lemon/hypercube_graph.h
author Peter Kovacs <kpeter@inf.elte.hu>
Wed, 05 Nov 2008 21:36:28 +0100
changeset 364 b4a01426c0d9
child 365 a12eef1f82b2
permissions -rw-r--r--
Port hypercube digraph structure from SVN 3503 (#57)
kpeter@364
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@364
     2
 *
kpeter@364
     3
 * This file is a part of LEMON, a generic C++ optimization library.
kpeter@364
     4
 *
kpeter@364
     5
 * Copyright (C) 2003-2008
kpeter@364
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@364
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@364
     8
 *
kpeter@364
     9
 * Permission to use, modify and distribute this software is granted
kpeter@364
    10
 * provided that this copyright notice appears in all copies. For
kpeter@364
    11
 * precise terms see the accompanying LICENSE file.
kpeter@364
    12
 *
kpeter@364
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@364
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@364
    15
 * purpose.
kpeter@364
    16
 *
kpeter@364
    17
 */
kpeter@364
    18
kpeter@364
    19
#ifndef HYPERCUBE_GRAPH_H
kpeter@364
    20
#define HYPERCUBE_GRAPH_H
kpeter@364
    21
kpeter@364
    22
#include <iostream>
kpeter@364
    23
#include <vector>
kpeter@364
    24
#include <lemon/core.h>
kpeter@364
    25
#include <lemon/error.h>
kpeter@364
    26
kpeter@364
    27
#include <lemon/bits/base_extender.h>
kpeter@364
    28
#include <lemon/bits/graph_extender.h>
kpeter@364
    29
kpeter@364
    30
///\ingroup graphs
kpeter@364
    31
///\file
kpeter@364
    32
///\brief HypercubeDigraph class.
kpeter@364
    33
kpeter@364
    34
namespace lemon {
kpeter@364
    35
kpeter@364
    36
  class HypercubeDigraphBase {
kpeter@364
    37
kpeter@364
    38
  public:
kpeter@364
    39
kpeter@364
    40
    typedef HypercubeDigraphBase Digraph;
kpeter@364
    41
kpeter@364
    42
    class Node;
kpeter@364
    43
    class Arc;
kpeter@364
    44
kpeter@364
    45
  public:
kpeter@364
    46
kpeter@364
    47
    HypercubeDigraphBase() {}
kpeter@364
    48
kpeter@364
    49
  protected:
kpeter@364
    50
kpeter@364
    51
    void construct(int dim) {
kpeter@364
    52
      _dim = dim;
kpeter@364
    53
      _nodeNum = 1 << dim;
kpeter@364
    54
    }
kpeter@364
    55
kpeter@364
    56
  public:
kpeter@364
    57
kpeter@364
    58
    typedef True NodeNumTag;
kpeter@364
    59
    typedef True ArcNumTag;
kpeter@364
    60
kpeter@364
    61
    int nodeNum() const { return _nodeNum; }
kpeter@364
    62
    int arcNum() const { return _nodeNum * _dim; }
kpeter@364
    63
kpeter@364
    64
    int maxNodeId() const { return nodeNum() - 1; }
kpeter@364
    65
    int maxArcId() const { return arcNum() - 1; }
kpeter@364
    66
kpeter@364
    67
    Node source(Arc e) const {
kpeter@364
    68
      return e.id / _dim;
kpeter@364
    69
    }
kpeter@364
    70
kpeter@364
    71
    Node target(Arc e) const {
kpeter@364
    72
      return (e.id / _dim) ^ (1 << (e.id % _dim));
kpeter@364
    73
    }
kpeter@364
    74
kpeter@364
    75
    static int id(Node v) { return v.id; }
kpeter@364
    76
    static int id(Arc e) { return e.id; }
kpeter@364
    77
kpeter@364
    78
    static Node nodeFromId(int id) { return Node(id); }
kpeter@364
    79
kpeter@364
    80
    static Arc arcFromId(int id) { return Arc(id); }
kpeter@364
    81
kpeter@364
    82
    class Node {
kpeter@364
    83
      friend class HypercubeDigraphBase;
kpeter@364
    84
    protected:
kpeter@364
    85
      int id;
kpeter@364
    86
      Node(int _id) { id = _id;}
kpeter@364
    87
    public:
kpeter@364
    88
      Node() {}
kpeter@364
    89
      Node (Invalid) { id = -1; }
kpeter@364
    90
      bool operator==(const Node node) const { return id == node.id; }
kpeter@364
    91
      bool operator!=(const Node node) const { return id != node.id; }
kpeter@364
    92
      bool operator<(const Node node) const { return id < node.id; }
kpeter@364
    93
    };
kpeter@364
    94
kpeter@364
    95
    class Arc {
kpeter@364
    96
      friend class HypercubeDigraphBase;
kpeter@364
    97
    protected:
kpeter@364
    98
      int id;
kpeter@364
    99
      Arc(int _id) : id(_id) {}
kpeter@364
   100
    public:
kpeter@364
   101
      Arc() { }
kpeter@364
   102
      Arc (Invalid) { id = -1; }
kpeter@364
   103
      bool operator==(const Arc arc) const { return id == arc.id; }
kpeter@364
   104
      bool operator!=(const Arc arc) const { return id != arc.id; }
kpeter@364
   105
      bool operator<(const Arc arc) const { return id < arc.id; }
kpeter@364
   106
    };
kpeter@364
   107
kpeter@364
   108
    void first(Node& node) const {
kpeter@364
   109
      node.id = nodeNum() - 1;
kpeter@364
   110
    }
kpeter@364
   111
kpeter@364
   112
    static void next(Node& node) {
kpeter@364
   113
      --node.id;
kpeter@364
   114
    }
kpeter@364
   115
kpeter@364
   116
    void first(Arc& arc) const {
kpeter@364
   117
      arc.id = arcNum() - 1;
kpeter@364
   118
    }
kpeter@364
   119
kpeter@364
   120
    static void next(Arc& arc) {
kpeter@364
   121
      --arc.id;
kpeter@364
   122
    }
kpeter@364
   123
kpeter@364
   124
    void firstOut(Arc& arc, const Node& node) const {
kpeter@364
   125
      arc.id = node.id * _dim;
kpeter@364
   126
    }
kpeter@364
   127
kpeter@364
   128
    void nextOut(Arc& arc) const {
kpeter@364
   129
      ++arc.id;
kpeter@364
   130
      if (arc.id % _dim == 0) arc.id = -1;
kpeter@364
   131
    }
kpeter@364
   132
kpeter@364
   133
    void firstIn(Arc& arc, const Node& node) const {
kpeter@364
   134
      arc.id = (node.id ^ 1) * _dim;
kpeter@364
   135
    }
kpeter@364
   136
kpeter@364
   137
    void nextIn(Arc& arc) const {
kpeter@364
   138
      int cnt = arc.id % _dim;
kpeter@364
   139
      if ((cnt + 1) % _dim == 0) {
kpeter@364
   140
        arc.id = -1;
kpeter@364
   141
      } else {
kpeter@364
   142
        arc.id = ((arc.id / _dim) ^ ((1 << cnt) * 3)) * _dim + cnt + 1;
kpeter@364
   143
      }
kpeter@364
   144
    }
kpeter@364
   145
kpeter@364
   146
    int dimension() const {
kpeter@364
   147
      return _dim;
kpeter@364
   148
    }
kpeter@364
   149
kpeter@364
   150
    bool projection(Node node, int n) const {
kpeter@364
   151
      return static_cast<bool>(node.id & (1 << n));
kpeter@364
   152
    }
kpeter@364
   153
kpeter@364
   154
    int dimension(Arc arc) const {
kpeter@364
   155
      return arc.id % _dim;
kpeter@364
   156
    }
kpeter@364
   157
kpeter@364
   158
    int index(Node node) const {
kpeter@364
   159
      return node.id;
kpeter@364
   160
    }
kpeter@364
   161
kpeter@364
   162
    Node operator()(int ix) const {
kpeter@364
   163
      return Node(ix);
kpeter@364
   164
    }
kpeter@364
   165
kpeter@364
   166
  private:
kpeter@364
   167
    int _dim, _nodeNum;
kpeter@364
   168
  };
kpeter@364
   169
kpeter@364
   170
kpeter@364
   171
  typedef DigraphExtender<HypercubeDigraphBase> ExtendedHypercubeDigraphBase;
kpeter@364
   172
kpeter@364
   173
  /// \ingroup digraphs
kpeter@364
   174
  ///
kpeter@364
   175
  /// \brief Hypercube digraph class
kpeter@364
   176
  ///
kpeter@364
   177
  /// This class implements a special digraph type. The nodes of the
kpeter@364
   178
  /// digraph are indiced with integers with at most \c dim binary digits.
kpeter@364
   179
  /// Two nodes are connected in the digraph if the indices differ only
kpeter@364
   180
  /// on one position in the binary form.
kpeter@364
   181
  ///
kpeter@364
   182
  /// \note The type of the \c ids is chosen to \c int because efficiency
kpeter@364
   183
  /// reasons. Thus the maximum dimension of this implementation is 26.
kpeter@364
   184
  ///
kpeter@364
   185
  /// The digraph type is fully conform to the \ref concepts::Digraph
kpeter@364
   186
  /// concept but it does not conform to \ref concepts::Graph.
kpeter@364
   187
  class HypercubeDigraph : public ExtendedHypercubeDigraphBase {
kpeter@364
   188
  public:
kpeter@364
   189
kpeter@364
   190
    typedef ExtendedHypercubeDigraphBase Parent;
kpeter@364
   191
kpeter@364
   192
    /// \brief Construct a hypercube digraph with \c dim dimension.
kpeter@364
   193
    ///
kpeter@364
   194
    /// Construct a hypercube digraph with \c dim dimension.
kpeter@364
   195
    HypercubeDigraph(int dim) { construct(dim); }
kpeter@364
   196
kpeter@364
   197
    /// \brief Gives back the number of the dimensions.
kpeter@364
   198
    ///
kpeter@364
   199
    /// Gives back the number of the dimensions.
kpeter@364
   200
    int dimension() const {
kpeter@364
   201
      return Parent::dimension();
kpeter@364
   202
    }
kpeter@364
   203
kpeter@364
   204
    /// \brief Returns true if the n'th bit of the node is one.
kpeter@364
   205
    ///
kpeter@364
   206
    /// Returns true if the n'th bit of the node is one.
kpeter@364
   207
    bool projection(Node node, int n) const {
kpeter@364
   208
      return Parent::projection(node, n);
kpeter@364
   209
    }
kpeter@364
   210
kpeter@364
   211
    /// \brief The dimension id of the arc.
kpeter@364
   212
    ///
kpeter@364
   213
    /// It returns the dimension id of the arc. It can
kpeter@364
   214
    /// be in the \f$ \{0, 1, \dots, dim-1\} \f$ interval.
kpeter@364
   215
    int dimension(Arc arc) const {
kpeter@364
   216
      return Parent::dimension(arc);
kpeter@364
   217
    }
kpeter@364
   218
kpeter@364
   219
    /// \brief Gives back the index of the node.
kpeter@364
   220
    ///
kpeter@364
   221
    /// Gives back the index of the node. The lower bits of the
kpeter@364
   222
    /// integer describes the node.
kpeter@364
   223
    int index(Node node) const {
kpeter@364
   224
      return Parent::index(node);
kpeter@364
   225
    }
kpeter@364
   226
kpeter@364
   227
    /// \brief Gives back the node by its index.
kpeter@364
   228
    ///
kpeter@364
   229
    /// Gives back the node by its index.
kpeter@364
   230
    Node operator()(int ix) const {
kpeter@364
   231
      return Parent::operator()(ix);
kpeter@364
   232
    }
kpeter@364
   233
kpeter@364
   234
    /// \brief Number of nodes.
kpeter@364
   235
    int nodeNum() const { return Parent::nodeNum(); }
kpeter@364
   236
    /// \brief Number of arcs.
kpeter@364
   237
    int arcNum() const { return Parent::arcNum(); }
kpeter@364
   238
kpeter@364
   239
    /// \brief Linear combination map.
kpeter@364
   240
    ///
kpeter@364
   241
    /// It makes possible to give back a linear combination
kpeter@364
   242
    /// for each node. This function works like the \c std::accumulate
kpeter@364
   243
    /// so it accumulates the \c bf binary function with the \c fv
kpeter@364
   244
    /// first value. The map accumulates only on that dimensions where
kpeter@364
   245
    /// the node's index is one. The accumulated values should be
kpeter@364
   246
    /// given by the \c begin and \c end iterators and the length of this
kpeter@364
   247
    /// range should be equal to the dimension number of the digraph.
kpeter@364
   248
    ///
kpeter@364
   249
    ///\code
kpeter@364
   250
    /// const int DIM = 3;
kpeter@364
   251
    /// HypercubeDigraph digraph(DIM);
kpeter@364
   252
    /// dim2::Point<double> base[DIM];
kpeter@364
   253
    /// for (int k = 0; k < DIM; ++k) {
kpeter@364
   254
    ///   base[k].x = rnd();
kpeter@364
   255
    ///   base[k].y = rnd();
kpeter@364
   256
    /// }
kpeter@364
   257
    /// HypercubeDigraph::HyperMap<dim2::Point<double> >
kpeter@364
   258
    ///   pos(digraph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
kpeter@364
   259
    ///\endcode
kpeter@364
   260
    ///
kpeter@364
   261
    /// \see HypercubeDigraph
kpeter@364
   262
    template <typename T, typename BF = std::plus<T> >
kpeter@364
   263
    class HyperMap {
kpeter@364
   264
    public:
kpeter@364
   265
kpeter@364
   266
      typedef Node Key;
kpeter@364
   267
      typedef T Value;
kpeter@364
   268
kpeter@364
   269
kpeter@364
   270
      /// \brief Constructor for HyperMap.
kpeter@364
   271
      ///
kpeter@364
   272
      /// Construct a HyperMap for the given digraph. The accumulated values
kpeter@364
   273
      /// should be given by the \c begin and \c end iterators and the length
kpeter@364
   274
      /// of this range should be equal to the dimension number of the digraph.
kpeter@364
   275
      ///
kpeter@364
   276
      /// This function accumulates the \c bf binary function with
kpeter@364
   277
      /// the \c fv first value. The map accumulates only on that dimensions
kpeter@364
   278
      /// where the node's index is one.
kpeter@364
   279
      template <typename It>
kpeter@364
   280
      HyperMap(const Digraph& digraph, It begin, It end,
kpeter@364
   281
               T fv = 0.0, const BF& bf = BF())
kpeter@364
   282
        : _graph(digraph), _values(begin, end), _first_value(fv), _bin_func(bf)
kpeter@364
   283
      {
kpeter@364
   284
        LEMON_ASSERT(_values.size() == digraph.dimension(),
kpeter@364
   285
                     "Wrong size of dimension");
kpeter@364
   286
      }
kpeter@364
   287
kpeter@364
   288
      /// \brief Gives back the partial accumulated value.
kpeter@364
   289
      ///
kpeter@364
   290
      /// Gives back the partial accumulated value.
kpeter@364
   291
      Value operator[](Key k) const {
kpeter@364
   292
        Value val = _first_value;
kpeter@364
   293
        int id = _graph.index(k);
kpeter@364
   294
        int n = 0;
kpeter@364
   295
        while (id != 0) {
kpeter@364
   296
          if (id & 1) {
kpeter@364
   297
            val = _bin_func(val, _values[n]);
kpeter@364
   298
          }
kpeter@364
   299
          id >>= 1;
kpeter@364
   300
          ++n;
kpeter@364
   301
        }
kpeter@364
   302
        return val;
kpeter@364
   303
      }
kpeter@364
   304
kpeter@364
   305
    private:
kpeter@364
   306
      const Digraph& _graph;
kpeter@364
   307
      std::vector<T> _values;
kpeter@364
   308
      T _first_value;
kpeter@364
   309
      BF _bin_func;
kpeter@364
   310
    };
kpeter@364
   311
kpeter@364
   312
  };
kpeter@364
   313
kpeter@364
   314
}
kpeter@364
   315
kpeter@364
   316
#endif