/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#include <lemon/smart_graph.h>
#include <lemon/max_matching.h>
#include <lemon/lgf_reader.h>
GRAPH_TYPEDEFS(SmartGraph);
const std::string lgf[lgfn] = {
void checkMatching(const SmartGraph& graph,
const SmartGraph::EdgeMap<int>& weight,
const MaxWeightedMatching<SmartGraph>& mwm) {
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
if (graph.u(e) == graph.v(e)) continue;
mwm.nodeValue(graph.u(e)) + mwm.nodeValue(graph.v(e));
for (int i = 0; i < mwm.blossomNum(); ++i) {
bool s = false, t = false;
for (MaxWeightedMatching<SmartGraph>::BlossomIt n(mwm, i);
if (graph.u(e) == n) s = true;
if (graph.v(e) == n) t = true;
if (s == true && t == true) {
rw += mwm.blossomValue(i);
rw -= weight[e] * mwm.dualScale;
check(rw >= 0, "Negative reduced weight");
check(rw == 0 || !mwm.matching(e),
"Non-zero reduced weight on matching arc");
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
if (mwm.matching(n) != INVALID) {
check(mwm.nodeValue(n) >= 0, "Invalid node value");
pv += weight[mwm.matching(n)];
SmartGraph::Node o = graph.target(mwm.matching(n));
check(mwm.mate(n) == o, "Invalid matching");
check(mwm.matching(n) == graph.oppositeArc(mwm.matching(o)),
check(mwm.mate(n) == INVALID, "Invalid matching");
check(mwm.nodeValue(n) == 0, "Invalid matching");
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
for (int i = 0; i < mwm.blossomNum(); ++i) {
check(mwm.blossomValue(i) >= 0, "Invalid blossom value");
check(mwm.blossomSize(i) % 2 == 1, "Even blossom size");
dv += mwm.blossomValue(i) * ((mwm.blossomSize(i) - 1) / 2);
check(pv * mwm.dualScale == dv * 2, "Wrong duality");
void checkPerfectMatching(const SmartGraph& graph,
const SmartGraph::EdgeMap<int>& weight,
const MaxWeightedPerfectMatching<SmartGraph>& mwpm) {
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
if (graph.u(e) == graph.v(e)) continue;
mwpm.nodeValue(graph.u(e)) + mwpm.nodeValue(graph.v(e));
for (int i = 0; i < mwpm.blossomNum(); ++i) {
bool s = false, t = false;
for (MaxWeightedPerfectMatching<SmartGraph>::BlossomIt n(mwpm, i);
if (graph.u(e) == n) s = true;
if (graph.v(e) == n) t = true;
if (s == true && t == true) {
rw += mwpm.blossomValue(i);
rw -= weight[e] * mwpm.dualScale;
check(rw >= 0, "Negative reduced weight");
check(rw == 0 || !mwpm.matching(e),
"Non-zero reduced weight on matching arc");
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
check(mwpm.matching(n) != INVALID, "Non perfect");
pv += weight[mwpm.matching(n)];
SmartGraph::Node o = graph.target(mwpm.matching(n));
check(mwpm.mate(n) == o, "Invalid matching");
check(mwpm.matching(n) == graph.oppositeArc(mwpm.matching(o)),
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
for (int i = 0; i < mwpm.blossomNum(); ++i) {
check(mwpm.blossomValue(i) >= 0, "Invalid blossom value");
check(mwpm.blossomSize(i) % 2 == 1, "Even blossom size");
dv += mwpm.blossomValue(i) * ((mwpm.blossomSize(i) - 1) / 2);
check(pv * mwpm.dualScale == dv * 2, "Wrong duality");
for (int i = 0; i < lgfn; ++i) {
SmartGraph::EdgeMap<int> weight(graph);
istringstream lgfs(lgf[i]);
graphReader(graph, lgfs).
edgeMap("weight", weight).run();
MaxWeightedMatching<SmartGraph> mwm(graph, weight);
checkMatching(graph, weight, mwm);
MaxMatching<SmartGraph> mm(graph);
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight);
bool perfect = mwpm.run();
check(perfect == (mm.size() * 2 == countNodes(graph)),
"Perfect matching found");
checkPerfectMatching(graph, weight, mwpm);