lemon/hypercube_graph.h
author Peter Kovacs <kpeter@inf.elte.hu>
Wed, 05 Nov 2008 21:36:28 +0100
changeset 364 b4a01426c0d9
child 365 a12eef1f82b2
permissions -rw-r--r--
Port hypercube digraph structure from SVN 3503 (#57)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef HYPERCUBE_GRAPH_H
    20 #define HYPERCUBE_GRAPH_H
    21 
    22 #include <iostream>
    23 #include <vector>
    24 #include <lemon/core.h>
    25 #include <lemon/error.h>
    26 
    27 #include <lemon/bits/base_extender.h>
    28 #include <lemon/bits/graph_extender.h>
    29 
    30 ///\ingroup graphs
    31 ///\file
    32 ///\brief HypercubeDigraph class.
    33 
    34 namespace lemon {
    35 
    36   class HypercubeDigraphBase {
    37 
    38   public:
    39 
    40     typedef HypercubeDigraphBase Digraph;
    41 
    42     class Node;
    43     class Arc;
    44 
    45   public:
    46 
    47     HypercubeDigraphBase() {}
    48 
    49   protected:
    50 
    51     void construct(int dim) {
    52       _dim = dim;
    53       _nodeNum = 1 << dim;
    54     }
    55 
    56   public:
    57 
    58     typedef True NodeNumTag;
    59     typedef True ArcNumTag;
    60 
    61     int nodeNum() const { return _nodeNum; }
    62     int arcNum() const { return _nodeNum * _dim; }
    63 
    64     int maxNodeId() const { return nodeNum() - 1; }
    65     int maxArcId() const { return arcNum() - 1; }
    66 
    67     Node source(Arc e) const {
    68       return e.id / _dim;
    69     }
    70 
    71     Node target(Arc e) const {
    72       return (e.id / _dim) ^ (1 << (e.id % _dim));
    73     }
    74 
    75     static int id(Node v) { return v.id; }
    76     static int id(Arc e) { return e.id; }
    77 
    78     static Node nodeFromId(int id) { return Node(id); }
    79 
    80     static Arc arcFromId(int id) { return Arc(id); }
    81 
    82     class Node {
    83       friend class HypercubeDigraphBase;
    84     protected:
    85       int id;
    86       Node(int _id) { id = _id;}
    87     public:
    88       Node() {}
    89       Node (Invalid) { id = -1; }
    90       bool operator==(const Node node) const { return id == node.id; }
    91       bool operator!=(const Node node) const { return id != node.id; }
    92       bool operator<(const Node node) const { return id < node.id; }
    93     };
    94 
    95     class Arc {
    96       friend class HypercubeDigraphBase;
    97     protected:
    98       int id;
    99       Arc(int _id) : id(_id) {}
   100     public:
   101       Arc() { }
   102       Arc (Invalid) { id = -1; }
   103       bool operator==(const Arc arc) const { return id == arc.id; }
   104       bool operator!=(const Arc arc) const { return id != arc.id; }
   105       bool operator<(const Arc arc) const { return id < arc.id; }
   106     };
   107 
   108     void first(Node& node) const {
   109       node.id = nodeNum() - 1;
   110     }
   111 
   112     static void next(Node& node) {
   113       --node.id;
   114     }
   115 
   116     void first(Arc& arc) const {
   117       arc.id = arcNum() - 1;
   118     }
   119 
   120     static void next(Arc& arc) {
   121       --arc.id;
   122     }
   123 
   124     void firstOut(Arc& arc, const Node& node) const {
   125       arc.id = node.id * _dim;
   126     }
   127 
   128     void nextOut(Arc& arc) const {
   129       ++arc.id;
   130       if (arc.id % _dim == 0) arc.id = -1;
   131     }
   132 
   133     void firstIn(Arc& arc, const Node& node) const {
   134       arc.id = (node.id ^ 1) * _dim;
   135     }
   136 
   137     void nextIn(Arc& arc) const {
   138       int cnt = arc.id % _dim;
   139       if ((cnt + 1) % _dim == 0) {
   140         arc.id = -1;
   141       } else {
   142         arc.id = ((arc.id / _dim) ^ ((1 << cnt) * 3)) * _dim + cnt + 1;
   143       }
   144     }
   145 
   146     int dimension() const {
   147       return _dim;
   148     }
   149 
   150     bool projection(Node node, int n) const {
   151       return static_cast<bool>(node.id & (1 << n));
   152     }
   153 
   154     int dimension(Arc arc) const {
   155       return arc.id % _dim;
   156     }
   157 
   158     int index(Node node) const {
   159       return node.id;
   160     }
   161 
   162     Node operator()(int ix) const {
   163       return Node(ix);
   164     }
   165 
   166   private:
   167     int _dim, _nodeNum;
   168   };
   169 
   170 
   171   typedef DigraphExtender<HypercubeDigraphBase> ExtendedHypercubeDigraphBase;
   172 
   173   /// \ingroup digraphs
   174   ///
   175   /// \brief Hypercube digraph class
   176   ///
   177   /// This class implements a special digraph type. The nodes of the
   178   /// digraph are indiced with integers with at most \c dim binary digits.
   179   /// Two nodes are connected in the digraph if the indices differ only
   180   /// on one position in the binary form.
   181   ///
   182   /// \note The type of the \c ids is chosen to \c int because efficiency
   183   /// reasons. Thus the maximum dimension of this implementation is 26.
   184   ///
   185   /// The digraph type is fully conform to the \ref concepts::Digraph
   186   /// concept but it does not conform to \ref concepts::Graph.
   187   class HypercubeDigraph : public ExtendedHypercubeDigraphBase {
   188   public:
   189 
   190     typedef ExtendedHypercubeDigraphBase Parent;
   191 
   192     /// \brief Construct a hypercube digraph with \c dim dimension.
   193     ///
   194     /// Construct a hypercube digraph with \c dim dimension.
   195     HypercubeDigraph(int dim) { construct(dim); }
   196 
   197     /// \brief Gives back the number of the dimensions.
   198     ///
   199     /// Gives back the number of the dimensions.
   200     int dimension() const {
   201       return Parent::dimension();
   202     }
   203 
   204     /// \brief Returns true if the n'th bit of the node is one.
   205     ///
   206     /// Returns true if the n'th bit of the node is one.
   207     bool projection(Node node, int n) const {
   208       return Parent::projection(node, n);
   209     }
   210 
   211     /// \brief The dimension id of the arc.
   212     ///
   213     /// It returns the dimension id of the arc. It can
   214     /// be in the \f$ \{0, 1, \dots, dim-1\} \f$ interval.
   215     int dimension(Arc arc) const {
   216       return Parent::dimension(arc);
   217     }
   218 
   219     /// \brief Gives back the index of the node.
   220     ///
   221     /// Gives back the index of the node. The lower bits of the
   222     /// integer describes the node.
   223     int index(Node node) const {
   224       return Parent::index(node);
   225     }
   226 
   227     /// \brief Gives back the node by its index.
   228     ///
   229     /// Gives back the node by its index.
   230     Node operator()(int ix) const {
   231       return Parent::operator()(ix);
   232     }
   233 
   234     /// \brief Number of nodes.
   235     int nodeNum() const { return Parent::nodeNum(); }
   236     /// \brief Number of arcs.
   237     int arcNum() const { return Parent::arcNum(); }
   238 
   239     /// \brief Linear combination map.
   240     ///
   241     /// It makes possible to give back a linear combination
   242     /// for each node. This function works like the \c std::accumulate
   243     /// so it accumulates the \c bf binary function with the \c fv
   244     /// first value. The map accumulates only on that dimensions where
   245     /// the node's index is one. The accumulated values should be
   246     /// given by the \c begin and \c end iterators and the length of this
   247     /// range should be equal to the dimension number of the digraph.
   248     ///
   249     ///\code
   250     /// const int DIM = 3;
   251     /// HypercubeDigraph digraph(DIM);
   252     /// dim2::Point<double> base[DIM];
   253     /// for (int k = 0; k < DIM; ++k) {
   254     ///   base[k].x = rnd();
   255     ///   base[k].y = rnd();
   256     /// }
   257     /// HypercubeDigraph::HyperMap<dim2::Point<double> >
   258     ///   pos(digraph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
   259     ///\endcode
   260     ///
   261     /// \see HypercubeDigraph
   262     template <typename T, typename BF = std::plus<T> >
   263     class HyperMap {
   264     public:
   265 
   266       typedef Node Key;
   267       typedef T Value;
   268 
   269 
   270       /// \brief Constructor for HyperMap.
   271       ///
   272       /// Construct a HyperMap for the given digraph. The accumulated values
   273       /// should be given by the \c begin and \c end iterators and the length
   274       /// of this range should be equal to the dimension number of the digraph.
   275       ///
   276       /// This function accumulates the \c bf binary function with
   277       /// the \c fv first value. The map accumulates only on that dimensions
   278       /// where the node's index is one.
   279       template <typename It>
   280       HyperMap(const Digraph& digraph, It begin, It end,
   281                T fv = 0.0, const BF& bf = BF())
   282         : _graph(digraph), _values(begin, end), _first_value(fv), _bin_func(bf)
   283       {
   284         LEMON_ASSERT(_values.size() == digraph.dimension(),
   285                      "Wrong size of dimension");
   286       }
   287 
   288       /// \brief Gives back the partial accumulated value.
   289       ///
   290       /// Gives back the partial accumulated value.
   291       Value operator[](Key k) const {
   292         Value val = _first_value;
   293         int id = _graph.index(k);
   294         int n = 0;
   295         while (id != 0) {
   296           if (id & 1) {
   297             val = _bin_func(val, _values[n]);
   298           }
   299           id >>= 1;
   300           ++n;
   301         }
   302         return val;
   303       }
   304 
   305     private:
   306       const Digraph& _graph;
   307       std::vector<T> _values;
   308       T _first_value;
   309       BF _bin_func;
   310     };
   311 
   312   };
   313 
   314 }
   315 
   316 #endif