* This file is a part of LEMON, a generic C++ optimization library
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_BINOM_HEAP_H
#define LEMON_BINOM_HEAP_H
///\brief Binomial Heap implementation.
#include <lemon/counter.h>
///This class implements the \e Binomial \e heap data structure. A \e heap
///is a data structure for storing items with specified values called \e
///priorities in such a way that finding the item with minimum priority is
///efficient. \c Compare specifies the ordering of the priorities. In a heap
///one can change the priority of an item, add or erase an item, etc.
///The methods \ref increase and \ref erase are not efficient in a Binomial
///heap. In case of many calls to these operations, it is better to use a
///\ref BinHeap "binary heap".
///\param _Prio Type of the priority of the items.
///\param _ItemIntMap A read and writable Item int map, used internally
///to handle the cross references.
///\param _Compare A class for the ordering of the priorities. The
///default is \c std::less<_Prio>.
template <typename _Prio,
template <typename _Prio,
typename _Compare = std::less<_Prio> >
typedef _ItemIntMap ItemIntMap;
typedef typename ItemIntMap::Key Item;
typedef std::pair<Item,Prio> Pair;
typedef _Compare Compare;
std::vector<store> container;
///The node is in the heap
///The node has never been in the heap
///The node was in the heap but it got out of it
/// \brief The constructor
/// \c _iimap should be given to the constructor, since it is
/// used internally to handle the cross references.
explicit BinomHeap(ItemIntMap &_iimap)
: minimum(0), head(-1), iimap(_iimap), num_items() {}
/// \brief The constructor
/// \c _iimap should be given to the constructor, since it is used
/// internally to handle the cross references. \c _comp is an
/// object for ordering of the priorities.
BinomHeap(ItemIntMap &_iimap, const Compare &_comp)
: minimum(0), head(-1), iimap(_iimap), comp(_comp), num_items() {}
/// \brief The number of items stored in the heap.
/// Returns the number of items stored in the heap.
int size() const { return num_items; }
/// \brief Checks if the heap stores no items.
/// Returns \c true if and only if the heap stores no items.
bool empty() const { return num_items==0; }
/// \brief Make empty this heap.
/// Make empty this heap. It does not change the cross reference
/// map. If you want to reuse a heap what is not surely empty you
/// should first clear the heap and after that you should set the
/// cross reference map for each item to \c PRE_HEAP.
container.clear(); minimum=0; num_items=0; head=-1;
/// \brief \c item gets to the heap with priority \c value independently
/// if \c item was already there.
/// This method calls \ref push(\c item, \c value) if \c item is not
/// stored in the heap and it calls \ref decrease(\c item, \c value) or
/// \ref increase(\c item, \c value) otherwise.
void set (const Item& item, const Prio& value) {
if ( i >= 0 && container[i].in ) {
if ( comp(value, container[i].prio) ) decrease(item, value);
if ( comp(container[i].prio, value) ) increase(item, value);
} else push(item, value);
/// \brief Adds \c item to the heap with priority \c value.
/// Adds \c item to the heap with priority \c value.
/// \pre \c item must not be stored in the heap.
void push (const Item& item, const Prio& value) {
container[i].parent=container[i].right_neighbor=container[i].child=-1;
if( 0==num_items ) { head=i; minimum=i; }
/// \brief Returns the item with minimum priority relative to \c Compare.
/// This method returns the item with minimum priority relative to \c
/// \pre The heap must be nonempty.
Item top() const { return container[minimum].name; }
/// \brief Returns the minimum priority relative to \c Compare.
/// It returns the minimum priority relative to \c Compare.
/// \pre The heap must be nonempty.
const Prio& prio() const { return container[minimum].prio; }
/// \brief Returns the priority of \c item.
/// It returns the priority of \c item.
/// \pre \c item must be in the heap.
const Prio& operator[](const Item& item) const {
return container[iimap[item]].prio;
/// \brief Deletes the item with minimum priority relative to \c Compare.
/// This method deletes the item with minimum priority relative to \c
/// Compare from the heap.
/// \pre The heap must be non-empty.
container[minimum].in=false;
if ( container[minimum].child!=-1 ) {
int child=container[minimum].child;
neighb=container[child].right_neighbor;
container[child].parent=-1;
container[child].right_neighbor=prev;
// The first case is that there are only one root.
if ( -1==container[head].right_neighbor ) {
// The case where there are more roots.
if( head!=minimum ) { unlace(minimum); }
else { head=container[head].right_neighbor; }
/// \brief Deletes \c item from the heap.
/// This method deletes \c item from the heap, if \c item was already
/// stored in the heap. It is quite inefficient in Binomial heaps.
void erase (const Item& item) {
if ( i >= 0 && container[i].in ) {
decrease( item, container[minimum].prio-1 );
/// \brief Decreases the priority of \c item to \c value.
/// This method decreases the priority of \c item to \c value.
/// \pre \c item must be stored in the heap with priority at least \c
/// value relative to \c Compare.
void decrease (Item item, const Prio& value) {
if( comp( value,container[i].prio ) ) {
int p_loc=container[i].parent, loc=i;
int parent, child, neighb;
while( -1!=p_loc && comp(container[loc].prio,container[p_loc].prio) ) {
// parent set for other loc_child
child=container[loc].child;
container[child].parent=p_loc;
child=container[child].right_neighbor;
// parent set for other p_loc_child
child=container[p_loc].child;
container[child].parent=loc;
child=container[child].right_neighbor;
child=container[p_loc].child;
container[p_loc].child=container[loc].child;
container[loc].child=child;
// left_neighb set for p_loc
if( container[loc].child!=p_loc ) {
while( container[child].right_neighbor!=loc )
child=container[child].right_neighbor;
container[child].right_neighbor=p_loc;
// left_neighb set for loc
parent=container[p_loc].parent;
if( -1!=parent ) child=container[parent].child;
while( container[child].right_neighbor!=p_loc )
child=container[child].right_neighbor;
container[child].right_neighbor=loc;
neighb=container[p_loc].right_neighbor;
container[p_loc].right_neighbor=container[loc].right_neighbor;
container[loc].right_neighbor=neighb;
container[p_loc].parent=loc;
container[loc].parent=parent;
if( -1!=parent && container[parent].child==p_loc )
container[parent].child=loc;
/*if new parent will be the first root*/
p_loc=container[loc].parent;
if( comp(value,container[minimum].prio) ) {
/// \brief Increases the priority of \c item to \c value.
/// This method sets the priority of \c item to \c value. Though
/// there is no precondition on the priority of \c item, this
/// method should be used only if it is indeed necessary to increase
/// (relative to \c Compare) the priority of \c item, because this
/// method is inefficient.
void increase (Item item, const Prio& value) {
/// \brief Returns if \c item is in, has already been in, or has never
/// This method returns PRE_HEAP if \c item has never been in the
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
/// otherwise. In the latter case it is possible that \c item will
/// get back to the heap again.
State state(const Item &item) const {
if ( container[i].in ) i=0;
/// \brief Sets the state of the \c item in the heap.
/// Sets the state of the \c item in the heap. It can be used to
/// manually clear the heap when it is important to achive the
/// better time complexity.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
if (state(i) == IN_HEAP) {
min_val=container[x].prio;
x=container[x].right_neighbor;
if( comp( container[x].prio,min_val ) ) {
min_val=container[x].prio;
x=container[x].right_neighbor;
int x_prev=-1, x_next=container[x].right_neighbor;
if( container[x].degree!=container[x_next].degree || ( -1!=container[x_next].right_neighbor && container[container[x_next].right_neighbor].degree==container[x].degree ) ) {
if( comp(container[x].prio,container[x_next].prio) ) {
container[x].right_neighbor=container[x_next].right_neighbor;
if( -1==x_prev ) { head=x_next; }
container[x_prev].right_neighbor=x_next;
x_next=container[x].right_neighbor;
int other=-1, head_other=-1;
while( -1!=a || -1!=head ) {
container[other].right_neighbor=head;
container[other].right_neighbor=a;
if( container[a].degree<container[head].degree ) {
container[other].right_neighbor=a;
a=container[a].right_neighbor;
container[other].right_neighbor=head;
head=container[head].right_neighbor;
void fuse(int a, int b) {
container[a].right_neighbor=container[b].child;
// It is invoked only if a has siblings.
int neighb=container[a].right_neighbor;
while( container[other].right_neighbor!=a )
other=container[other].right_neighbor;
container[other].right_neighbor=neighb;
store() : parent(-1), right_neighbor(-1), child(-1), degree(0), in(true) {}
#endif //LEMON_BINOM_HEAP_H