lemon/hypercube_graph.h
changeset 364 b4a01426c0d9
child 365 a12eef1f82b2
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/hypercube_graph.h	Wed Nov 05 21:36:28 2008 +0100
     1.3 @@ -0,0 +1,316 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2008
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef HYPERCUBE_GRAPH_H
    1.23 +#define HYPERCUBE_GRAPH_H
    1.24 +
    1.25 +#include <iostream>
    1.26 +#include <vector>
    1.27 +#include <lemon/core.h>
    1.28 +#include <lemon/error.h>
    1.29 +
    1.30 +#include <lemon/bits/base_extender.h>
    1.31 +#include <lemon/bits/graph_extender.h>
    1.32 +
    1.33 +///\ingroup graphs
    1.34 +///\file
    1.35 +///\brief HypercubeDigraph class.
    1.36 +
    1.37 +namespace lemon {
    1.38 +
    1.39 +  class HypercubeDigraphBase {
    1.40 +
    1.41 +  public:
    1.42 +
    1.43 +    typedef HypercubeDigraphBase Digraph;
    1.44 +
    1.45 +    class Node;
    1.46 +    class Arc;
    1.47 +
    1.48 +  public:
    1.49 +
    1.50 +    HypercubeDigraphBase() {}
    1.51 +
    1.52 +  protected:
    1.53 +
    1.54 +    void construct(int dim) {
    1.55 +      _dim = dim;
    1.56 +      _nodeNum = 1 << dim;
    1.57 +    }
    1.58 +
    1.59 +  public:
    1.60 +
    1.61 +    typedef True NodeNumTag;
    1.62 +    typedef True ArcNumTag;
    1.63 +
    1.64 +    int nodeNum() const { return _nodeNum; }
    1.65 +    int arcNum() const { return _nodeNum * _dim; }
    1.66 +
    1.67 +    int maxNodeId() const { return nodeNum() - 1; }
    1.68 +    int maxArcId() const { return arcNum() - 1; }
    1.69 +
    1.70 +    Node source(Arc e) const {
    1.71 +      return e.id / _dim;
    1.72 +    }
    1.73 +
    1.74 +    Node target(Arc e) const {
    1.75 +      return (e.id / _dim) ^ (1 << (e.id % _dim));
    1.76 +    }
    1.77 +
    1.78 +    static int id(Node v) { return v.id; }
    1.79 +    static int id(Arc e) { return e.id; }
    1.80 +
    1.81 +    static Node nodeFromId(int id) { return Node(id); }
    1.82 +
    1.83 +    static Arc arcFromId(int id) { return Arc(id); }
    1.84 +
    1.85 +    class Node {
    1.86 +      friend class HypercubeDigraphBase;
    1.87 +    protected:
    1.88 +      int id;
    1.89 +      Node(int _id) { id = _id;}
    1.90 +    public:
    1.91 +      Node() {}
    1.92 +      Node (Invalid) { id = -1; }
    1.93 +      bool operator==(const Node node) const { return id == node.id; }
    1.94 +      bool operator!=(const Node node) const { return id != node.id; }
    1.95 +      bool operator<(const Node node) const { return id < node.id; }
    1.96 +    };
    1.97 +
    1.98 +    class Arc {
    1.99 +      friend class HypercubeDigraphBase;
   1.100 +    protected:
   1.101 +      int id;
   1.102 +      Arc(int _id) : id(_id) {}
   1.103 +    public:
   1.104 +      Arc() { }
   1.105 +      Arc (Invalid) { id = -1; }
   1.106 +      bool operator==(const Arc arc) const { return id == arc.id; }
   1.107 +      bool operator!=(const Arc arc) const { return id != arc.id; }
   1.108 +      bool operator<(const Arc arc) const { return id < arc.id; }
   1.109 +    };
   1.110 +
   1.111 +    void first(Node& node) const {
   1.112 +      node.id = nodeNum() - 1;
   1.113 +    }
   1.114 +
   1.115 +    static void next(Node& node) {
   1.116 +      --node.id;
   1.117 +    }
   1.118 +
   1.119 +    void first(Arc& arc) const {
   1.120 +      arc.id = arcNum() - 1;
   1.121 +    }
   1.122 +
   1.123 +    static void next(Arc& arc) {
   1.124 +      --arc.id;
   1.125 +    }
   1.126 +
   1.127 +    void firstOut(Arc& arc, const Node& node) const {
   1.128 +      arc.id = node.id * _dim;
   1.129 +    }
   1.130 +
   1.131 +    void nextOut(Arc& arc) const {
   1.132 +      ++arc.id;
   1.133 +      if (arc.id % _dim == 0) arc.id = -1;
   1.134 +    }
   1.135 +
   1.136 +    void firstIn(Arc& arc, const Node& node) const {
   1.137 +      arc.id = (node.id ^ 1) * _dim;
   1.138 +    }
   1.139 +
   1.140 +    void nextIn(Arc& arc) const {
   1.141 +      int cnt = arc.id % _dim;
   1.142 +      if ((cnt + 1) % _dim == 0) {
   1.143 +        arc.id = -1;
   1.144 +      } else {
   1.145 +        arc.id = ((arc.id / _dim) ^ ((1 << cnt) * 3)) * _dim + cnt + 1;
   1.146 +      }
   1.147 +    }
   1.148 +
   1.149 +    int dimension() const {
   1.150 +      return _dim;
   1.151 +    }
   1.152 +
   1.153 +    bool projection(Node node, int n) const {
   1.154 +      return static_cast<bool>(node.id & (1 << n));
   1.155 +    }
   1.156 +
   1.157 +    int dimension(Arc arc) const {
   1.158 +      return arc.id % _dim;
   1.159 +    }
   1.160 +
   1.161 +    int index(Node node) const {
   1.162 +      return node.id;
   1.163 +    }
   1.164 +
   1.165 +    Node operator()(int ix) const {
   1.166 +      return Node(ix);
   1.167 +    }
   1.168 +
   1.169 +  private:
   1.170 +    int _dim, _nodeNum;
   1.171 +  };
   1.172 +
   1.173 +
   1.174 +  typedef DigraphExtender<HypercubeDigraphBase> ExtendedHypercubeDigraphBase;
   1.175 +
   1.176 +  /// \ingroup digraphs
   1.177 +  ///
   1.178 +  /// \brief Hypercube digraph class
   1.179 +  ///
   1.180 +  /// This class implements a special digraph type. The nodes of the
   1.181 +  /// digraph are indiced with integers with at most \c dim binary digits.
   1.182 +  /// Two nodes are connected in the digraph if the indices differ only
   1.183 +  /// on one position in the binary form.
   1.184 +  ///
   1.185 +  /// \note The type of the \c ids is chosen to \c int because efficiency
   1.186 +  /// reasons. Thus the maximum dimension of this implementation is 26.
   1.187 +  ///
   1.188 +  /// The digraph type is fully conform to the \ref concepts::Digraph
   1.189 +  /// concept but it does not conform to \ref concepts::Graph.
   1.190 +  class HypercubeDigraph : public ExtendedHypercubeDigraphBase {
   1.191 +  public:
   1.192 +
   1.193 +    typedef ExtendedHypercubeDigraphBase Parent;
   1.194 +
   1.195 +    /// \brief Construct a hypercube digraph with \c dim dimension.
   1.196 +    ///
   1.197 +    /// Construct a hypercube digraph with \c dim dimension.
   1.198 +    HypercubeDigraph(int dim) { construct(dim); }
   1.199 +
   1.200 +    /// \brief Gives back the number of the dimensions.
   1.201 +    ///
   1.202 +    /// Gives back the number of the dimensions.
   1.203 +    int dimension() const {
   1.204 +      return Parent::dimension();
   1.205 +    }
   1.206 +
   1.207 +    /// \brief Returns true if the n'th bit of the node is one.
   1.208 +    ///
   1.209 +    /// Returns true if the n'th bit of the node is one.
   1.210 +    bool projection(Node node, int n) const {
   1.211 +      return Parent::projection(node, n);
   1.212 +    }
   1.213 +
   1.214 +    /// \brief The dimension id of the arc.
   1.215 +    ///
   1.216 +    /// It returns the dimension id of the arc. It can
   1.217 +    /// be in the \f$ \{0, 1, \dots, dim-1\} \f$ interval.
   1.218 +    int dimension(Arc arc) const {
   1.219 +      return Parent::dimension(arc);
   1.220 +    }
   1.221 +
   1.222 +    /// \brief Gives back the index of the node.
   1.223 +    ///
   1.224 +    /// Gives back the index of the node. The lower bits of the
   1.225 +    /// integer describes the node.
   1.226 +    int index(Node node) const {
   1.227 +      return Parent::index(node);
   1.228 +    }
   1.229 +
   1.230 +    /// \brief Gives back the node by its index.
   1.231 +    ///
   1.232 +    /// Gives back the node by its index.
   1.233 +    Node operator()(int ix) const {
   1.234 +      return Parent::operator()(ix);
   1.235 +    }
   1.236 +
   1.237 +    /// \brief Number of nodes.
   1.238 +    int nodeNum() const { return Parent::nodeNum(); }
   1.239 +    /// \brief Number of arcs.
   1.240 +    int arcNum() const { return Parent::arcNum(); }
   1.241 +
   1.242 +    /// \brief Linear combination map.
   1.243 +    ///
   1.244 +    /// It makes possible to give back a linear combination
   1.245 +    /// for each node. This function works like the \c std::accumulate
   1.246 +    /// so it accumulates the \c bf binary function with the \c fv
   1.247 +    /// first value. The map accumulates only on that dimensions where
   1.248 +    /// the node's index is one. The accumulated values should be
   1.249 +    /// given by the \c begin and \c end iterators and the length of this
   1.250 +    /// range should be equal to the dimension number of the digraph.
   1.251 +    ///
   1.252 +    ///\code
   1.253 +    /// const int DIM = 3;
   1.254 +    /// HypercubeDigraph digraph(DIM);
   1.255 +    /// dim2::Point<double> base[DIM];
   1.256 +    /// for (int k = 0; k < DIM; ++k) {
   1.257 +    ///   base[k].x = rnd();
   1.258 +    ///   base[k].y = rnd();
   1.259 +    /// }
   1.260 +    /// HypercubeDigraph::HyperMap<dim2::Point<double> >
   1.261 +    ///   pos(digraph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
   1.262 +    ///\endcode
   1.263 +    ///
   1.264 +    /// \see HypercubeDigraph
   1.265 +    template <typename T, typename BF = std::plus<T> >
   1.266 +    class HyperMap {
   1.267 +    public:
   1.268 +
   1.269 +      typedef Node Key;
   1.270 +      typedef T Value;
   1.271 +
   1.272 +
   1.273 +      /// \brief Constructor for HyperMap.
   1.274 +      ///
   1.275 +      /// Construct a HyperMap for the given digraph. The accumulated values
   1.276 +      /// should be given by the \c begin and \c end iterators and the length
   1.277 +      /// of this range should be equal to the dimension number of the digraph.
   1.278 +      ///
   1.279 +      /// This function accumulates the \c bf binary function with
   1.280 +      /// the \c fv first value. The map accumulates only on that dimensions
   1.281 +      /// where the node's index is one.
   1.282 +      template <typename It>
   1.283 +      HyperMap(const Digraph& digraph, It begin, It end,
   1.284 +               T fv = 0.0, const BF& bf = BF())
   1.285 +        : _graph(digraph), _values(begin, end), _first_value(fv), _bin_func(bf)
   1.286 +      {
   1.287 +        LEMON_ASSERT(_values.size() == digraph.dimension(),
   1.288 +                     "Wrong size of dimension");
   1.289 +      }
   1.290 +
   1.291 +      /// \brief Gives back the partial accumulated value.
   1.292 +      ///
   1.293 +      /// Gives back the partial accumulated value.
   1.294 +      Value operator[](Key k) const {
   1.295 +        Value val = _first_value;
   1.296 +        int id = _graph.index(k);
   1.297 +        int n = 0;
   1.298 +        while (id != 0) {
   1.299 +          if (id & 1) {
   1.300 +            val = _bin_func(val, _values[n]);
   1.301 +          }
   1.302 +          id >>= 1;
   1.303 +          ++n;
   1.304 +        }
   1.305 +        return val;
   1.306 +      }
   1.307 +
   1.308 +    private:
   1.309 +      const Digraph& _graph;
   1.310 +      std::vector<T> _values;
   1.311 +      T _first_value;
   1.312 +      BF _bin_func;
   1.313 +    };
   1.314 +
   1.315 +  };
   1.316 +
   1.317 +}
   1.318 +
   1.319 +#endif