Location: LEMON/LEMON-main/lemon/binom_heap.h

Load file history
gravatar
kpeter (Peter Kovacs)
Add fourary, k-ary, pairing and binomial heaps (#301) These structures were implemented by Dorian Batha.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
/* -*- C++ -*-
*
* This file is a part of LEMON, a generic C++ optimization library
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_BINOM_HEAP_H
#define LEMON_BINOM_HEAP_H
///\file
///\ingroup auxdat
///\brief Binomial Heap implementation.
#include <vector>
#include <functional>
#include <lemon/math.h>
#include <lemon/counter.h>
namespace lemon {
/// \ingroup auxdat
///
///\brief Binomial Heap.
///
///This class implements the \e Binomial \e heap data structure. A \e heap
///is a data structure for storing items with specified values called \e
///priorities in such a way that finding the item with minimum priority is
///efficient. \c Compare specifies the ordering of the priorities. In a heap
///one can change the priority of an item, add or erase an item, etc.
///
///The methods \ref increase and \ref erase are not efficient in a Binomial
///heap. In case of many calls to these operations, it is better to use a
///\ref BinHeap "binary heap".
///
///\param _Prio Type of the priority of the items.
///\param _ItemIntMap A read and writable Item int map, used internally
///to handle the cross references.
///\param _Compare A class for the ordering of the priorities. The
///default is \c std::less<_Prio>.
///
///\sa BinHeap
///\sa Dijkstra
///\author Dorian Batha
#ifdef DOXYGEN
template <typename _Prio,
typename _ItemIntMap,
typename _Compare>
#else
template <typename _Prio,
typename _ItemIntMap,
typename _Compare = std::less<_Prio> >
#endif
class BinomHeap {
public:
typedef _ItemIntMap ItemIntMap;
typedef _Prio Prio;
typedef typename ItemIntMap::Key Item;
typedef std::pair<Item,Prio> Pair;
typedef _Compare Compare;
private:
class store;
std::vector<store> container;
int minimum, head;
ItemIntMap &iimap;
Compare comp;
int num_items;
public:
///Status of the nodes
enum State {
///The node is in the heap
IN_HEAP = 0,
///The node has never been in the heap
PRE_HEAP = -1,
///The node was in the heap but it got out of it
POST_HEAP = -2
};
/// \brief The constructor
///
/// \c _iimap should be given to the constructor, since it is
/// used internally to handle the cross references.
explicit BinomHeap(ItemIntMap &_iimap)
: minimum(0), head(-1), iimap(_iimap), num_items() {}
/// \brief The constructor
///
/// \c _iimap should be given to the constructor, since it is used
/// internally to handle the cross references. \c _comp is an
/// object for ordering of the priorities.
BinomHeap(ItemIntMap &_iimap, const Compare &_comp)
: minimum(0), head(-1), iimap(_iimap), comp(_comp), num_items() {}
/// \brief The number of items stored in the heap.
///
/// Returns the number of items stored in the heap.
int size() const { return num_items; }
/// \brief Checks if the heap stores no items.
///
/// Returns \c true if and only if the heap stores no items.
bool empty() const { return num_items==0; }
/// \brief Make empty this heap.
///
/// Make empty this heap. It does not change the cross reference
/// map. If you want to reuse a heap what is not surely empty you
/// should first clear the heap and after that you should set the
/// cross reference map for each item to \c PRE_HEAP.
void clear() {
container.clear(); minimum=0; num_items=0; head=-1;
}
/// \brief \c item gets to the heap with priority \c value independently
/// if \c item was already there.
///
/// This method calls \ref push(\c item, \c value) if \c item is not
/// stored in the heap and it calls \ref decrease(\c item, \c value) or
/// \ref increase(\c item, \c value) otherwise.
void set (const Item& item, const Prio& value) {
int i=iimap[item];
if ( i >= 0 && container[i].in ) {
if ( comp(value, container[i].prio) ) decrease(item, value);
if ( comp(container[i].prio, value) ) increase(item, value);
} else push(item, value);
}
/// \brief Adds \c item to the heap with priority \c value.
///
/// Adds \c item to the heap with priority \c value.
/// \pre \c item must not be stored in the heap.
void push (const Item& item, const Prio& value) {
int i=iimap[item];
if ( i<0 ) {
int s=container.size();
iimap.set( item,s );
store st;
st.name=item;
container.push_back(st);
i=s;
}
else {
container[i].parent=container[i].right_neighbor=container[i].child=-1;
container[i].degree=0;
container[i].in=true;
}
container[i].prio=value;
if( 0==num_items ) { head=i; minimum=i; }
else { merge(i); }
minimum = find_min();
++num_items;
}
/// \brief Returns the item with minimum priority relative to \c Compare.
///
/// This method returns the item with minimum priority relative to \c
/// Compare.
/// \pre The heap must be nonempty.
Item top() const { return container[minimum].name; }
/// \brief Returns the minimum priority relative to \c Compare.
///
/// It returns the minimum priority relative to \c Compare.
/// \pre The heap must be nonempty.
const Prio& prio() const { return container[minimum].prio; }
/// \brief Returns the priority of \c item.
///
/// It returns the priority of \c item.
/// \pre \c item must be in the heap.
const Prio& operator[](const Item& item) const {
return container[iimap[item]].prio;
}
/// \brief Deletes the item with minimum priority relative to \c Compare.
///
/// This method deletes the item with minimum priority relative to \c
/// Compare from the heap.
/// \pre The heap must be non-empty.
void pop() {
container[minimum].in=false;
int head_child=-1;
if ( container[minimum].child!=-1 ) {
int child=container[minimum].child;
int neighb;
int prev=-1;
while( child!=-1 ) {
neighb=container[child].right_neighbor;
container[child].parent=-1;
container[child].right_neighbor=prev;
head_child=child;
prev=child;
child=neighb;
}
}
// The first case is that there are only one root.
if ( -1==container[head].right_neighbor ) {
head=head_child;
}
// The case where there are more roots.
else {
if( head!=minimum ) { unlace(minimum); }
else { head=container[head].right_neighbor; }
merge(head_child);
}
minimum=find_min();
--num_items;
}
/// \brief Deletes \c item from the heap.
///
/// This method deletes \c item from the heap, if \c item was already
/// stored in the heap. It is quite inefficient in Binomial heaps.
void erase (const Item& item) {
int i=iimap[item];
if ( i >= 0 && container[i].in ) {
decrease( item, container[minimum].prio-1 );
pop();
}
}
/// \brief Decreases the priority of \c item to \c value.
///
/// This method decreases the priority of \c item to \c value.
/// \pre \c item must be stored in the heap with priority at least \c
/// value relative to \c Compare.
void decrease (Item item, const Prio& value) {
int i=iimap[item];
if( comp( value,container[i].prio ) ) {
container[i].prio=value;
int p_loc=container[i].parent, loc=i;
int parent, child, neighb;
while( -1!=p_loc && comp(container[loc].prio,container[p_loc].prio) ) {
// parent set for other loc_child
child=container[loc].child;
while( -1!=child ) {
container[child].parent=p_loc;
child=container[child].right_neighbor;
}
// parent set for other p_loc_child
child=container[p_loc].child;
while( -1!=child ) {
container[child].parent=loc;
child=container[child].right_neighbor;
}
child=container[p_loc].child;
container[p_loc].child=container[loc].child;
if( child==loc )
child=p_loc;
container[loc].child=child;
// left_neighb set for p_loc
if( container[loc].child!=p_loc ) {
while( container[child].right_neighbor!=loc )
child=container[child].right_neighbor;
container[child].right_neighbor=p_loc;
}
// left_neighb set for loc
parent=container[p_loc].parent;
if( -1!=parent ) child=container[parent].child;
else child=head;
if( child!=p_loc ) {
while( container[child].right_neighbor!=p_loc )
child=container[child].right_neighbor;
container[child].right_neighbor=loc;
}
neighb=container[p_loc].right_neighbor;
container[p_loc].right_neighbor=container[loc].right_neighbor;
container[loc].right_neighbor=neighb;
container[p_loc].parent=loc;
container[loc].parent=parent;
if( -1!=parent && container[parent].child==p_loc )
container[parent].child=loc;
/*if new parent will be the first root*/
if( head==p_loc )
head=loc;
p_loc=container[loc].parent;
}
}
if( comp(value,container[minimum].prio) ) {
minimum=i;
}
}
/// \brief Increases the priority of \c item to \c value.
///
/// This method sets the priority of \c item to \c value. Though
/// there is no precondition on the priority of \c item, this
/// method should be used only if it is indeed necessary to increase
/// (relative to \c Compare) the priority of \c item, because this
/// method is inefficient.
void increase (Item item, const Prio& value) {
erase(item);
push(item, value);
}
/// \brief Returns if \c item is in, has already been in, or has never
/// been in the heap.
///
/// This method returns PRE_HEAP if \c item has never been in the
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
/// otherwise. In the latter case it is possible that \c item will
/// get back to the heap again.
State state(const Item &item) const {
int i=iimap[item];
if( i>=0 ) {
if ( container[i].in ) i=0;
else i=-2;
}
return State(i);
}
/// \brief Sets the state of the \c item in the heap.
///
/// Sets the state of the \c item in the heap. It can be used to
/// manually clear the heap when it is important to achive the
/// better time complexity.
/// \param i The item.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
switch (st) {
case POST_HEAP:
case PRE_HEAP:
if (state(i) == IN_HEAP) {
erase(i);
}
iimap[i] = st;
break;
case IN_HEAP:
break;
}
}
private:
int find_min() {
int min_loc=-1, min_val;
int x=head;
if( x!=-1 ) {
min_val=container[x].prio;
min_loc=x;
x=container[x].right_neighbor;
while( x!=-1 ) {
if( comp( container[x].prio,min_val ) ) {
min_val=container[x].prio;
min_loc=x;
}
x=container[x].right_neighbor;
}
}
return min_loc;
}
void merge(int a) {
interleave(a);
int x=head;
if( -1!=x ) {
int x_prev=-1, x_next=container[x].right_neighbor;
while( -1!=x_next ) {
if( container[x].degree!=container[x_next].degree || ( -1!=container[x_next].right_neighbor && container[container[x_next].right_neighbor].degree==container[x].degree ) ) {
x_prev=x;
x=x_next;
}
else {
if( comp(container[x].prio,container[x_next].prio) ) {
container[x].right_neighbor=container[x_next].right_neighbor;
fuse(x_next,x);
}
else {
if( -1==x_prev ) { head=x_next; }
else {
container[x_prev].right_neighbor=x_next;
}
fuse(x,x_next);
x=x_next;
}
}
x_next=container[x].right_neighbor;
}
}
}
void interleave(int a) {
int other=-1, head_other=-1;
while( -1!=a || -1!=head ) {
if( -1==a ) {
if( -1==head_other ) {
head_other=head;
}
else {
container[other].right_neighbor=head;
}
head=-1;
}
else if( -1==head ) {
if( -1==head_other ) {
head_other=a;
}
else {
container[other].right_neighbor=a;
}
a=-1;
}
else {
if( container[a].degree<container[head].degree ) {
if( -1==head_other ) {
head_other=a;
}
else {
container[other].right_neighbor=a;
}
other=a;
a=container[a].right_neighbor;
}
else {
if( -1==head_other ) {
head_other=head;
}
else {
container[other].right_neighbor=head;
}
other=head;
head=container[head].right_neighbor;
}
}
}
head=head_other;
}
// Lacing a under b
void fuse(int a, int b) {
container[a].parent=b;
container[a].right_neighbor=container[b].child;
container[b].child=a;
++container[b].degree;
}
// It is invoked only if a has siblings.
void unlace(int a) {
int neighb=container[a].right_neighbor;
int other=head;
while( container[other].right_neighbor!=a )
other=container[other].right_neighbor;
container[other].right_neighbor=neighb;
}
private:
class store {
friend class BinomHeap;
Item name;
int parent;
int right_neighbor;
int child;
int degree;
bool in;
Prio prio;
store() : parent(-1), right_neighbor(-1), child(-1), degree(0), in(true) {}
};
};
} //namespace lemon
#endif //LEMON_BINOM_HEAP_H