src/lemon/dijkstra.h
author deba
Fri, 11 Mar 2005 16:29:03 +0000
changeset 1210 f02396423239
parent 1196 4bebc22ab77c
child 1218 5331168bbb18
permissions -rw-r--r--
work modifications
alpar@906
     1
/* -*- C++ -*-
alpar@921
     2
 * src/lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@1164
     4
 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@906
     5
 * (Egervary Combinatorial Optimization Research Group, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@921
    17
#ifndef LEMON_DIJKSTRA_H
alpar@921
    18
#define LEMON_DIJKSTRA_H
alpar@255
    19
alpar@758
    20
///\ingroup flowalgs
alpar@255
    21
///\file
alpar@255
    22
///\brief Dijkstra algorithm.
alpar@255
    23
alpar@953
    24
#include <lemon/list_graph.h>
alpar@921
    25
#include <lemon/bin_heap.h>
alpar@921
    26
#include <lemon/invalid.h>
alpar@1119
    27
#include <lemon/error.h>
alpar@1119
    28
#include <lemon/maps.h>
alpar@255
    29
alpar@921
    30
namespace lemon {
jacint@385
    31
alpar@1119
    32
alpar@1151
    33
  
alpar@954
    34
  ///Default traits class of Dijkstra class.
alpar@954
    35
alpar@954
    36
  ///Default traits class of Dijkstra class.
alpar@954
    37
  ///\param GR Graph type.
alpar@954
    38
  ///\param LM Type of length map.
alpar@953
    39
  template<class GR, class LM>
alpar@953
    40
  struct DijkstraDefaultTraits
alpar@953
    41
  {
alpar@954
    42
    ///The graph type the algorithm runs on. 
alpar@953
    43
    typedef GR Graph;
alpar@953
    44
    ///The type of the map that stores the edge lengths.
alpar@953
    45
hegyi@1124
    46
    ///The type of the map that stores the edge lengths.
alpar@967
    47
    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
alpar@953
    48
    typedef LM LengthMap;
alpar@954
    49
    //The type of the length of the edges.
alpar@987
    50
    typedef typename LM::Value Value;
alpar@954
    51
    ///The heap type used by Dijkstra algorithm.
alpar@967
    52
alpar@967
    53
    ///The heap type used by Dijkstra algorithm.
alpar@967
    54
    ///
alpar@967
    55
    ///\sa BinHeap
alpar@967
    56
    ///\sa Dijkstra
alpar@953
    57
    typedef BinHeap<typename Graph::Node,
alpar@987
    58
		    typename LM::Value,
alpar@953
    59
		    typename GR::template NodeMap<int>,
alpar@987
    60
		    std::less<Value> > Heap;
alpar@953
    61
alpar@953
    62
    ///\brief The type of the map that stores the last
alpar@953
    63
    ///edges of the shortest paths.
alpar@953
    64
    /// 
hegyi@1124
    65
    ///The type of the map that stores the last
hegyi@1124
    66
    ///edges of the shortest paths.
alpar@967
    67
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
    68
    ///
alpar@954
    69
    typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
alpar@954
    70
    ///Instantiates a PredMap.
alpar@953
    71
 
hegyi@1123
    72
    ///This function instantiates a \ref PredMap. 
hegyi@1123
    73
    ///\param G is the graph, to which we would like to define the PredMap.
alpar@1119
    74
    ///\todo The graph alone may be insufficient for the initialization
alpar@954
    75
    static PredMap *createPredMap(const GR &G) 
alpar@953
    76
    {
alpar@953
    77
      return new PredMap(G);
alpar@953
    78
    }
alpar@953
    79
    ///\brief The type of the map that stores the last but one
alpar@953
    80
    ///nodes of the shortest paths.
alpar@953
    81
    ///
hegyi@1124
    82
    ///The type of the map that stores the last but one
hegyi@1124
    83
    ///nodes of the shortest paths.
alpar@967
    84
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
    85
    ///
alpar@1130
    86
    typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
alpar@954
    87
    ///Instantiates a PredNodeMap.
alpar@1125
    88
    
hegyi@1123
    89
    ///This function instantiates a \ref PredNodeMap. 
alpar@1156
    90
    ///\param G is the graph, to which
alpar@1156
    91
    ///we would like to define the \ref PredNodeMap
alpar@954
    92
    static PredNodeMap *createPredNodeMap(const GR &G)
alpar@953
    93
    {
alpar@1130
    94
      return new PredNodeMap();
alpar@953
    95
    }
alpar@1119
    96
alpar@1119
    97
    ///The type of the map that stores whether a nodes is reached.
alpar@1119
    98
 
hegyi@1124
    99
    ///The type of the map that stores whether a nodes is reached.
alpar@1119
   100
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1119
   101
    ///By default it is a NullMap.
alpar@1119
   102
    ///\todo If it is set to a real map, Dijkstra::reached() should read this.
alpar@1119
   103
    ///\todo named parameter to set this type, function to read and write.
alpar@1119
   104
    typedef NullMap<typename Graph::Node,bool> ReachedMap;
alpar@1119
   105
    ///Instantiates a ReachedMap.
alpar@1119
   106
 
hegyi@1123
   107
    ///This function instantiates a \ref ReachedMap. 
alpar@1156
   108
    ///\param G is the graph, to which
alpar@1156
   109
    ///we would like to define the \ref ReachedMap
alpar@1119
   110
    static ReachedMap *createReachedMap(const GR &G)
alpar@1119
   111
    {
alpar@1119
   112
      return new ReachedMap();
alpar@1119
   113
    }
alpar@953
   114
    ///The type of the map that stores the dists of the nodes.
alpar@953
   115
 
hegyi@1124
   116
    ///The type of the map that stores the dists of the nodes.
alpar@967
   117
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
   118
    ///
alpar@987
   119
    typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
alpar@954
   120
    ///Instantiates a DistMap.
alpar@953
   121
 
hegyi@1123
   122
    ///This function instantiates a \ref DistMap. 
hegyi@1123
   123
    ///\param G is the graph, to which we would like to define the \ref DistMap
alpar@954
   124
    static DistMap *createDistMap(const GR &G)
alpar@953
   125
    {
alpar@953
   126
      return new DistMap(G);
alpar@953
   127
    }
alpar@953
   128
  };
alpar@953
   129
  
alpar@255
   130
  ///%Dijkstra algorithm class.
alpar@1125
   131
  
alpar@1151
   132
  /// \ingroup flowalgs
alpar@255
   133
  ///This class provides an efficient implementation of %Dijkstra algorithm.
alpar@255
   134
  ///The edge lengths are passed to the algorithm using a
klao@959
   135
  ///\ref concept::ReadMap "ReadMap",
alpar@255
   136
  ///so it is easy to change it to any kind of length.
alpar@255
   137
  ///
alpar@880
   138
  ///The type of the length is determined by the
alpar@987
   139
  ///\ref concept::ReadMap::Value "Value" of the length map.
alpar@255
   140
  ///
alpar@255
   141
  ///It is also possible to change the underlying priority heap.
alpar@255
   142
  ///
alpar@953
   143
  ///\param GR The graph type the algorithm runs on. The default value is
alpar@955
   144
  ///\ref ListGraph. The value of GR is not used directly by Dijkstra, it
alpar@954
   145
  ///is only passed to \ref DijkstraDefaultTraits.
alpar@584
   146
  ///\param LM This read-only
jacint@385
   147
  ///EdgeMap
jacint@385
   148
  ///determines the
jacint@385
   149
  ///lengths of the edges. It is read once for each edge, so the map
jacint@385
   150
  ///may involve in relatively time consuming process to compute the edge
jacint@385
   151
  ///length if it is necessary. The default map type is
klao@959
   152
  ///\ref concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".
alpar@955
   153
  ///The value of LM is not used directly by Dijkstra, it
alpar@954
   154
  ///is only passed to \ref DijkstraDefaultTraits.
alpar@954
   155
  ///\param TR Traits class to set various data types used by the algorithm.
alpar@954
   156
  ///The default traits class is
alpar@955
   157
  ///\ref DijkstraDefaultTraits "DijkstraDefaultTraits<GR,LM>".
alpar@954
   158
  ///See \ref DijkstraDefaultTraits for the documentation of
alpar@954
   159
  ///a Dijkstra traits class.
alpar@456
   160
  ///
alpar@689
   161
  ///\author Jacint Szabo and Alpar Juttner
alpar@1128
   162
  ///\todo A compare object would be nice.
alpar@584
   163
alpar@255
   164
#ifdef DOXYGEN
alpar@584
   165
  template <typename GR,
alpar@584
   166
	    typename LM,
alpar@953
   167
	    typename TR>
alpar@255
   168
#else
alpar@953
   169
  template <typename GR=ListGraph,
alpar@584
   170
	    typename LM=typename GR::template EdgeMap<int>,
alpar@953
   171
	    typename TR=DijkstraDefaultTraits<GR,LM> >
alpar@255
   172
#endif
alpar@1116
   173
  class Dijkstra {
alpar@255
   174
  public:
alpar@1125
   175
    /**
alpar@1125
   176
     * \brief \ref Exception for uninitialized parameters.
alpar@1125
   177
     *
alpar@1125
   178
     * This error represents problems in the initialization
alpar@1125
   179
     * of the parameters of the algorithms.
alpar@1125
   180
     */
alpar@1125
   181
    class UninitializedParameter : public lemon::UninitializedParameter {
alpar@1125
   182
    public:
alpar@1125
   183
      virtual const char* exceptionName() const {
alpar@1125
   184
	return "lemon::Dijsktra::UninitializedParameter";
alpar@1125
   185
      }
alpar@1125
   186
    };
alpar@1119
   187
alpar@953
   188
    typedef TR Traits;
alpar@584
   189
    ///The type of the underlying graph.
alpar@954
   190
    typedef typename TR::Graph Graph;
alpar@911
   191
    ///\e
alpar@255
   192
    typedef typename Graph::Node Node;
alpar@911
   193
    ///\e
alpar@255
   194
    typedef typename Graph::NodeIt NodeIt;
alpar@911
   195
    ///\e
alpar@255
   196
    typedef typename Graph::Edge Edge;
alpar@911
   197
    ///\e
alpar@255
   198
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@255
   199
    
alpar@584
   200
    ///The type of the length of the edges.
alpar@987
   201
    typedef typename TR::LengthMap::Value Value;
alpar@693
   202
    ///The type of the map that stores the edge lengths.
alpar@954
   203
    typedef typename TR::LengthMap LengthMap;
alpar@693
   204
    ///\brief The type of the map that stores the last
alpar@584
   205
    ///edges of the shortest paths.
alpar@953
   206
    typedef typename TR::PredMap PredMap;
alpar@693
   207
    ///\brief The type of the map that stores the last but one
alpar@584
   208
    ///nodes of the shortest paths.
alpar@953
   209
    typedef typename TR::PredNodeMap PredNodeMap;
alpar@1119
   210
    ///The type of the map indicating if a node is reached.
alpar@1119
   211
    typedef typename TR::ReachedMap ReachedMap;
alpar@693
   212
    ///The type of the map that stores the dists of the nodes.
alpar@953
   213
    typedef typename TR::DistMap DistMap;
alpar@953
   214
    ///The heap type used by the dijkstra algorithm.
alpar@953
   215
    typedef typename TR::Heap Heap;
alpar@255
   216
  private:
alpar@802
   217
    /// Pointer to the underlying graph.
alpar@688
   218
    const Graph *G;
alpar@802
   219
    /// Pointer to the length map
alpar@954
   220
    const LengthMap *length;
alpar@802
   221
    ///Pointer to the map of predecessors edges.
alpar@1119
   222
    PredMap *_pred;
alpar@1119
   223
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
alpar@1119
   224
    bool local_pred;
alpar@802
   225
    ///Pointer to the map of predecessors nodes.
alpar@1130
   226
    PredNodeMap *_predNode;
alpar@1130
   227
    ///Indicates if \ref _predNode is locally allocated (\c true) or not.
alpar@1130
   228
    bool local_predNode;
alpar@802
   229
    ///Pointer to the map of distances.
alpar@1130
   230
    DistMap *_dist;
alpar@1130
   231
    ///Indicates if \ref _dist is locally allocated (\c true) or not.
alpar@1130
   232
    bool local_dist;
alpar@1119
   233
    ///Pointer to the map of reached status of the nodes.
alpar@1119
   234
    ReachedMap *_reached;
alpar@1119
   235
    ///Indicates if \ref _reached is locally allocated (\c true) or not.
alpar@1119
   236
    bool local_reached;
alpar@688
   237
alpar@802
   238
    ///The source node of the last execution.
alpar@774
   239
    Node source;
alpar@774
   240
alpar@1128
   241
    ///Creates the maps if necessary.
alpar@688
   242
    
alpar@694
   243
    ///\todo Error if \c G or are \c NULL. What about \c length?
alpar@688
   244
    ///\todo Better memory allocation (instead of new).
alpar@1128
   245
    void create_maps() 
alpar@688
   246
    {
alpar@1119
   247
      if(!_pred) {
alpar@1119
   248
	local_pred = true;
alpar@1119
   249
	_pred = Traits::createPredMap(*G);
alpar@688
   250
      }
alpar@1130
   251
      if(!_predNode) {
alpar@1130
   252
	local_predNode = true;
alpar@1130
   253
	_predNode = Traits::createPredNodeMap(*G);
alpar@688
   254
      }
alpar@1130
   255
      if(!_dist) {
alpar@1130
   256
	local_dist = true;
alpar@1130
   257
	_dist = Traits::createDistMap(*G);
alpar@688
   258
      }
alpar@1119
   259
      if(!_reached) {
alpar@1119
   260
	local_reached = true;
alpar@1119
   261
	_reached = Traits::createReachedMap(*G);
alpar@1119
   262
      }
alpar@688
   263
    }
alpar@255
   264
    
alpar@255
   265
  public :
alpar@1116
   266
 
alpar@1128
   267
    ///\name Named template parameters
alpar@1128
   268
alpar@1128
   269
    ///@{
alpar@1128
   270
alpar@953
   271
    template <class T>
alpar@1116
   272
    struct DefPredMapTraits : public Traits {
alpar@953
   273
      typedef T PredMap;
alpar@953
   274
      static PredMap *createPredMap(const Graph &G) 
alpar@953
   275
      {
alpar@1126
   276
	throw UninitializedParameter();
alpar@953
   277
      }
alpar@953
   278
    };
alpar@954
   279
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@954
   280
alpar@954
   281
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@1043
   282
    ///
alpar@953
   283
    template <class T>
alpar@1116
   284
    class DefPredMap : public Dijkstra< Graph,
alpar@953
   285
					LengthMap,
alpar@1116
   286
					DefPredMapTraits<T> > { };
alpar@953
   287
    
alpar@953
   288
    template <class T>
alpar@1116
   289
    struct DefPredNodeMapTraits : public Traits {
alpar@953
   290
      typedef T PredNodeMap;
alpar@953
   291
      static PredNodeMap *createPredNodeMap(const Graph &G) 
alpar@953
   292
      {
alpar@1126
   293
	throw UninitializedParameter();
alpar@953
   294
      }
alpar@953
   295
    };
alpar@954
   296
    ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
alpar@954
   297
alpar@954
   298
    ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
alpar@1043
   299
    ///
alpar@953
   300
    template <class T>
alpar@1116
   301
    class DefPredNodeMap : public Dijkstra< Graph,
alpar@953
   302
					    LengthMap,
alpar@1116
   303
					    DefPredNodeMapTraits<T> > { };
alpar@953
   304
    
alpar@953
   305
    template <class T>
alpar@1116
   306
    struct DefDistMapTraits : public Traits {
alpar@953
   307
      typedef T DistMap;
alpar@953
   308
      static DistMap *createDistMap(const Graph &G) 
alpar@953
   309
      {
alpar@1126
   310
	throw UninitializedParameter();
alpar@953
   311
      }
alpar@953
   312
    };
alpar@954
   313
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@954
   314
alpar@954
   315
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@1043
   316
    ///
alpar@953
   317
    template <class T>
alpar@1116
   318
    class DefDistMap : public Dijkstra< Graph,
alpar@953
   319
					LengthMap,
alpar@1116
   320
					DefDistMapTraits<T> > { };
alpar@953
   321
    
alpar@1128
   322
    template <class T>
alpar@1128
   323
    struct DefReachedMapTraits : public Traits {
alpar@1128
   324
      typedef T ReachedMap;
alpar@1128
   325
      static ReachedMap *createReachedMap(const Graph &G) 
alpar@1128
   326
      {
alpar@1128
   327
	throw UninitializedParameter();
alpar@1128
   328
      }
alpar@1128
   329
    };
alpar@1128
   330
    ///\ref named-templ-param "Named parameter" for setting ReachedMap type
alpar@1128
   331
alpar@1128
   332
    ///\ref named-templ-param "Named parameter" for setting ReachedMap type
alpar@1128
   333
    ///
alpar@1128
   334
    template <class T>
alpar@1128
   335
    class DefReachedMap : public Dijkstra< Graph,
alpar@1128
   336
					LengthMap,
alpar@1128
   337
					DefReachedMapTraits<T> > { };
alpar@1128
   338
    
alpar@1128
   339
    struct DefGraphReachedMapTraits : public Traits {
deba@1193
   340
      typedef typename Graph::template NodeMap<bool> ReachedMap;
alpar@1128
   341
      static ReachedMap *createReachedMap(const Graph &G) 
alpar@1128
   342
      {
alpar@1128
   343
	return new ReachedMap(G);
alpar@1128
   344
      }
alpar@1128
   345
    };
alpar@1128
   346
    ///\brief \ref named-templ-param "Named parameter"
alpar@1128
   347
    ///for setting the ReachedMap type to be Graph::NodeMap<bool>.
alpar@1128
   348
    ///
alpar@1128
   349
    ///\ref named-templ-param "Named parameter"
alpar@1128
   350
    ///for setting the ReachedMap type to be Graph::NodeMap<bool>.
alpar@1128
   351
    ///If you don't set it explicitely, it will be automatically allocated.
alpar@1128
   352
    template <class T>
alpar@1128
   353
    class DefReachedMapToBeDefaultMap :
alpar@1128
   354
      public Dijkstra< Graph,
alpar@1128
   355
		       LengthMap,
alpar@1128
   356
		       DefGraphReachedMapTraits> { };
alpar@1128
   357
    
alpar@1128
   358
    ///@}
alpar@1128
   359
alpar@1128
   360
alpar@1128
   361
  private:
alpar@1128
   362
    typename Graph::template NodeMap<int> _heap_map;
alpar@1128
   363
    Heap _heap;
alpar@1128
   364
  public:      
alpar@1128
   365
    
alpar@802
   366
    ///Constructor.
alpar@255
   367
    
alpar@802
   368
    ///\param _G the graph the algorithm will run on.
alpar@802
   369
    ///\param _length the length map used by the algorithm.
alpar@954
   370
    Dijkstra(const Graph& _G, const LengthMap& _length) :
alpar@688
   371
      G(&_G), length(&_length),
alpar@1119
   372
      _pred(NULL), local_pred(false),
alpar@1130
   373
      _predNode(NULL), local_predNode(false),
alpar@1130
   374
      _dist(NULL), local_dist(false),
alpar@1128
   375
      _reached(NULL), local_reached(false),
alpar@1128
   376
      _heap_map(*G,-1),_heap(_heap_map)
alpar@688
   377
    { }
alpar@688
   378
    
alpar@802
   379
    ///Destructor.
alpar@688
   380
    ~Dijkstra() 
alpar@688
   381
    {
alpar@1119
   382
      if(local_pred) delete _pred;
alpar@1130
   383
      if(local_predNode) delete _predNode;
alpar@1130
   384
      if(local_dist) delete _dist;
alpar@1119
   385
      if(local_reached) delete _reached;
alpar@688
   386
    }
alpar@688
   387
alpar@688
   388
    ///Sets the length map.
alpar@688
   389
alpar@688
   390
    ///Sets the length map.
alpar@688
   391
    ///\return <tt> (*this) </tt>
alpar@1116
   392
    Dijkstra &lengthMap(const LengthMap &m) 
alpar@688
   393
    {
alpar@688
   394
      length = &m;
alpar@688
   395
      return *this;
alpar@688
   396
    }
alpar@688
   397
alpar@688
   398
    ///Sets the map storing the predecessor edges.
alpar@688
   399
alpar@688
   400
    ///Sets the map storing the predecessor edges.
alpar@688
   401
    ///If you don't use this function before calling \ref run(),
alpar@688
   402
    ///it will allocate one. The destuctor deallocates this
alpar@688
   403
    ///automatically allocated map, of course.
alpar@688
   404
    ///\return <tt> (*this) </tt>
alpar@1116
   405
    Dijkstra &predMap(PredMap &m) 
alpar@688
   406
    {
alpar@1119
   407
      if(local_pred) {
alpar@1119
   408
	delete _pred;
alpar@1119
   409
	local_pred=false;
alpar@688
   410
      }
alpar@1119
   411
      _pred = &m;
alpar@688
   412
      return *this;
alpar@688
   413
    }
alpar@688
   414
alpar@688
   415
    ///Sets the map storing the predecessor nodes.
alpar@688
   416
alpar@688
   417
    ///Sets the map storing the predecessor nodes.
alpar@688
   418
    ///If you don't use this function before calling \ref run(),
alpar@688
   419
    ///it will allocate one. The destuctor deallocates this
alpar@688
   420
    ///automatically allocated map, of course.
alpar@688
   421
    ///\return <tt> (*this) </tt>
alpar@1116
   422
    Dijkstra &predNodeMap(PredNodeMap &m) 
alpar@688
   423
    {
alpar@1130
   424
      if(local_predNode) {
alpar@1130
   425
	delete _predNode;
alpar@1130
   426
	local_predNode=false;
alpar@688
   427
      }
alpar@1130
   428
      _predNode = &m;
alpar@688
   429
      return *this;
alpar@688
   430
    }
alpar@688
   431
alpar@688
   432
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   433
alpar@688
   434
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   435
    ///If you don't use this function before calling \ref run(),
alpar@688
   436
    ///it will allocate one. The destuctor deallocates this
alpar@688
   437
    ///automatically allocated map, of course.
alpar@688
   438
    ///\return <tt> (*this) </tt>
alpar@1116
   439
    Dijkstra &distMap(DistMap &m) 
alpar@688
   440
    {
alpar@1130
   441
      if(local_dist) {
alpar@1130
   442
	delete _dist;
alpar@1130
   443
	local_dist=false;
alpar@688
   444
      }
alpar@1130
   445
      _dist = &m;
alpar@688
   446
      return *this;
alpar@688
   447
    }
alpar@694
   448
alpar@1130
   449
  private:
alpar@1130
   450
    void finalizeNodeData(Node v,Value dst)
alpar@1130
   451
    {
alpar@1130
   452
      _reached->set(v,true);
alpar@1130
   453
      _dist->set(v, dst);
alpar@1196
   454
      if((*_pred)[v]!=INVALID) _predNode->set(v,G->source((*_pred)[v])); ///\todo What to do?
alpar@1130
   455
    }
alpar@1130
   456
alpar@1130
   457
  public:
alpar@1128
   458
    ///\name Excetution control
alpar@1128
   459
    ///The simplest way to execute the algorithm is to use
alpar@1156
   460
    ///one of the member functions called \c run(...).
alpar@1128
   461
    ///\n
alpar@1128
   462
    ///It you need more control on the execution,
alpar@1128
   463
    ///first you must call \ref init(), then you can add several source nodes
alpar@1128
   464
    ///with \ref addSource(). Finally \ref start() will perform the actual path
alpar@1128
   465
    ///computation.
alpar@1128
   466
alpar@1128
   467
    ///@{
alpar@1128
   468
alpar@1128
   469
    ///Initializes the internal data structures.
alpar@1128
   470
alpar@1128
   471
    ///Initializes the internal data structures.
alpar@1128
   472
    ///
alpar@1128
   473
    ///\todo _heap_map's type could also be in the traits class.
alpar@1128
   474
    void init()
alpar@1128
   475
    {
alpar@1128
   476
      create_maps();
alpar@774
   477
      
alpar@774
   478
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
alpar@1119
   479
	_pred->set(u,INVALID);
alpar@1130
   480
	_predNode->set(u,INVALID);
alpar@1119
   481
	///\todo *_reached is not set to false.
alpar@1128
   482
	_heap_map.set(u,Heap::PRE_HEAP);
alpar@694
   483
      }
alpar@1128
   484
    }
alpar@1128
   485
    
alpar@1128
   486
    ///Adds a new source node.
alpar@1128
   487
alpar@1155
   488
    ///Adds a new source node to the priority heap.
alpar@1128
   489
    ///
alpar@1128
   490
    ///The optional second parameter is the initial distance of the node.
alpar@1128
   491
    ///
alpar@1155
   492
    ///It checks if the node has already been added to the heap and
alpar@1155
   493
    ///It is pushed to the heap only if either it was not in the heap
alpar@1155
   494
    ///or the shortest path found till then is longer then \c dst.
alpar@1128
   495
    void addSource(Node s,Value dst=0)
alpar@1128
   496
    {
alpar@1128
   497
      source = s;
alpar@1128
   498
      if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst);
alpar@1155
   499
      else if(_heap[s]<dst) {
alpar@1155
   500
	_heap.push(s,dst);
alpar@1155
   501
	_pred->set(s,INVALID);
alpar@1155
   502
      }
alpar@1128
   503
    }
alpar@1128
   504
    
alpar@1155
   505
    ///Processes the next node in the priority heap
alpar@1155
   506
alpar@1155
   507
    ///Processes the next node in the priority heap.
alpar@1155
   508
    ///
alpar@1155
   509
    ///\warning The priority heap must not be empty!
alpar@1151
   510
    void processNextNode()
alpar@1128
   511
    {
alpar@1128
   512
      Node v=_heap.top(); 
alpar@1128
   513
      Value oldvalue=_heap[v];
alpar@1128
   514
      _heap.pop();
alpar@1130
   515
      finalizeNodeData(v,oldvalue);
alpar@694
   516
      
alpar@1128
   517
      for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
alpar@1128
   518
	Node w=G->target(e); 
alpar@1128
   519
	switch(_heap.state(w)) {
alpar@1128
   520
	case Heap::PRE_HEAP:
alpar@1128
   521
	  _heap.push(w,oldvalue+(*length)[e]); 
alpar@1128
   522
	  _pred->set(w,e);
alpar@1130
   523
//  	  _predNode->set(w,v);
alpar@1128
   524
	  break;
alpar@1128
   525
	case Heap::IN_HEAP:
alpar@1128
   526
	  if ( oldvalue+(*length)[e] < _heap[w] ) {
alpar@1128
   527
	    _heap.decrease(w, oldvalue+(*length)[e]); 
alpar@1119
   528
	    _pred->set(w,e);
alpar@1130
   529
// 	    _predNode->set(w,v);
alpar@694
   530
	  }
alpar@1128
   531
	  break;
alpar@1128
   532
	case Heap::POST_HEAP:
alpar@1128
   533
	  break;
alpar@694
   534
	}
alpar@694
   535
      }
alpar@694
   536
    }
alpar@1128
   537
alpar@1155
   538
    ///Returns \c false if there are nodes to be processed in the priority heap
alpar@1155
   539
alpar@1155
   540
    ///Returns \c false if there are nodes to be processed in the priority heap
alpar@1155
   541
    ///
deba@1193
   542
    bool emptyHeap() { return _heap.empty(); }
alpar@1155
   543
    ///Returns the number of the nodes to be processed in the priority heap
alpar@1155
   544
alpar@1155
   545
    ///Returns the number of the nodes to be processed in the priority heap
alpar@1155
   546
    ///
deba@1193
   547
    int heapSize() { return _heap.size(); }
alpar@1155
   548
    
alpar@1130
   549
    ///Executes the algorithm.
alpar@1128
   550
alpar@1130
   551
    ///Executes the algorithm.
alpar@1128
   552
    ///
alpar@1130
   553
    ///\pre init() must be called and at least one node should be added
alpar@1130
   554
    ///with addSource() before using this function.
alpar@1128
   555
    ///
alpar@1128
   556
    ///This method runs the %Dijkstra algorithm from the root node(s)
alpar@1128
   557
    ///in order to
alpar@1128
   558
    ///compute the
alpar@1128
   559
    ///shortest path to each node. The algorithm computes
alpar@1128
   560
    ///- The shortest path tree.
alpar@1128
   561
    ///- The distance of each node from the root(s).
alpar@1128
   562
    ///
alpar@1128
   563
    void start()
alpar@1128
   564
    {
alpar@1151
   565
      while ( !_heap.empty() ) processNextNode();
alpar@1128
   566
    }
alpar@255
   567
    
alpar@1130
   568
    ///Executes the algorithm until \c dest is reached.
alpar@1128
   569
alpar@1130
   570
    ///Executes the algorithm until \c dest is reached.
alpar@1128
   571
    ///
alpar@1130
   572
    ///\pre init() must be called and at least one node should be added
alpar@1130
   573
    ///with addSource() before using this function.
alpar@1128
   574
    ///
alpar@1128
   575
    ///This method runs the %Dijkstra algorithm from the root node(s)
alpar@1128
   576
    ///in order to
alpar@1128
   577
    ///compute the
alpar@1128
   578
    ///shortest path to \c dest. The algorithm computes
alpar@1128
   579
    ///- The shortest path to \c  dest.
alpar@1128
   580
    ///- The distance of \c dest from the root(s).
alpar@1128
   581
    ///
alpar@1128
   582
    void start(Node dest)
alpar@1128
   583
    {
alpar@1151
   584
      while ( !_heap.empty() && _heap.top()!=dest ) processNextNode();
alpar@1130
   585
      if ( _heap.top()==dest ) finalizeNodeData(_heap.top());
alpar@1130
   586
    }
alpar@1130
   587
    
alpar@1130
   588
    ///Executes the algorithm until a condition is met.
alpar@1130
   589
alpar@1130
   590
    ///Executes the algorithm until a condition is met.
alpar@1130
   591
    ///
alpar@1130
   592
    ///\pre init() must be called and at least one node should be added
alpar@1130
   593
    ///with addSource() before using this function.
alpar@1130
   594
    ///
alpar@1130
   595
    ///\param nm must be a bool (or convertible) node map. The algorithm
alpar@1130
   596
    ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
alpar@1130
   597
    template<class NM>
alpar@1130
   598
    void start(const NM &nm)
alpar@1130
   599
    {
deba@1193
   600
      while ( !_heap.empty() && !nm[_heap.top()] ) processNextNode();
alpar@1130
   601
      if ( !_heap.empty() ) finalizeNodeData(_heap.top());
alpar@1128
   602
    }
alpar@1128
   603
    
alpar@1128
   604
    ///Runs %Dijkstra algorithm from node \c s.
alpar@1128
   605
    
alpar@1128
   606
    ///This method runs the %Dijkstra algorithm from a root node \c s
alpar@1128
   607
    ///in order to
alpar@1128
   608
    ///compute the
alpar@1128
   609
    ///shortest path to each node. The algorithm computes
alpar@1128
   610
    ///- The shortest path tree.
alpar@1128
   611
    ///- The distance of each node from the root.
alpar@1128
   612
    ///
alpar@1128
   613
    ///\note d.run(s) is just a shortcut of the following code.
alpar@1128
   614
    ///\code
alpar@1128
   615
    ///  d.init();
alpar@1128
   616
    ///  d.addSource(s);
alpar@1128
   617
    ///  d.start();
alpar@1128
   618
    ///\endcode
alpar@1128
   619
    void run(Node s) {
alpar@1128
   620
      init();
alpar@1128
   621
      addSource(s);
alpar@1128
   622
      start();
alpar@1128
   623
    }
alpar@1128
   624
    
alpar@1130
   625
    ///Finds the shortest path between \c s and \c t.
alpar@1130
   626
    
alpar@1130
   627
    ///Finds the shortest path between \c s and \c t.
alpar@1130
   628
    ///
alpar@1130
   629
    ///\return The length of the shortest s---t path if there exists one,
alpar@1130
   630
    ///0 otherwise.
alpar@1130
   631
    ///\note Apart from the return value, d.run(s) is
alpar@1130
   632
    ///just a shortcut of the following code.
alpar@1130
   633
    ///\code
alpar@1130
   634
    ///  d.init();
alpar@1130
   635
    ///  d.addSource(s);
alpar@1130
   636
    ///  d.start(t);
alpar@1130
   637
    ///\endcode
alpar@1130
   638
    Value run(Node s,Node t) {
alpar@1130
   639
      init();
alpar@1130
   640
      addSource(s);
alpar@1130
   641
      start(t);
alpar@1130
   642
      return (*_pred)[t]==INVALID?0:(*_dist)[t];
alpar@1130
   643
    }
alpar@1130
   644
    
alpar@1128
   645
    ///@}
alpar@1128
   646
alpar@1128
   647
    ///\name Query Functions
alpar@1128
   648
    ///The result of the %Dijkstra algorithm can be obtained using these
alpar@1128
   649
    ///functions.\n
alpar@1128
   650
    ///Before the use of these functions,
alpar@1128
   651
    ///either run() or start() must be called.
alpar@1128
   652
    
alpar@1128
   653
    ///@{
alpar@1128
   654
jacint@385
   655
    ///The distance of a node from the root.
alpar@255
   656
jacint@385
   657
    ///Returns the distance of a node from the root.
alpar@255
   658
    ///\pre \ref run() must be called before using this function.
jacint@385
   659
    ///\warning If node \c v in unreachable from the root the return value
alpar@255
   660
    ///of this funcion is undefined.
alpar@1130
   661
    Value dist(Node v) const { return (*_dist)[v]; }
jacint@373
   662
alpar@584
   663
    ///Returns the 'previous edge' of the shortest path tree.
alpar@255
   664
alpar@584
   665
    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
alpar@785
   666
    ///i.e. it returns the last edge of a shortest path from the root to \c
alpar@688
   667
    ///v. It is \ref INVALID
alpar@688
   668
    ///if \c v is unreachable from the root or if \c v=s. The
jacint@385
   669
    ///shortest path tree used here is equal to the shortest path tree used in
jacint@385
   670
    ///\ref predNode(Node v).  \pre \ref run() must be called before using
jacint@385
   671
    ///this function.
alpar@780
   672
    ///\todo predEdge could be a better name.
alpar@1119
   673
    Edge pred(Node v) const { return (*_pred)[v]; }
jacint@373
   674
alpar@584
   675
    ///Returns the 'previous node' of the shortest path tree.
alpar@255
   676
alpar@584
   677
    ///For a node \c v it returns the 'previous node' of the shortest path tree,
jacint@385
   678
    ///i.e. it returns the last but one node from a shortest path from the
jacint@385
   679
    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
jacint@385
   680
    ///\c v=s. The shortest path tree used here is equal to the shortest path
jacint@385
   681
    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
jacint@385
   682
    ///using this function.
alpar@1130
   683
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
alpar@1130
   684
				  G->source((*_pred)[v]); }
alpar@255
   685
    
alpar@255
   686
    ///Returns a reference to the NodeMap of distances.
alpar@255
   687
jacint@385
   688
    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
jacint@385
   689
    ///be called before using this function.
alpar@1130
   690
    const DistMap &distMap() const { return *_dist;}
jacint@385
   691
 
alpar@255
   692
    ///Returns a reference to the shortest path tree map.
alpar@255
   693
alpar@255
   694
    ///Returns a reference to the NodeMap of the edges of the
alpar@255
   695
    ///shortest path tree.
alpar@255
   696
    ///\pre \ref run() must be called before using this function.
alpar@1119
   697
    const PredMap &predMap() const { return *_pred;}
jacint@385
   698
 
jacint@385
   699
    ///Returns a reference to the map of nodes of shortest paths.
alpar@255
   700
alpar@255
   701
    ///Returns a reference to the NodeMap of the last but one nodes of the
jacint@385
   702
    ///shortest path tree.
alpar@255
   703
    ///\pre \ref run() must be called before using this function.
alpar@1130
   704
    const PredNodeMap &predNodeMap() const { return *_predNode;}
alpar@255
   705
jacint@385
   706
    ///Checks if a node is reachable from the root.
alpar@255
   707
jacint@385
   708
    ///Returns \c true if \c v is reachable from the root.
alpar@1128
   709
    ///\warning If the algorithm is started from multiple nodes,
alpar@1128
   710
    ///this function may give false result for the source nodes.
alpar@255
   711
    ///\pre \ref run() must be called before using this function.
jacint@385
   712
    ///
alpar@1119
   713
    bool reached(Node v) { return v==source || (*_pred)[v]!=INVALID; }
alpar@255
   714
    
alpar@1128
   715
    ///@}
alpar@255
   716
  };
alpar@953
   717
hegyi@1123
   718
  /// Default traits used by \ref DijkstraWizard
hegyi@1123
   719
alpar@1151
   720
  /// To make it easier to use Dijkstra algorithm
alpar@1151
   721
  ///we have created a wizard class.
alpar@1151
   722
  /// This \ref DijkstraWizard class needs default traits,
alpar@1151
   723
  ///as well as the \ref Dijkstra class.
hegyi@1123
   724
  /// The \ref DijkstraWizardBase is a class to be the default traits of the
hegyi@1123
   725
  /// \ref DijkstraWizard class.
alpar@1116
   726
  template<class GR,class LM>
alpar@1116
   727
  class DijkstraWizardBase : public DijkstraDefaultTraits<GR,LM>
alpar@1116
   728
  {
alpar@1116
   729
alpar@1116
   730
    typedef DijkstraDefaultTraits<GR,LM> Base;
alpar@1116
   731
  protected:
alpar@1201
   732
    /// Type of the nodes in the graph.
alpar@1201
   733
    typedef typename Base::Graph::Node Node;
alpar@1201
   734
alpar@1116
   735
    /// Pointer to the underlying graph.
alpar@1116
   736
    void *_g;
alpar@1116
   737
    /// Pointer to the length map
alpar@1116
   738
    void *_length;
alpar@1116
   739
    ///Pointer to the map of predecessors edges.
alpar@1116
   740
    void *_pred;
alpar@1116
   741
    ///Pointer to the map of predecessors nodes.
alpar@1116
   742
    void *_predNode;
alpar@1116
   743
    ///Pointer to the map of distances.
alpar@1116
   744
    void *_dist;
alpar@1116
   745
    ///Pointer to the source node.
alpar@1201
   746
    Node _source;
alpar@1116
   747
alpar@1116
   748
    public:
hegyi@1123
   749
    /// Constructor.
hegyi@1123
   750
    
hegyi@1123
   751
    /// This constructor does not require parameters, therefore it initiates
hegyi@1123
   752
    /// all of the attributes to default values (0, INVALID).
alpar@1116
   753
    DijkstraWizardBase() : _g(0), _length(0), _pred(0), _predNode(0),
alpar@1201
   754
		       _dist(0), _source(INVALID) {}
alpar@1116
   755
hegyi@1123
   756
    /// Constructor.
hegyi@1123
   757
    
alpar@1156
   758
    /// This constructor requires some parameters,
alpar@1156
   759
    /// listed in the parameters list.
hegyi@1123
   760
    /// Others are initiated to 0.
hegyi@1123
   761
    /// \param g is the initial value of  \ref _g
hegyi@1123
   762
    /// \param l is the initial value of  \ref _length
hegyi@1123
   763
    /// \param s is the initial value of  \ref _source
alpar@1116
   764
    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
alpar@1116
   765
      _g((void *)&g), _length((void *)&l), _pred(0), _predNode(0),
alpar@1201
   766
		  _dist(0), _source(s) {}
alpar@1116
   767
alpar@1116
   768
  };
alpar@1116
   769
  
hegyi@1123
   770
  /// A class to make easier the usage of Dijkstra algorithm
alpar@953
   771
alpar@1151
   772
  /// \ingroup flowalgs
hegyi@1123
   773
  /// This class is created to make it easier to use Dijkstra algorithm.
hegyi@1123
   774
  /// It uses the functions and features of the plain \ref Dijkstra,
alpar@1151
   775
  /// but it is much simpler to use it.
alpar@953
   776
  ///
hegyi@1123
   777
  /// Simplicity means that the way to change the types defined
hegyi@1123
   778
  /// in the traits class is based on functions that returns the new class
alpar@1151
   779
  /// and not on templatable built-in classes.
alpar@1151
   780
  /// When using the plain \ref Dijkstra
alpar@1151
   781
  /// the new class with the modified type comes from
alpar@1151
   782
  /// the original class by using the ::
alpar@1151
   783
  /// operator. In the case of \ref DijkstraWizard only
alpar@1151
   784
  /// a function have to be called and it will
hegyi@1123
   785
  /// return the needed class.
hegyi@1123
   786
  ///
hegyi@1123
   787
  /// It does not have own \ref run method. When its \ref run method is called
hegyi@1123
   788
  /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
hegyi@1123
   789
  /// method of it.
alpar@953
   790
  template<class TR>
alpar@1116
   791
  class DijkstraWizard : public TR
alpar@953
   792
  {
alpar@1116
   793
    typedef TR Base;
alpar@953
   794
hegyi@1123
   795
    ///The type of the underlying graph.
alpar@953
   796
    typedef typename TR::Graph Graph;
alpar@1119
   797
    //\e
alpar@953
   798
    typedef typename Graph::Node Node;
alpar@1119
   799
    //\e
alpar@953
   800
    typedef typename Graph::NodeIt NodeIt;
alpar@1119
   801
    //\e
alpar@953
   802
    typedef typename Graph::Edge Edge;
alpar@1119
   803
    //\e
alpar@953
   804
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@953
   805
    
hegyi@1123
   806
    ///The type of the map that stores the edge lengths.
alpar@953
   807
    typedef typename TR::LengthMap LengthMap;
hegyi@1123
   808
    ///The type of the length of the edges.
alpar@987
   809
    typedef typename LengthMap::Value Value;
hegyi@1123
   810
    ///\brief The type of the map that stores the last
hegyi@1123
   811
    ///edges of the shortest paths.
alpar@953
   812
    typedef typename TR::PredMap PredMap;
hegyi@1123
   813
    ///\brief The type of the map that stores the last but one
hegyi@1123
   814
    ///nodes of the shortest paths.
alpar@953
   815
    typedef typename TR::PredNodeMap PredNodeMap;
hegyi@1123
   816
    ///The type of the map that stores the dists of the nodes.
alpar@953
   817
    typedef typename TR::DistMap DistMap;
alpar@953
   818
hegyi@1123
   819
    ///The heap type used by the dijkstra algorithm.
alpar@953
   820
    typedef typename TR::Heap Heap;
alpar@1116
   821
public:
hegyi@1123
   822
    /// Constructor.
alpar@1116
   823
    DijkstraWizard() : TR() {}
alpar@953
   824
hegyi@1123
   825
    /// Constructor that requires parameters.
hegyi@1124
   826
hegyi@1124
   827
    /// Constructor that requires parameters.
hegyi@1123
   828
    /// These parameters will be the default values for the traits class.
alpar@1116
   829
    DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
alpar@1116
   830
      TR(g,l,s) {}
alpar@953
   831
hegyi@1123
   832
    ///Copy constructor
alpar@1116
   833
    DijkstraWizard(const TR &b) : TR(b) {}
alpar@953
   834
alpar@1116
   835
    ~DijkstraWizard() {}
alpar@1116
   836
hegyi@1123
   837
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
   838
    
hegyi@1123
   839
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
   840
    ///The node can be given by the \ref source function.
alpar@1116
   841
    void run()
alpar@953
   842
    {
alpar@1201
   843
      if(Base::_source==INVALID) throw UninitializedParameter();
deba@1193
   844
      Dijkstra<Graph,LengthMap,TR> 
deba@1193
   845
	Dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
deba@1193
   846
      if(Base::_pred) Dij.predMap(*(PredMap*)Base::_pred);
deba@1193
   847
      if(Base::_predNode) Dij.predNodeMap(*(PredNodeMap*)Base::_predNode);
deba@1193
   848
      if(Base::_dist) Dij.distMap(*(DistMap*)Base::_dist);
alpar@1201
   849
      Dij.run(Base::_source);
alpar@1116
   850
    }
alpar@1116
   851
hegyi@1124
   852
    ///Runs Dijkstra algorithm from the given node.
hegyi@1123
   853
hegyi@1124
   854
    ///Runs Dijkstra algorithm from the given node.
hegyi@1123
   855
    ///\param s is the given source.
alpar@1116
   856
    void run(Node s)
alpar@1116
   857
    {
alpar@1201
   858
      Base::_source=s;
alpar@1116
   859
      run();
alpar@953
   860
    }
alpar@953
   861
alpar@953
   862
    template<class T>
alpar@1116
   863
    struct DefPredMapBase : public Base {
alpar@1116
   864
      typedef T PredMap;
alpar@1117
   865
      static PredMap *createPredMap(const Graph &G) { return 0; };
alpar@1117
   866
      DefPredMapBase(const Base &b) : Base(b) {}
alpar@1116
   867
    };
alpar@953
   868
    
alpar@1156
   869
    ///\brief \ref named-templ-param "Named parameter"
alpar@1156
   870
    ///function for setting PredMap type
alpar@1156
   871
    ///
alpar@1156
   872
    /// \ref named-templ-param "Named parameter"
alpar@1156
   873
    ///function for setting PredMap type
hegyi@1124
   874
    ///
alpar@953
   875
    template<class T>
alpar@1116
   876
    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
alpar@953
   877
    {
deba@1193
   878
      Base::_pred=(void *)&t;
alpar@1116
   879
      return DijkstraWizard<DefPredMapBase<T> >(*this);
alpar@953
   880
    }
alpar@953
   881
    
alpar@1116
   882
alpar@953
   883
    template<class T>
alpar@1116
   884
    struct DefPredNodeMapBase : public Base {
alpar@1116
   885
      typedef T PredNodeMap;
alpar@1117
   886
      static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
alpar@1117
   887
      DefPredNodeMapBase(const Base &b) : Base(b) {}
alpar@1116
   888
    };
alpar@1116
   889
    
alpar@1156
   890
    ///\brief \ref named-templ-param "Named parameter"
alpar@1156
   891
    ///function for setting PredNodeMap type
alpar@1156
   892
    ///
alpar@1156
   893
    /// \ref named-templ-param "Named parameter"
alpar@1156
   894
    ///function for setting PredNodeMap type
hegyi@1124
   895
    ///
alpar@953
   896
    template<class T>
alpar@1116
   897
    DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t) 
alpar@953
   898
    {
deba@1193
   899
      Base::_predNode=(void *)&t;
alpar@1116
   900
      return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
alpar@953
   901
    }
alpar@1116
   902
   
alpar@1116
   903
    template<class T>
alpar@1116
   904
    struct DefDistMapBase : public Base {
alpar@1116
   905
      typedef T DistMap;
alpar@1117
   906
      static DistMap *createDistMap(const Graph &G) { return 0; };
alpar@1117
   907
      DefDistMapBase(const Base &b) : Base(b) {}
alpar@1116
   908
    };
alpar@953
   909
    
alpar@1156
   910
    ///\brief \ref named-templ-param "Named parameter"
alpar@1156
   911
    ///function for setting DistMap type
alpar@1156
   912
    ///
alpar@1156
   913
    /// \ref named-templ-param "Named parameter"
alpar@1156
   914
    ///function for setting DistMap type
hegyi@1124
   915
    ///
alpar@953
   916
    template<class T>
alpar@1116
   917
    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
alpar@953
   918
    {
deba@1193
   919
      Base::_dist=(void *)&t;
alpar@1116
   920
      return DijkstraWizard<DefDistMapBase<T> >(*this);
alpar@953
   921
    }
alpar@1117
   922
    
hegyi@1123
   923
    /// Sets the source node, from which the Dijkstra algorithm runs.
hegyi@1123
   924
hegyi@1123
   925
    /// Sets the source node, from which the Dijkstra algorithm runs.
hegyi@1123
   926
    /// \param s is the source node.
alpar@1117
   927
    DijkstraWizard<TR> &source(Node s) 
alpar@953
   928
    {
alpar@1201
   929
      Base::_source=s;
alpar@953
   930
      return *this;
alpar@953
   931
    }
alpar@953
   932
    
alpar@953
   933
  };
alpar@255
   934
  
alpar@953
   935
  ///\e
alpar@953
   936
alpar@1151
   937
  /// \ingroup flowalgs
alpar@954
   938
  ///\todo Please document...
alpar@953
   939
  ///
alpar@953
   940
  template<class GR, class LM>
alpar@1116
   941
  DijkstraWizard<DijkstraWizardBase<GR,LM> >
alpar@1116
   942
  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
alpar@953
   943
  {
alpar@1116
   944
    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
alpar@953
   945
  }
alpar@953
   946
alpar@430
   947
/// @}
alpar@255
   948
  
alpar@921
   949
} //END OF NAMESPACE LEMON
alpar@255
   950
alpar@255
   951
#endif
alpar@255
   952