* This file is a part of LEMON, a generic C++ optimization library
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_KARY_HEAP_H
#define LEMON_KARY_HEAP_H
///\brief Kary Heap implementation.
///\brief A Kary Heap implementation.
///This class implements the \e Kary \e heap data structure. A \e heap
///is a data structure for storing items with specified values called \e
///priorities in such a way that finding the item with minimum priority is
///efficient. \c Compare specifies the ordering of the priorities. In a heap
///one can change the priority of an item, add or erase an item, etc.
///\param _Prio Type of the priority of the items.
///\param _ItemIntMap A read and writable Item int map, used internally
///to handle the cross references.
///\param _Compare A class for the ordering of the priorities. The
///default is \c std::less<_Prio>.
template <typename _Prio, typename _ItemIntMap,
typename _Compare = std::less<_Prio> >
typedef _ItemIntMap ItemIntMap;
typedef typename ItemIntMap::Key Item;
typedef std::pair<Item,Prio> Pair;
typedef _Compare Compare;
/// \brief Type to represent the items states.
/// Each Item element have a state associated to it. It may be "in heap",
/// "pre heap" or "post heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
/// The ItemIntMap \e should be initialized in such way that it maps
/// PRE_HEAP (-1) to any element to be put in the heap...
/// \brief The constructor.
/// \param _iim should be given to the constructor, since it is used
/// internally to handle the cross references. The value of the map
/// should be PRE_HEAP (-1) for each element.
explicit KaryHeap(ItemIntMap &_iim, const int &_K=32) : iim(_iim), K(_K) {}
/// \brief The constructor.
/// \param _iim should be given to the constructor, since it is used
/// internally to handle the cross references. The value of the map
/// should be PRE_HEAP (-1) for each element.
/// \param _comp The comparator function object.
KaryHeap(ItemIntMap &_iim, const Compare &_comp, const int &_K=32)
: iim(_iim), comp(_comp), K(_K) {}
/// The number of items stored in the heap.
/// \brief Returns the number of items stored in the heap.
int size() const { return data.size(); }
/// \brief Checks if the heap stores no items.
/// Returns \c true if and only if the heap stores no items.
bool empty() const { return data.empty(); }
/// \brief Make empty this heap.
/// Make empty this heap. It does not change the cross reference map.
/// If you want to reuse what is not surely empty you should first clear
/// the heap and after that you should set the cross reference map for
/// each item to \c PRE_HEAP.
void clear() { data.clear(); }
int parent(int i) { return (i-1)/K; }
int first_child(int i) { return K*i+1; }
bool less(const Pair &p1, const Pair &p2) const {
return comp(p1.second, p2.second);
int find_min(const int child, const int length) {
while( i<K && child+i<length ) {
if( less(data[child+i], data[min]) )
void bubble_up(int hole, Pair p) {
while( hole>0 && less(p,data[par]) ) {
void bubble_down(int hole, Pair p, int length) {
int child = first_child(hole);
child = find_min(child, length);
if( !less(data[child], p) )
child = first_child(hole);
void move(const Pair &p, int i) {
/// \brief Insert a pair of item and priority into the heap.
/// Adds \c p.first to the heap with priority \c p.second.
/// \param p The pair to insert.
void push(const Pair &p) {
/// \brief Insert an item into the heap with the given heap.
/// Adds \c i to the heap with priority \c p.
/// \param i The item to insert.
/// \param p The priority of the item.
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
/// \brief Returns the item with minimum priority relative to \c Compare.
/// This method returns the item with minimum priority relative to \c
/// \pre The heap must be nonempty.
Item top() const { return data[0].first; }
/// \brief Returns the minimum priority relative to \c Compare.
/// It returns the minimum priority relative to \c Compare.
/// \pre The heap must be nonempty.
Prio prio() const { return data[0].second; }
/// \brief Deletes the item with minimum priority relative to \c Compare.
/// This method deletes the item with minimum priority relative to \c
/// Compare from the heap.
/// \pre The heap must be non-empty.
iim.set(data[0].first, POST_HEAP);
if (n>0) bubble_down(0, data[n], n);
/// \brief Deletes \c i from the heap.
/// This method deletes item \c i from the heap.
/// \param i The item to erase.
/// \pre The item should be in the heap.
void erase(const Item &i) {
iim.set(data[h].first, POST_HEAP);
if( less(data[parent(h)], data[n]) )
bubble_down(h, data[n], n);
/// \brief Returns the priority of \c i.
/// This function returns the priority of item \c i.
/// \pre \c i must be in the heap.
Prio operator[](const Item &i) const {
/// \brief \c i gets to the heap with priority \c p independently
/// if \c i was already there.
/// This method calls \ref push(\c i, \c p) if \c i is not stored
/// in the heap and sets the priority of \c i to \c p otherwise.
/// \param p The priority.
void set(const Item &i, const Prio &p) {
else if( comp(p, data[idx].second) )
bubble_up(idx, Pair(i,p));
bubble_down(idx, Pair(i,p), data.size());
/// \brief Decreases the priority of \c i to \c p.
/// This method decreases the priority of item \c i to \c p.
/// \pre \c i must be stored in the heap with priority at least \c
/// p relative to \c Compare.
/// \param p The priority.
void decrease(const Item &i, const Prio &p) {
bubble_up(idx, Pair(i,p));
/// \brief Increases the priority of \c i to \c p.
/// This method sets the priority of item \c i to \c p.
/// \pre \c i must be stored in the heap with priority at most \c
/// p relative to \c Compare.
/// \param p The priority.
void increase(const Item &i, const Prio &p) {
bubble_down(idx, Pair(i,p), data.size());
/// \brief Returns if \c item is in, has already been in, or has
/// never been in the heap.
/// This method returns PRE_HEAP if \c item has never been in the
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
/// otherwise. In the latter case it is possible that \c item will
/// get back to the heap again.
State state(const Item &i) const {
/// \brief Sets the state of the \c item in the heap.
/// Sets the state of the \c item in the heap. It can be used to
/// manually clear the heap when it is important to achive the
/// better time complexity.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
if (state(i) == IN_HEAP) erase(i);
/// \brief Replaces an item in the heap.
/// The \c i item is replaced with \c j item. The \c i item should
/// be in the heap, while the \c j should be out of the heap. The
/// \c i item will out of the heap and \c j will be in the heap
/// with the same prioriority as prevoiusly the \c i item.
void replace(const Item& i, const Item& j) {
#endif // LEMON_KARY_HEAP_H