use these parameters.
alpar@1218
  1121
  ///\code
alpar@1218
  1122
  ///  dijkstra(g,length,source).predMap(preds).run();
alpar@1218
  1123
  ///\endcode
alpar@1218
  1124
  ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
alpar@1218
  1125
  ///to the end of the parameter list.
alpar@1218
  1126
  ///\sa DijkstraWizard
alpar@1218
  1127
  ///\sa Dijkstra
alpar@953
  1128
  template<class GR, class LM>
alpar@1116
  1129
  DijkstraWizard<DijkstraWizardBase<GR,LM> >
alpar@1116
  1130
  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
alpar@953
  1131
  {
alpar@1116
  1132
    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
alpar@953
  1133
  }
alpar@953
  1134
alpar@921
  1135
} //END OF NAMESPACE LEMON
alpar@255
  1136
alpar@255
  1137
#endif