lemon/dijkstra.h
author deba
Fri, 14 Oct 2005 10:53:51 +0000
changeset 1723 fb4f801dd692
parent 1710 f531c16dd923
child 1734 2fb5ceac10e7
permissions -rw-r--r--
Really short description of these shortest path algorithms
alpar@906
     1
/* -*- C++ -*-
ladanyi@1435
     2
 * lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@1164
     4
 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     5
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@921
    17
#ifndef LEMON_DIJKSTRA_H
alpar@921
    18
#define LEMON_DIJKSTRA_H
alpar@255
    19
alpar@758
    20
///\ingroup flowalgs
alpar@255
    21
///\file
alpar@255
    22
///\brief Dijkstra algorithm.
alpar@1283
    23
///
alpar@1283
    24
///\todo getPath() should be implemented! (also for BFS and DFS)
alpar@255
    25
alpar@953
    26
#include <lemon/list_graph.h>
alpar@921
    27
#include <lemon/bin_heap.h>
alpar@921
    28
#include <lemon/invalid.h>
alpar@1119
    29
#include <lemon/error.h>
alpar@1119
    30
#include <lemon/maps.h>
alpar@255
    31
alpar@921
    32
namespace lemon {
jacint@385
    33
alpar@1119
    34
alpar@1151
    35
  
alpar@954
    36
  ///Default traits class of Dijkstra class.
alpar@954
    37
alpar@954
    38
  ///Default traits class of Dijkstra class.
alpar@954
    39
  ///\param GR Graph type.
alpar@954
    40
  ///\param LM Type of length map.
alpar@953
    41
  template<class GR, class LM>
alpar@953
    42
  struct DijkstraDefaultTraits
alpar@953
    43
  {
alpar@954
    44
    ///The graph type the algorithm runs on. 
alpar@953
    45
    typedef GR Graph;
alpar@953
    46
    ///The type of the map that stores the edge lengths.
alpar@953
    47
hegyi@1124
    48
    ///The type of the map that stores the edge lengths.
alpar@967
    49
    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
alpar@953
    50
    typedef LM LengthMap;
alpar@954
    51
    //The type of the length of the edges.
alpar@987
    52
    typedef typename LM::Value Value;
deba@1721
    53
    /// The cross reference type used by heap.
deba@1721
    54
deba@1721
    55
    /// The cross reference type used by heap.
deba@1721
    56
    /// Usually it is \c Graph::NodeMap<int>.
deba@1721
    57
    typedef typename Graph::template NodeMap<int> HeapCrossRef;
deba@1721
    58
    ///Instantiates a HeapCrossRef.
deba@1721
    59
deba@1721
    60
    ///This function instantiates a \ref HeapCrossRef. 
deba@1721
    61
    /// \param G is the graph, to which we would like to define the 
deba@1721
    62
    /// HeapCrossRef.
deba@1721
    63
    /// \todo The graph alone may be insufficient for the initialization
deba@1721
    64
    static HeapCrossRef *createHeapCrossRef(const GR &G) 
deba@1721
    65
    {
deba@1721
    66
      return new HeapCrossRef(G);
deba@1721
    67
    }
deba@1721
    68
    
alpar@954
    69
    ///The heap type used by Dijkstra algorithm.
alpar@967
    70
alpar@967
    71
    ///The heap type used by Dijkstra algorithm.
alpar@967
    72
    ///
alpar@967
    73
    ///\sa BinHeap
alpar@967
    74
    ///\sa Dijkstra
deba@1709
    75
    typedef BinHeap<typename Graph::Node, typename LM::Value,
alpar@953
    76
		    typename GR::template NodeMap<int>,
alpar@987
    77
		    std::less<Value> > Heap;
alpar@953
    78
deba@1721
    79
    static Heap *createHeap(HeapCrossRef& R) 
deba@1721
    80
    {
deba@1721
    81
      return new Heap(R);
deba@1721
    82
    }
deba@1721
    83
alpar@953
    84
    ///\brief The type of the map that stores the last
alpar@953
    85
    ///edges of the shortest paths.
alpar@953
    86
    /// 
hegyi@1124
    87
    ///The type of the map that stores the last
hegyi@1124
    88
    ///edges of the shortest paths.
alpar@967
    89
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
    90
    ///
alpar@954
    91
    typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
alpar@954
    92
    ///Instantiates a PredMap.
alpar@953
    93
 
hegyi@1123
    94
    ///This function instantiates a \ref PredMap. 
hegyi@1123
    95
    ///\param G is the graph, to which we would like to define the PredMap.
alpar@1119
    96
    ///\todo The graph alone may be insufficient for the initialization
alpar@954
    97
    static PredMap *createPredMap(const GR &G) 
alpar@953
    98
    {
alpar@953
    99
      return new PredMap(G);
alpar@953
   100
    }
alpar@1119
   101
alpar@1218
   102
    ///The type of the map that stores whether a nodes is processed.
alpar@1119
   103
 
alpar@1218
   104
    ///The type of the map that stores whether a nodes is processed.
alpar@1119
   105
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1119
   106
    ///By default it is a NullMap.
alpar@1218
   107
    ///\todo If it is set to a real map,
alpar@1218
   108
    ///Dijkstra::processed() should read this.
alpar@1119
   109
    ///\todo named parameter to set this type, function to read and write.
alpar@1218
   110
    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
alpar@1218
   111
    ///Instantiates a ProcessedMap.
alpar@1119
   112
 
alpar@1218
   113
    ///This function instantiates a \ref ProcessedMap. 
alpar@1536
   114
    ///\param g is the graph, to which
alpar@1218
   115
    ///we would like to define the \ref ProcessedMap
alpar@1536
   116
#ifdef DOXYGEN
alpar@1536
   117
    static ProcessedMap *createProcessedMap(const GR &g)
alpar@1536
   118
#else
alpar@1366
   119
    static ProcessedMap *createProcessedMap(const GR &)
alpar@1536
   120
#endif
alpar@1119
   121
    {
alpar@1218
   122
      return new ProcessedMap();
alpar@1119
   123
    }
alpar@953
   124
    ///The type of the map that stores the dists of the nodes.
alpar@953
   125
 
hegyi@1124
   126
    ///The type of the map that stores the dists of the nodes.
alpar@967
   127
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
   128
    ///
alpar@987
   129
    typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
alpar@954
   130
    ///Instantiates a DistMap.
alpar@953
   131
 
hegyi@1123
   132
    ///This function instantiates a \ref DistMap. 
hegyi@1123
   133
    ///\param G is the graph, to which we would like to define the \ref DistMap
alpar@954
   134
    static DistMap *createDistMap(const GR &G)
alpar@953
   135
    {
alpar@953
   136
      return new DistMap(G);
alpar@953
   137
    }
alpar@953
   138
  };
alpar@953
   139
  
alpar@255
   140
  ///%Dijkstra algorithm class.
alpar@1125
   141
  
alpar@1151
   142
  /// \ingroup flowalgs
alpar@255
   143
  ///This class provides an efficient implementation of %Dijkstra algorithm.
alpar@255
   144
  ///The edge lengths are passed to the algorithm using a
klao@959
   145
  ///\ref concept::ReadMap "ReadMap",
alpar@255
   146
  ///so it is easy to change it to any kind of length.
alpar@255
   147
  ///
alpar@880
   148
  ///The type of the length is determined by the
alpar@987
   149
  ///\ref concept::ReadMap::Value "Value" of the length map.
alpar@255
   150
  ///
alpar@255
   151
  ///It is also possible to change the underlying priority heap.
alpar@255
   152
  ///
alpar@1218
   153
  ///\param GR The graph type the algorithm runs on. The default value
alpar@1218
   154
  ///is \ref ListGraph. The value of GR is not used directly by
alpar@1218
   155
  ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
alpar@1218
   156
  ///\param LM This read-only EdgeMap determines the lengths of the
alpar@1218
   157
  ///edges. It is read once for each edge, so the map may involve in
alpar@1218
   158
  ///relatively time consuming process to compute the edge length if
alpar@1218
   159
  ///it is necessary. The default map type is \ref
alpar@1218
   160
  ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
alpar@1218
   161
  ///of LM is not used directly by Dijkstra, it is only passed to \ref
alpar@1218
   162
  ///DijkstraDefaultTraits.  \param TR Traits class to set
alpar@1218
   163
  ///various data types used by the algorithm.  The default traits
alpar@1218
   164
  ///class is \ref DijkstraDefaultTraits
alpar@1218
   165
  ///"DijkstraDefaultTraits<GR,LM>".  See \ref
alpar@1218
   166
  ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
alpar@1218
   167
  ///class.
alpar@456
   168
  ///
alpar@689
   169
  ///\author Jacint Szabo and Alpar Juttner
alpar@1128
   170
  ///\todo A compare object would be nice.
alpar@584
   171
alpar@255
   172
#ifdef DOXYGEN
alpar@584
   173
  template <typename GR,
alpar@584
   174
	    typename LM,
alpar@953
   175
	    typename TR>
alpar@255
   176
#else
alpar@953
   177
  template <typename GR=ListGraph,
alpar@584
   178
	    typename LM=typename GR::template EdgeMap<int>,
alpar@953
   179
	    typename TR=DijkstraDefaultTraits<GR,LM> >
alpar@255
   180
#endif
alpar@1116
   181
  class Dijkstra {
alpar@255
   182
  public:
alpar@1125
   183
    /**
alpar@1125
   184
     * \brief \ref Exception for uninitialized parameters.
alpar@1125
   185
     *
alpar@1125
   186
     * This error represents problems in the initialization
alpar@1125
   187
     * of the parameters of the algorithms.
alpar@1125
   188
     */
alpar@1125
   189
    class UninitializedParameter : public lemon::UninitializedParameter {
alpar@1125
   190
    public:
alpar@1125
   191
      virtual const char* exceptionName() const {
alpar@1218
   192
	return "lemon::Dijkstra::UninitializedParameter";
alpar@1125
   193
      }
alpar@1125
   194
    };
alpar@1119
   195
alpar@953
   196
    typedef TR Traits;
alpar@584
   197
    ///The type of the underlying graph.
alpar@954
   198
    typedef typename TR::Graph Graph;
alpar@911
   199
    ///\e
alpar@255
   200
    typedef typename Graph::Node Node;
alpar@911
   201
    ///\e
alpar@255
   202
    typedef typename Graph::NodeIt NodeIt;
alpar@911
   203
    ///\e
alpar@255
   204
    typedef typename Graph::Edge Edge;
alpar@911
   205
    ///\e
alpar@255
   206
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@255
   207
    
alpar@584
   208
    ///The type of the length of the edges.
alpar@987
   209
    typedef typename TR::LengthMap::Value Value;
alpar@693
   210
    ///The type of the map that stores the edge lengths.
alpar@954
   211
    typedef typename TR::LengthMap LengthMap;
alpar@693
   212
    ///\brief The type of the map that stores the last
alpar@584
   213
    ///edges of the shortest paths.
alpar@953
   214
    typedef typename TR::PredMap PredMap;
alpar@1218
   215
    ///The type of the map indicating if a node is processed.
alpar@1218
   216
    typedef typename TR::ProcessedMap ProcessedMap;
alpar@693
   217
    ///The type of the map that stores the dists of the nodes.
alpar@953
   218
    typedef typename TR::DistMap DistMap;
deba@1721
   219
    ///The cross reference type used for the current heap.
deba@1721
   220
    typedef typename TR::HeapCrossRef HeapCrossRef;
alpar@953
   221
    ///The heap type used by the dijkstra algorithm.
alpar@953
   222
    typedef typename TR::Heap Heap;
alpar@255
   223
  private:
alpar@802
   224
    /// Pointer to the underlying graph.
alpar@688
   225
    const Graph *G;
alpar@802
   226
    /// Pointer to the length map
alpar@954
   227
    const LengthMap *length;
alpar@802
   228
    ///Pointer to the map of predecessors edges.
alpar@1119
   229
    PredMap *_pred;
alpar@1119
   230
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
alpar@1119
   231
    bool local_pred;
alpar@802
   232
    ///Pointer to the map of distances.
alpar@1130
   233
    DistMap *_dist;
alpar@1130
   234
    ///Indicates if \ref _dist is locally allocated (\c true) or not.
alpar@1130
   235
    bool local_dist;
alpar@1218
   236
    ///Pointer to the map of processed status of the nodes.
alpar@1218
   237
    ProcessedMap *_processed;
alpar@1218
   238
    ///Indicates if \ref _processed is locally allocated (\c true) or not.
alpar@1218
   239
    bool local_processed;
deba@1721
   240
    ///Pointer to the heap cross references.
deba@1721
   241
    HeapCrossRef *_heap_cross_ref;
deba@1721
   242
    ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
deba@1721
   243
    bool local_heap_cross_ref;
deba@1721
   244
    ///Pointer to the heap.
deba@1721
   245
    Heap *_heap;
deba@1721
   246
    ///Indicates if \ref _heap is locally allocated (\c true) or not.
deba@1721
   247
    bool local_heap;
alpar@688
   248
alpar@1128
   249
    ///Creates the maps if necessary.
alpar@688
   250
    
alpar@694
   251
    ///\todo Error if \c G or are \c NULL. What about \c length?
alpar@688
   252
    ///\todo Better memory allocation (instead of new).
alpar@1128
   253
    void create_maps() 
alpar@688
   254
    {
alpar@1119
   255
      if(!_pred) {
alpar@1119
   256
	local_pred = true;
alpar@1119
   257
	_pred = Traits::createPredMap(*G);
alpar@688
   258
      }
alpar@1130
   259
      if(!_dist) {
alpar@1130
   260
	local_dist = true;
alpar@1130
   261
	_dist = Traits::createDistMap(*G);
alpar@688
   262
      }
alpar@1218
   263
      if(!_processed) {
alpar@1218
   264
	local_processed = true;
alpar@1218
   265
	_processed = Traits::createProcessedMap(*G);
alpar@1119
   266
      }
deba@1721
   267
      if (!_heap_cross_ref) {
deba@1721
   268
	local_heap_cross_ref = true;
deba@1721
   269
	_heap_cross_ref = Traits::createHeapCrossRef(*G);
deba@1721
   270
      }
deba@1721
   271
      if (!_heap) {
deba@1721
   272
	local_heap = true;
deba@1721
   273
	_heap = Traits::createHeap(*_heap_cross_ref);
deba@1721
   274
      }
alpar@688
   275
    }
alpar@255
   276
    
alpar@255
   277
  public :
deba@1710
   278
deba@1710
   279
    typedef Dijkstra Create;
alpar@1116
   280
 
alpar@1128
   281
    ///\name Named template parameters
alpar@1128
   282
alpar@1128
   283
    ///@{
alpar@1128
   284
alpar@953
   285
    template <class T>
alpar@1116
   286
    struct DefPredMapTraits : public Traits {
alpar@953
   287
      typedef T PredMap;
alpar@953
   288
      static PredMap *createPredMap(const Graph &G) 
alpar@953
   289
      {
alpar@1126
   290
	throw UninitializedParameter();
alpar@953
   291
      }
alpar@953
   292
    };
alpar@954
   293
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@954
   294
alpar@954
   295
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@1043
   296
    ///
alpar@953
   297
    template <class T>
deba@1709
   298
    struct DefPredMap 
deba@1709
   299
      : public Dijkstra< Graph,	LengthMap, DefPredMapTraits<T> > {
deba@1709
   300
      typedef Dijkstra< Graph,	LengthMap, DefPredMapTraits<T> > Create;
deba@1709
   301
    };
alpar@953
   302
    
alpar@953
   303
    template <class T>
alpar@1116
   304
    struct DefDistMapTraits : public Traits {
alpar@953
   305
      typedef T DistMap;
alpar@953
   306
      static DistMap *createDistMap(const Graph &G) 
alpar@953
   307
      {
alpar@1126
   308
	throw UninitializedParameter();
alpar@953
   309
      }
alpar@953
   310
    };
alpar@954
   311
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@954
   312
alpar@954
   313
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@1043
   314
    ///
alpar@953
   315
    template <class T>
deba@1709
   316
    struct DefDistMap 
deba@1709
   317
      : public Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > { 
deba@1709
   318
      typedef Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > Create;
deba@1709
   319
    };
alpar@953
   320
    
alpar@1128
   321
    template <class T>
alpar@1218
   322
    struct DefProcessedMapTraits : public Traits {
alpar@1218
   323
      typedef T ProcessedMap;
alpar@1218
   324
      static ProcessedMap *createProcessedMap(const Graph &G) 
alpar@1128
   325
      {
alpar@1128
   326
	throw UninitializedParameter();
alpar@1128
   327
      }
alpar@1128
   328
    };
alpar@1218
   329
    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
alpar@1128
   330
alpar@1218
   331
    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
alpar@1128
   332
    ///
alpar@1128
   333
    template <class T>
deba@1709
   334
    struct DefProcessedMap 
deba@1709
   335
      : public Dijkstra< Graph,	LengthMap, DefProcessedMapTraits<T> > { 
deba@1709
   336
      typedef Dijkstra< Graph,	LengthMap, DefProcessedMapTraits<T> > Create;
deba@1709
   337
    };
alpar@1128
   338
    
alpar@1218
   339
    struct DefGraphProcessedMapTraits : public Traits {
alpar@1218
   340
      typedef typename Graph::template NodeMap<bool> ProcessedMap;
alpar@1218
   341
      static ProcessedMap *createProcessedMap(const Graph &G) 
alpar@1128
   342
      {
alpar@1218
   343
	return new ProcessedMap(G);
alpar@1128
   344
      }
alpar@1128
   345
    };
alpar@1128
   346
    ///\brief \ref named-templ-param "Named parameter"
alpar@1218
   347
    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
alpar@1128
   348
    ///
alpar@1128
   349
    ///\ref named-templ-param "Named parameter"
alpar@1218
   350
    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
alpar@1128
   351
    ///If you don't set it explicitely, it will be automatically allocated.
alpar@1128
   352
    template <class T>
deba@1709
   353
    struct DefProcessedMapToBeDefaultMap 
deba@1709
   354
      : public Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> {
deba@1709
   355
      typedef Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> Create;
deba@1709
   356
    };
deba@1721
   357
deba@1721
   358
    template <class H, class CR>
deba@1721
   359
    struct DefHeapTraits : public Traits {
deba@1721
   360
      typedef CR HeapCrossRef;
deba@1721
   361
      typedef H Heap;
deba@1721
   362
      static HeapCrossRef *createHeapCrossRef(const Graph &G) {
deba@1721
   363
	return new HeapCrossRef(G);
deba@1721
   364
      }
deba@1721
   365
      static Heap *createHeap(HeapCrossRef &R) 
deba@1721
   366
      {
deba@1721
   367
	return new Heap(R);
deba@1721
   368
      }
deba@1721
   369
    };
deba@1721
   370
    ///\ref named-templ-param "Named parameter" for setting heap and cross 
deba@1721
   371
    ///reference type
deba@1721
   372
deba@1721
   373
    ///\ref named-templ-param "Named parameter" for setting heap and cross 
deba@1721
   374
    ///reference type
deba@1721
   375
    ///
deba@1721
   376
    template <class H, class CR = typename Graph::template NodeMap<int> >
deba@1721
   377
    struct DefHeap
deba@1721
   378
      : public Dijkstra< Graph,	LengthMap, DefHeapTraits<H, CR> > { 
deba@1721
   379
      typedef Dijkstra< Graph,	LengthMap, DefHeapTraits<H, CR> > Create;
deba@1721
   380
    };
alpar@1128
   381
    
alpar@1128
   382
    ///@}
alpar@1128
   383
alpar@1128
   384
deba@1710
   385
  protected:
deba@1710
   386
deba@1710
   387
    Dijkstra() {}
deba@1710
   388
alpar@1128
   389
  public:      
alpar@1128
   390
    
alpar@802
   391
    ///Constructor.
alpar@255
   392
    
alpar@802
   393
    ///\param _G the graph the algorithm will run on.
alpar@802
   394
    ///\param _length the length map used by the algorithm.
alpar@954
   395
    Dijkstra(const Graph& _G, const LengthMap& _length) :
alpar@688
   396
      G(&_G), length(&_length),
alpar@1119
   397
      _pred(NULL), local_pred(false),
alpar@1130
   398
      _dist(NULL), local_dist(false),
alpar@1218
   399
      _processed(NULL), local_processed(false),
deba@1721
   400
      _heap_cross_ref(NULL), local_heap_cross_ref(false),
deba@1721
   401
      _heap(NULL), local_heap(false)
alpar@688
   402
    { }
alpar@688
   403
    
alpar@802
   404
    ///Destructor.
alpar@688
   405
    ~Dijkstra() 
alpar@688
   406
    {
alpar@1119
   407
      if(local_pred) delete _pred;
alpar@1130
   408
      if(local_dist) delete _dist;
alpar@1218
   409
      if(local_processed) delete _processed;
deba@1721
   410
      if(local_heap_cross_ref) delete _heap_cross_ref;
deba@1721
   411
      if(local_heap) delete _heap;
alpar@688
   412
    }
alpar@688
   413
alpar@688
   414
    ///Sets the length map.
alpar@688
   415
alpar@688
   416
    ///Sets the length map.
alpar@688
   417
    ///\return <tt> (*this) </tt>
alpar@1116
   418
    Dijkstra &lengthMap(const LengthMap &m) 
alpar@688
   419
    {
alpar@688
   420
      length = &m;
alpar@688
   421
      return *this;
alpar@688
   422
    }
alpar@688
   423
alpar@688
   424
    ///Sets the map storing the predecessor edges.
alpar@688
   425
alpar@688
   426
    ///Sets the map storing the predecessor edges.
alpar@688
   427
    ///If you don't use this function before calling \ref run(),
alpar@688
   428
    ///it will allocate one. The destuctor deallocates this
alpar@688
   429
    ///automatically allocated map, of course.
alpar@688
   430
    ///\return <tt> (*this) </tt>
alpar@1116
   431
    Dijkstra &predMap(PredMap &m) 
alpar@688
   432
    {
alpar@1119
   433
      if(local_pred) {
alpar@1119
   434
	delete _pred;
alpar@1119
   435
	local_pred=false;
alpar@688
   436
      }
alpar@1119
   437
      _pred = &m;
alpar@688
   438
      return *this;
alpar@688
   439
    }
alpar@688
   440
alpar@688
   441
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   442
alpar@688
   443
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   444
    ///If you don't use this function before calling \ref run(),
alpar@688
   445
    ///it will allocate one. The destuctor deallocates this
alpar@688
   446
    ///automatically allocated map, of course.
alpar@688
   447
    ///\return <tt> (*this) </tt>
alpar@1116
   448
    Dijkstra &distMap(DistMap &m) 
alpar@688
   449
    {
alpar@1130
   450
      if(local_dist) {
alpar@1130
   451
	delete _dist;
alpar@1130
   452
	local_dist=false;
alpar@688
   453
      }
alpar@1130
   454
      _dist = &m;
alpar@688
   455
      return *this;
alpar@688
   456
    }
alpar@694
   457
alpar@1130
   458
  private:
alpar@1130
   459
    void finalizeNodeData(Node v,Value dst)
alpar@1130
   460
    {
alpar@1218
   461
      _processed->set(v,true);
alpar@1130
   462
      _dist->set(v, dst);
alpar@1130
   463
    }
alpar@1130
   464
alpar@1130
   465
  public:
alpar@1218
   466
    ///\name Execution control
alpar@1128
   467
    ///The simplest way to execute the algorithm is to use
alpar@1156
   468
    ///one of the member functions called \c run(...).
alpar@1128
   469
    ///\n
alpar@1218
   470
    ///If you need more control on the execution,
alpar@1128
   471
    ///first you must call \ref init(), then you can add several source nodes
alpar@1218
   472
    ///with \ref addSource().
alpar@1218
   473
    ///Finally \ref start() will perform the actual path
alpar@1128
   474
    ///computation.
alpar@1128
   475
alpar@1128
   476
    ///@{
alpar@1128
   477
alpar@1128
   478
    ///Initializes the internal data structures.
alpar@1128
   479
alpar@1128
   480
    ///Initializes the internal data structures.
alpar@1128
   481
    ///
alpar@1128
   482
    void init()
alpar@1128
   483
    {
alpar@1128
   484
      create_maps();
deba@1721
   485
      _heap->clear();
alpar@774
   486
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
alpar@1119
   487
	_pred->set(u,INVALID);
alpar@1218
   488
	_processed->set(u,false);
deba@1721
   489
	_heap_cross_ref->set(u,Heap::PRE_HEAP);
alpar@694
   490
      }
alpar@1128
   491
    }
alpar@1128
   492
    
alpar@1128
   493
    ///Adds a new source node.
alpar@1128
   494
alpar@1155
   495
    ///Adds a new source node to the priority heap.
alpar@1128
   496
    ///
alpar@1128
   497
    ///The optional second parameter is the initial distance of the node.
alpar@1128
   498
    ///
alpar@1155
   499
    ///It checks if the node has already been added to the heap and
alpar@1155
   500
    ///It is pushed to the heap only if either it was not in the heap
alpar@1155
   501
    ///or the shortest path found till then is longer then \c dst.
alpar@1128
   502
    void addSource(Node s,Value dst=0)
alpar@1128
   503
    {
deba@1721
   504
      if(_heap->state(s) != Heap::IN_HEAP) {
deba@1721
   505
	_heap->push(s,dst);
deba@1721
   506
      } else if((*_heap)[s]<dst) {
deba@1721
   507
	_heap->push(s,dst);
alpar@1155
   508
	_pred->set(s,INVALID);
alpar@1155
   509
      }
alpar@1128
   510
    }
alpar@1128
   511
    
alpar@1155
   512
    ///Processes the next node in the priority heap
alpar@1155
   513
alpar@1155
   514
    ///Processes the next node in the priority heap.
alpar@1155
   515
    ///
alpar@1516
   516
    ///\return The processed node.
alpar@1516
   517
    ///
alpar@1155
   518
    ///\warning The priority heap must not be empty!
alpar@1516
   519
    Node processNextNode()
alpar@1128
   520
    {
deba@1721
   521
      Node v=_heap->top(); 
deba@1721
   522
      Value oldvalue=_heap->prio();
deba@1721
   523
      _heap->pop();
alpar@1130
   524
      finalizeNodeData(v,oldvalue);
alpar@694
   525
      
alpar@1128
   526
      for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
alpar@1128
   527
	Node w=G->target(e); 
deba@1721
   528
	switch(_heap->state(w)) {
alpar@1128
   529
	case Heap::PRE_HEAP:
deba@1721
   530
	  _heap->push(w,oldvalue+(*length)[e]); 
alpar@1128
   531
	  _pred->set(w,e);
alpar@1128
   532
	  break;
alpar@1128
   533
	case Heap::IN_HEAP:
deba@1721
   534
	  if ( oldvalue+(*length)[e] < (*_heap)[w] ) {
deba@1721
   535
	    _heap->decrease(w, oldvalue+(*length)[e]); 
alpar@1119
   536
	    _pred->set(w,e);
alpar@694
   537
	  }
alpar@1128
   538
	  break;
alpar@1128
   539
	case Heap::POST_HEAP:
alpar@1128
   540
	  break;
alpar@694
   541
	}
alpar@694
   542
      }
alpar@1516
   543
      return v;
alpar@694
   544
    }
alpar@1128
   545
alpar@1665
   546
    ///Next node to be processed.
alpar@1665
   547
    
alpar@1665
   548
    ///Next node to be processed.
alpar@1665
   549
    ///
alpar@1665
   550
    ///\return The next node to be processed or INVALID if the priority heap
alpar@1665
   551
    /// is empty.
deba@1694
   552
    Node nextNode()
alpar@1665
   553
    { 
deba@1721
   554
      return _heap->empty()?_heap->top():INVALID;
alpar@1665
   555
    }
alpar@1665
   556
 
alpar@1218
   557
    ///\brief Returns \c false if there are nodes
alpar@1218
   558
    ///to be processed in the priority heap
alpar@1155
   559
    ///
alpar@1218
   560
    ///Returns \c false if there are nodes
alpar@1218
   561
    ///to be processed in the priority heap
deba@1721
   562
    bool emptyQueue() { return _heap->empty(); }
alpar@1155
   563
    ///Returns the number of the nodes to be processed in the priority heap
alpar@1155
   564
alpar@1155
   565
    ///Returns the number of the nodes to be processed in the priority heap
alpar@1155
   566
    ///
deba@1721
   567
    int queueSize() { return _heap->size(); }
alpar@1155
   568
    
alpar@1130
   569
    ///Executes the algorithm.
alpar@1128
   570
alpar@1130
   571
    ///Executes the algorithm.
alpar@1128
   572
    ///
alpar@1130
   573
    ///\pre init() must be called and at least one node should be added
alpar@1130
   574
    ///with addSource() before using this function.
alpar@1128
   575
    ///
alpar@1128
   576
    ///This method runs the %Dijkstra algorithm from the root node(s)
alpar@1128
   577
    ///in order to
alpar@1128
   578
    ///compute the
alpar@1128
   579
    ///shortest path to each node. The algorithm computes
alpar@1128
   580
    ///- The shortest path tree.
alpar@1128
   581
    ///- The distance of each node from the root(s).
alpar@1128
   582
    ///
alpar@1128
   583
    void start()
alpar@1128
   584
    {
deba@1721
   585
      while ( !_heap->empty() ) processNextNode();
alpar@1128
   586
    }
alpar@255
   587
    
alpar@1130
   588
    ///Executes the algorithm until \c dest is reached.
alpar@1128
   589
alpar@1130
   590
    ///Executes the algorithm until \c dest is reached.
alpar@1128
   591
    ///
alpar@1130
   592
    ///\pre init() must be called and at least one node should be added
alpar@1130
   593
    ///with addSource() before using this function.
alpar@1128
   594
    ///
alpar@1128
   595
    ///This method runs the %Dijkstra algorithm from the root node(s)
alpar@1128
   596
    ///in order to
alpar@1128
   597
    ///compute the
alpar@1128
   598
    ///shortest path to \c dest. The algorithm computes
alpar@1128
   599
    ///- The shortest path to \c  dest.
alpar@1128
   600
    ///- The distance of \c dest from the root(s).
alpar@1128
   601
    ///
alpar@1128
   602
    void start(Node dest)
alpar@1128
   603
    {
deba@1721
   604
      while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
deba@1721
   605
      if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
alpar@1130
   606
    }
alpar@1130
   607
    
alpar@1130
   608
    ///Executes the algorithm until a condition is met.
alpar@1130
   609
alpar@1130
   610
    ///Executes the algorithm until a condition is met.
alpar@1130
   611
    ///
alpar@1130
   612
    ///\pre init() must be called and at least one node should be added
alpar@1130
   613
    ///with addSource() before using this function.
alpar@1130
   614
    ///
alpar@1130
   615
    ///\param nm must be a bool (or convertible) node map. The algorithm
alpar@1130
   616
    ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
deba@1345
   617
    template<class NodeBoolMap>
deba@1345
   618
    void start(const NodeBoolMap &nm)
alpar@1130
   619
    {
deba@1721
   620
      while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
deba@1721
   621
      if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
alpar@1128
   622
    }
alpar@1128
   623
    
alpar@1128
   624
    ///Runs %Dijkstra algorithm from node \c s.
alpar@1128
   625
    
alpar@1128
   626
    ///This method runs the %Dijkstra algorithm from a root node \c s
alpar@1128
   627
    ///in order to
alpar@1128
   628
    ///compute the
alpar@1128
   629
    ///shortest path to each node. The algorithm computes
alpar@1128
   630
    ///- The shortest path tree.
alpar@1128
   631
    ///- The distance of each node from the root.
alpar@1128
   632
    ///
alpar@1128
   633
    ///\note d.run(s) is just a shortcut of the following code.
alpar@1128
   634
    ///\code
alpar@1128
   635
    ///  d.init();
alpar@1128
   636
    ///  d.addSource(s);
alpar@1128
   637
    ///  d.start();
alpar@1128
   638
    ///\endcode
alpar@1128
   639
    void run(Node s) {
alpar@1128
   640
      init();
alpar@1128
   641
      addSource(s);
alpar@1128
   642
      start();
alpar@1128
   643
    }
alpar@1128
   644
    
alpar@1130
   645
    ///Finds the shortest path between \c s and \c t.
alpar@1130
   646
    
alpar@1130
   647
    ///Finds the shortest path between \c s and \c t.
alpar@1130
   648
    ///
alpar@1130
   649
    ///\return The length of the shortest s---t path if there exists one,
alpar@1130
   650
    ///0 otherwise.
alpar@1130
   651
    ///\note Apart from the return value, d.run(s) is
alpar@1130
   652
    ///just a shortcut of the following code.
alpar@1130
   653
    ///\code
alpar@1130
   654
    ///  d.init();
alpar@1130
   655
    ///  d.addSource(s);
alpar@1130
   656
    ///  d.start(t);
alpar@1130
   657
    ///\endcode
alpar@1130
   658
    Value run(Node s,Node t) {
alpar@1130
   659
      init();
alpar@1130
   660
      addSource(s);
alpar@1130
   661
      start(t);
alpar@1130
   662
      return (*_pred)[t]==INVALID?0:(*_dist)[t];
alpar@1130
   663
    }
alpar@1130
   664
    
alpar@1128
   665
    ///@}
alpar@1128
   666
alpar@1128
   667
    ///\name Query Functions
alpar@1128
   668
    ///The result of the %Dijkstra algorithm can be obtained using these
alpar@1128
   669
    ///functions.\n
alpar@1128
   670
    ///Before the use of these functions,
alpar@1128
   671
    ///either run() or start() must be called.
alpar@1128
   672
    
alpar@1128
   673
    ///@{
alpar@1128
   674
alpar@1283
   675
    ///Copies the shortest path to \c t into \c p
alpar@1283
   676
    
alpar@1283
   677
    ///This function copies the shortest path to \c t into \c p.
alpar@1536
   678
    ///If it \c t is a source itself or unreachable, then it does not
alpar@1283
   679
    ///alter \c p.
alpar@1283
   680
    ///\todo Is it the right way to handle unreachable nodes?
alpar@1283
   681
    ///\return Returns \c true if a path to \c t was actually copied to \c p,
alpar@1283
   682
    ///\c false otherwise.
alpar@1283
   683
    ///\sa DirPath
alpar@1283
   684
    template<class P>
alpar@1283
   685
    bool getPath(P &p,Node t) 
alpar@1283
   686
    {
alpar@1283
   687
      if(reached(t)) {
alpar@1283
   688
	p.clear();
alpar@1283
   689
	typename P::Builder b(p);
alpar@1283
   690
	for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
alpar@1283
   691
	  b.pushFront(pred(t));
alpar@1283
   692
	b.commit();
alpar@1283
   693
	return true;
alpar@1283
   694
      }
alpar@1283
   695
      return false;
alpar@1283
   696
    }
alpar@1283
   697
	  
jacint@385
   698
    ///The distance of a node from the root.
alpar@255
   699
jacint@385
   700
    ///Returns the distance of a node from the root.
alpar@255
   701
    ///\pre \ref run() must be called before using this function.
jacint@385
   702
    ///\warning If node \c v in unreachable from the root the return value
alpar@255
   703
    ///of this funcion is undefined.
alpar@1130
   704
    Value dist(Node v) const { return (*_dist)[v]; }
jacint@373
   705
alpar@584
   706
    ///Returns the 'previous edge' of the shortest path tree.
alpar@255
   707
alpar@584
   708
    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
alpar@785
   709
    ///i.e. it returns the last edge of a shortest path from the root to \c
alpar@688
   710
    ///v. It is \ref INVALID
alpar@688
   711
    ///if \c v is unreachable from the root or if \c v=s. The
jacint@385
   712
    ///shortest path tree used here is equal to the shortest path tree used in
alpar@1631
   713
    ///\ref predNode().  \pre \ref run() must be called before using
jacint@385
   714
    ///this function.
alpar@780
   715
    ///\todo predEdge could be a better name.
alpar@1119
   716
    Edge pred(Node v) const { return (*_pred)[v]; }
jacint@373
   717
alpar@584
   718
    ///Returns the 'previous node' of the shortest path tree.
alpar@255
   719
alpar@584
   720
    ///For a node \c v it returns the 'previous node' of the shortest path tree,
jacint@385
   721
    ///i.e. it returns the last but one node from a shortest path from the
jacint@385
   722
    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
jacint@385
   723
    ///\c v=s. The shortest path tree used here is equal to the shortest path
alpar@1631
   724
    ///tree used in \ref pred().  \pre \ref run() must be called before
jacint@385
   725
    ///using this function.
alpar@1130
   726
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
alpar@1130
   727
				  G->source((*_pred)[v]); }
alpar@255
   728
    
alpar@255
   729
    ///Returns a reference to the NodeMap of distances.
alpar@255
   730
jacint@385
   731
    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
jacint@385
   732
    ///be called before using this function.
alpar@1130
   733
    const DistMap &distMap() const { return *_dist;}
jacint@385
   734
 
alpar@255
   735
    ///Returns a reference to the shortest path tree map.
alpar@255
   736
alpar@255
   737
    ///Returns a reference to the NodeMap of the edges of the
alpar@255
   738
    ///shortest path tree.
alpar@255
   739
    ///\pre \ref run() must be called before using this function.
alpar@1119
   740
    const PredMap &predMap() const { return *_pred;}
jacint@385
   741
 
jacint@385
   742
    ///Checks if a node is reachable from the root.
alpar@255
   743
jacint@385
   744
    ///Returns \c true if \c v is reachable from the root.
alpar@1218
   745
    ///\warning The source nodes are inditated as unreached.
alpar@255
   746
    ///\pre \ref run() must be called before using this function.
jacint@385
   747
    ///
deba@1721
   748
    bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
alpar@255
   749
    
alpar@1128
   750
    ///@}
alpar@255
   751
  };
alpar@953
   752
alpar@1218
   753
alpar@1218
   754
alpar@1218
   755
alpar@1218
   756
 
alpar@1218
   757
  ///Default traits class of Dijkstra function.
alpar@1218
   758
alpar@1218
   759
  ///Default traits class of Dijkstra function.
alpar@1218
   760
  ///\param GR Graph type.
alpar@1218
   761
  ///\param LM Type of length map.
alpar@1218
   762
  template<class GR, class LM>
alpar@1218
   763
  struct DijkstraWizardDefaultTraits
alpar@1218
   764
  {
alpar@1218
   765
    ///The graph type the algorithm runs on. 
alpar@1218
   766
    typedef GR Graph;
alpar@1218
   767
    ///The type of the map that stores the edge lengths.
alpar@1218
   768
alpar@1218
   769
    ///The type of the map that stores the edge lengths.
alpar@1218
   770
    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
alpar@1218
   771
    typedef LM LengthMap;
alpar@1218
   772
    //The type of the length of the edges.
alpar@1218
   773
    typedef typename LM::Value Value;
alpar@1218
   774
    ///The heap type used by Dijkstra algorithm.
alpar@1218
   775
deba@1721
   776
    /// The cross reference type used by heap.
deba@1721
   777
deba@1721
   778
    /// The cross reference type used by heap.
deba@1721
   779
    /// Usually it is \c Graph::NodeMap<int>.
deba@1721
   780
    typedef typename Graph::template NodeMap<int> HeapCrossRef;
deba@1721
   781
    ///Instantiates a HeapCrossRef.
deba@1721
   782
deba@1721
   783
    ///This function instantiates a \ref HeapCrossRef. 
deba@1721
   784
    /// \param G is the graph, to which we would like to define the 
deba@1721
   785
    /// HeapCrossRef.
deba@1721
   786
    /// \todo The graph alone may be insufficient for the initialization
deba@1721
   787
    static HeapCrossRef *createHeapCrossRef(const GR &G) 
deba@1721
   788
    {
deba@1721
   789
      return new HeapCrossRef(G);
deba@1721
   790
    }
deba@1721
   791
    
deba@1721
   792
    ///The heap type used by Dijkstra algorithm.
deba@1721
   793
alpar@1218
   794
    ///The heap type used by Dijkstra algorithm.
alpar@1218
   795
    ///
alpar@1218
   796
    ///\sa BinHeap
alpar@1218
   797
    ///\sa Dijkstra
deba@1721
   798
    typedef BinHeap<typename Graph::Node, typename LM::Value,
alpar@1218
   799
		    typename GR::template NodeMap<int>,
alpar@1218
   800
		    std::less<Value> > Heap;
alpar@1218
   801
deba@1721
   802
    static Heap *createHeap(HeapCrossRef& R) 
deba@1721
   803
    {
deba@1721
   804
      return new Heap(R);
deba@1721
   805
    }
deba@1721
   806
alpar@1218
   807
    ///\brief The type of the map that stores the last
alpar@1218
   808
    ///edges of the shortest paths.
alpar@1218
   809
    /// 
alpar@1218
   810
    ///The type of the map that stores the last
alpar@1218
   811
    ///edges of the shortest paths.
alpar@1218
   812
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
   813
    ///
alpar@1218
   814
    typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
alpar@1218
   815
    ///Instantiates a PredMap.
alpar@1218
   816
 
alpar@1218
   817
    ///This function instantiates a \ref PredMap. 
alpar@1536
   818
    ///\param g is the graph, to which we would like to define the PredMap.
alpar@1218
   819
    ///\todo The graph alone may be insufficient for the initialization
alpar@1536
   820
#ifdef DOXYGEN
alpar@1536
   821
    static PredMap *createPredMap(const GR &g) 
alpar@1536
   822
#else
alpar@1367
   823
    static PredMap *createPredMap(const GR &) 
alpar@1536
   824
#endif
alpar@1218
   825
    {
alpar@1218
   826
      return new PredMap();
alpar@1218
   827
    }
alpar@1218
   828
    ///The type of the map that stores whether a nodes is processed.
alpar@1218
   829
 
alpar@1218
   830
    ///The type of the map that stores whether a nodes is processed.
alpar@1218
   831
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
   832
    ///By default it is a NullMap.
alpar@1218
   833
    ///\todo If it is set to a real map,
alpar@1218
   834
    ///Dijkstra::processed() should read this.
alpar@1218
   835
    ///\todo named parameter to set this type, function to read and write.
alpar@1218
   836
    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
alpar@1218
   837
    ///Instantiates a ProcessedMap.
alpar@1218
   838
 
alpar@1218
   839
    ///This function instantiates a \ref ProcessedMap. 
alpar@1536
   840
    ///\param g is the graph, to which
alpar@1218
   841
    ///we would like to define the \ref ProcessedMap
alpar@1536
   842
#ifdef DOXYGEN
alpar@1536
   843
    static ProcessedMap *createProcessedMap(const GR &g)
alpar@1536
   844
#else
alpar@1367
   845
    static ProcessedMap *createProcessedMap(const GR &)
alpar@1536
   846
#endif
alpar@1218
   847
    {
alpar@1218
   848
      return new ProcessedMap();
alpar@1218
   849
    }
alpar@1218
   850
    ///The type of the map that stores the dists of the nodes.
alpar@1218
   851
 
alpar@1218
   852
    ///The type of the map that stores the dists of the nodes.
alpar@1218
   853
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
   854
    ///
alpar@1218
   855
    typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
alpar@1218
   856
    ///Instantiates a DistMap.
alpar@1218
   857
 
alpar@1218
   858
    ///This function instantiates a \ref DistMap. 
alpar@1536
   859
    ///\param g is the graph, to which we would like to define the \ref DistMap
alpar@1536
   860
#ifdef DOXYGEN
alpar@1536
   861
    static DistMap *createDistMap(const GR &g)
alpar@1536
   862
#else
alpar@1367
   863
    static DistMap *createDistMap(const GR &)
alpar@1536
   864
#endif
alpar@1218
   865
    {
alpar@1218
   866
      return new DistMap();
alpar@1218
   867
    }
alpar@1218
   868
  };
alpar@1218
   869
  
hegyi@1123
   870
  /// Default traits used by \ref DijkstraWizard
hegyi@1123
   871
alpar@1151
   872
  /// To make it easier to use Dijkstra algorithm
alpar@1151
   873
  ///we have created a wizard class.
alpar@1151
   874
  /// This \ref DijkstraWizard class needs default traits,
alpar@1151
   875
  ///as well as the \ref Dijkstra class.
hegyi@1123
   876
  /// The \ref DijkstraWizardBase is a class to be the default traits of the
hegyi@1123
   877
  /// \ref DijkstraWizard class.
alpar@1220
   878
  /// \todo More named parameters are required...
alpar@1116
   879
  template<class GR,class LM>
alpar@1218
   880
  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
alpar@1116
   881
  {
alpar@1116
   882
alpar@1218
   883
    typedef DijkstraWizardDefaultTraits<GR,LM> Base;
alpar@1116
   884
  protected:
alpar@1201
   885
    /// Type of the nodes in the graph.
alpar@1201
   886
    typedef typename Base::Graph::Node Node;
alpar@1201
   887
alpar@1116
   888
    /// Pointer to the underlying graph.
alpar@1116
   889
    void *_g;
alpar@1116
   890
    /// Pointer to the length map
alpar@1116
   891
    void *_length;
alpar@1116
   892
    ///Pointer to the map of predecessors edges.
alpar@1116
   893
    void *_pred;
alpar@1116
   894
    ///Pointer to the map of distances.
alpar@1116
   895
    void *_dist;
alpar@1116
   896
    ///Pointer to the source node.
alpar@1201
   897
    Node _source;
alpar@1116
   898
alpar@1116
   899
    public:
hegyi@1123
   900
    /// Constructor.
hegyi@1123
   901
    
hegyi@1123
   902
    /// This constructor does not require parameters, therefore it initiates
hegyi@1123
   903
    /// all of the attributes to default values (0, INVALID).
alpar@1218
   904
    DijkstraWizardBase() : _g(0), _length(0), _pred(0),
alpar@1218
   905
			   _dist(0), _source(INVALID) {}
alpar@1116
   906
hegyi@1123
   907
    /// Constructor.
hegyi@1123
   908
    
alpar@1156
   909
    /// This constructor requires some parameters,
alpar@1156
   910
    /// listed in the parameters list.
hegyi@1123
   911
    /// Others are initiated to 0.
hegyi@1123
   912
    /// \param g is the initial value of  \ref _g
hegyi@1123
   913
    /// \param l is the initial value of  \ref _length
hegyi@1123
   914
    /// \param s is the initial value of  \ref _source
alpar@1116
   915
    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
alpar@1218
   916
      _g((void *)&g), _length((void *)&l), _pred(0),
alpar@1218
   917
      _dist(0), _source(s) {}
alpar@1116
   918
alpar@1116
   919
  };
alpar@1116
   920
  
alpar@1229
   921
  /// A class to make the usage of Dijkstra algorithm easier
alpar@953
   922
hegyi@1123
   923
  /// This class is created to make it easier to use Dijkstra algorithm.
hegyi@1123
   924
  /// It uses the functions and features of the plain \ref Dijkstra,
alpar@1151
   925
  /// but it is much simpler to use it.
alpar@953
   926
  ///
hegyi@1123
   927
  /// Simplicity means that the way to change the types defined
hegyi@1123
   928
  /// in the traits class is based on functions that returns the new class
alpar@1151
   929
  /// and not on templatable built-in classes.
alpar@1151
   930
  /// When using the plain \ref Dijkstra
alpar@1151
   931
  /// the new class with the modified type comes from
alpar@1151
   932
  /// the original class by using the ::
alpar@1151
   933
  /// operator. In the case of \ref DijkstraWizard only
alpar@1151
   934
  /// a function have to be called and it will
hegyi@1123
   935
  /// return the needed class.
hegyi@1123
   936
  ///
hegyi@1123
   937
  /// It does not have own \ref run method. When its \ref run method is called
deba@1721
   938
  /// it initiates a plain \ref Dijkstra class, and calls the \ref 
deba@1721
   939
  /// Dijkstra::run method of it.
alpar@953
   940
  template<class TR>
alpar@1116
   941
  class DijkstraWizard : public TR
alpar@953
   942
  {
alpar@1116
   943
    typedef TR Base;
alpar@953
   944
hegyi@1123
   945
    ///The type of the underlying graph.
alpar@953
   946
    typedef typename TR::Graph Graph;
alpar@1119
   947
    //\e
alpar@953
   948
    typedef typename Graph::Node Node;
alpar@1119
   949
    //\e
alpar@953
   950
    typedef typename Graph::NodeIt NodeIt;
alpar@1119
   951
    //\e
alpar@953
   952
    typedef typename Graph::Edge Edge;
alpar@1119
   953
    //\e
alpar@953
   954
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@953
   955
    
hegyi@1123
   956
    ///The type of the map that stores the edge lengths.
alpar@953
   957
    typedef typename TR::LengthMap LengthMap;
hegyi@1123
   958
    ///The type of the length of the edges.
alpar@987
   959
    typedef typename LengthMap::Value Value;
hegyi@1123
   960
    ///\brief The type of the map that stores the last
hegyi@1123
   961
    ///edges of the shortest paths.
alpar@953
   962
    typedef typename TR::PredMap PredMap;
hegyi@1123
   963
    ///The type of the map that stores the dists of the nodes.
alpar@953
   964
    typedef typename TR::DistMap DistMap;
hegyi@1123
   965
    ///The heap type used by the dijkstra algorithm.
alpar@953
   966
    typedef typename TR::Heap Heap;
alpar@1116
   967
public:
hegyi@1123
   968
    /// Constructor.
alpar@1116
   969
    DijkstraWizard() : TR() {}
alpar@953
   970
hegyi@1123
   971
    /// Constructor that requires parameters.
hegyi@1124
   972
hegyi@1124
   973
    /// Constructor that requires parameters.
hegyi@1123
   974
    /// These parameters will be the default values for the traits class.
alpar@1116
   975
    DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
alpar@1116
   976
      TR(g,l,s) {}
alpar@953
   977
hegyi@1123
   978
    ///Copy constructor
alpar@1116
   979
    DijkstraWizard(const TR &b) : TR(b) {}
alpar@953
   980
alpar@1116
   981
    ~DijkstraWizard() {}
alpar@1116
   982
hegyi@1123
   983
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
   984
    
hegyi@1123
   985
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
   986
    ///The node can be given by the \ref source function.
alpar@1116
   987
    void run()
alpar@953
   988
    {
alpar@1201
   989
      if(Base::_source==INVALID) throw UninitializedParameter();
deba@1193
   990
      Dijkstra<Graph,LengthMap,TR> 
deba@1345
   991
	dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
deba@1345
   992
      if(Base::_pred) dij.predMap(*(PredMap*)Base::_pred);
deba@1345
   993
      if(Base::_dist) dij.distMap(*(DistMap*)Base::_dist);
deba@1345
   994
      dij.run(Base::_source);
alpar@1116
   995
    }
alpar@1116
   996
hegyi@1124
   997
    ///Runs Dijkstra algorithm from the given node.
hegyi@1123
   998
hegyi@1124
   999
    ///Runs Dijkstra algorithm from the given node.
hegyi@1123
  1000
    ///\param s is the given source.
alpar@1116
  1001
    void run(Node s)
alpar@1116
  1002
    {
alpar@1201
  1003
      Base::_source=s;
alpar@1116
  1004
      run();
alpar@953
  1005
    }
alpar@953
  1006
alpar@953
  1007
    template<class T>
alpar@1116
  1008
    struct DefPredMapBase : public Base {
alpar@1116
  1009
      typedef T PredMap;
alpar@1367
  1010
      static PredMap *createPredMap(const Graph &) { return 0; };
alpar@1236
  1011
      DefPredMapBase(const TR &b) : TR(b) {}
alpar@1116
  1012
    };
alpar@953
  1013
    
alpar@1156
  1014
    ///\brief \ref named-templ-param "Named parameter"
alpar@1156
  1015
    ///function for setting PredMap type
alpar@1156
  1016
    ///
alpar@1156
  1017
    /// \ref named-templ-param "Named parameter"
alpar@1156
  1018
    ///function for setting PredMap type
hegyi@1124
  1019
    ///
alpar@953
  1020
    template<class T>
alpar@1116
  1021
    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
alpar@953
  1022
    {
deba@1193
  1023
      Base::_pred=(void *)&t;
alpar@1116
  1024
      return DijkstraWizard<DefPredMapBase<T> >(*this);
alpar@953
  1025
    }
alpar@953
  1026
    
alpar@1116
  1027
    template<class T>
alpar@1116
  1028
    struct DefDistMapBase : public Base {
alpar@1116
  1029
      typedef T DistMap;
alpar@1367
  1030
      static DistMap *createDistMap(const Graph &) { return 0; };
alpar@1236
  1031
      DefDistMapBase(const TR &b) : TR(b) {}
alpar@1116
  1032
    };
alpar@953
  1033
    
alpar@1156
  1034
    ///\brief \ref named-templ-param "Named parameter"
alpar@1156
  1035
    ///function for setting DistMap type
alpar@1156
  1036
    ///
alpar@1156
  1037
    /// \ref named-templ-param "Named parameter"
alpar@1156
  1038
    ///function for setting DistMap type
hegyi@1124
  1039
    ///
alpar@953
  1040
    template<class T>
alpar@1116
  1041
    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
alpar@953
  1042
    {
deba@1193
  1043
      Base::_dist=(void *)&t;
alpar@1116
  1044
      return DijkstraWizard<DefDistMapBase<T> >(*this);
alpar@953
  1045
    }
alpar@1117
  1046
    
hegyi@1123
  1047
    /// Sets the source node, from which the Dijkstra algorithm runs.
hegyi@1123
  1048
hegyi@1123
  1049
    /// Sets the source node, from which the Dijkstra algorithm runs.
hegyi@1123
  1050
    /// \param s is the source node.
alpar@1117
  1051
    DijkstraWizard<TR> &source(Node s) 
alpar@953
  1052
    {
alpar@1201
  1053
      Base::_source=s;
alpar@953
  1054
      return *this;
alpar@953
  1055
    }
alpar@953
  1056
    
alpar@953
  1057
  };
alpar@255
  1058
  
alpar@1218
  1059
  ///Function type interface for Dijkstra algorithm.
alpar@953
  1060
alpar@1151
  1061
  /// \ingroup flowalgs
alpar@1218
  1062
  ///Function type interface for Dijkstra algorithm.
alpar@953
  1063
  ///
alpar@1218
  1064
  ///This function also has several
alpar@1218
  1065
  ///\ref named-templ-func-param "named parameters",
alpar@1218
  1066
  ///they are declared as the members of class \ref DijkstraWizard.
alpar@1218
  1067
  ///The following
alpar@1218
  1068
  ///example shows how to use these parameters.
alpar@1218
  1069
  ///\code
alpar@1218
  1070
  ///  dijkstra(g,length,source).predMap(preds).run();
alpar@1218
  1071
  ///\endcode
alpar@1218
  1072
  ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
alpar@1218
  1073
  ///to the end of the parameter list.
alpar@1218
  1074
  ///\sa DijkstraWizard
alpar@1218
  1075
  ///\sa Dijkstra
alpar@953
  1076
  template<class GR, class LM>
alpar@1116
  1077
  DijkstraWizard<DijkstraWizardBase<GR,LM> >
alpar@1116
  1078
  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
alpar@953
  1079
  {
alpar@1116
  1080
    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
alpar@953
  1081
  }
alpar@953
  1082
alpar@921
  1083
} //END OF NAMESPACE LEMON
alpar@255
  1084
alpar@255
  1085
#endif