0
3
0
... | ... |
@@ -296,105 +296,173 @@ |
296 | 296 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
297 | 297 |
when all arc lengths are non-negative. |
298 | 298 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
299 | 299 |
from a source node when arc lenghts can be either positive or negative, |
300 | 300 |
but the digraph should not contain directed cycles with negative total |
301 | 301 |
length. |
302 | 302 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
303 | 303 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
304 | 304 |
lenghts can be either positive or negative, but the digraph should |
305 | 305 |
not contain directed cycles with negative total length. |
306 | 306 |
- \ref Suurballe A successive shortest path algorithm for finding |
307 | 307 |
arc-disjoint paths between two nodes having minimum total length. |
308 | 308 |
*/ |
309 | 309 |
|
310 | 310 |
/** |
311 | 311 |
@defgroup max_flow Maximum Flow Algorithms |
312 | 312 |
@ingroup algs |
313 | 313 |
\brief Algorithms for finding maximum flows. |
314 | 314 |
|
315 | 315 |
This group describes the algorithms for finding maximum flows and |
316 | 316 |
feasible circulations. |
317 | 317 |
|
318 | 318 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
319 | 319 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
320 |
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
|
320 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
|
321 | 321 |
\f$s, t \in V\f$ source and target nodes. |
322 |
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the |
|
322 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
|
323 | 323 |
following optimization problem. |
324 | 324 |
|
325 |
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f] |
|
326 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a) |
|
327 |
\qquad \forall v\in V\setminus\{s,t\} \f] |
|
328 |
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f] |
|
325 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
|
326 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
|
327 |
\quad \forall u\in V\setminus\{s,t\} \f] |
|
328 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
|
329 | 329 |
|
330 | 330 |
LEMON contains several algorithms for solving maximum flow problems: |
331 | 331 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
332 | 332 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
333 | 333 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
334 | 334 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
335 | 335 |
|
336 | 336 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
337 | 337 |
fastest method for computing a maximum flow. All implementations |
338 | 338 |
provides functions to also query the minimum cut, which is the dual |
339 | 339 |
problem of the maximum flow. |
340 | 340 |
*/ |
341 | 341 |
|
342 | 342 |
/** |
343 | 343 |
@defgroup min_cost_flow Minimum Cost Flow Algorithms |
344 | 344 |
@ingroup algs |
345 | 345 |
|
346 | 346 |
\brief Algorithms for finding minimum cost flows and circulations. |
347 | 347 |
|
348 |
This group |
|
348 |
This group contains the algorithms for finding minimum cost flows and |
|
349 | 349 |
circulations. |
350 | 350 |
|
351 | 351 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
352 | 352 |
minimum total cost from a set of supply nodes to a set of demand nodes |
353 |
in a network with capacity constraints and |
|
353 |
in a network with capacity constraints (lower and upper bounds) |
|
354 |
and arc costs. |
|
354 | 355 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
355 | 356 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
356 |
upper bounds for the flow values on the arcs, |
|
357 |
upper bounds for the flow values on the arcs, for which |
|
358 |
\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$. |
|
357 | 359 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
358 |
on the arcs, and |
|
359 |
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values |
|
360 |
of the nodes. |
|
361 |
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of |
|
362 |
the |
|
360 |
on the arcs, and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the |
|
361 |
signed supply values of the nodes. |
|
362 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
363 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
364 |
\f$-sup(u)\f$ demand. |
|
365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}^+_0\f$ solution |
|
366 |
of the following optimization problem. |
|
363 | 367 |
|
364 |
\f[ \min\sum_{a\in A} f(a) cost(a) \f] |
|
365 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) = |
|
366 |
supply(v) \qquad \forall v\in V \f] |
|
367 |
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
|
368 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
369 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
370 |
sup(u) \quad \forall u\in V \f] |
|
371 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
368 | 372 |
|
369 |
LEMON contains several algorithms for solving minimum cost flow problems: |
|
370 |
- \ref CycleCanceling Cycle-canceling algorithms. |
|
371 |
|
|
373 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
|
374 |
zero or negative in order to have a feasible solution (since the sum |
|
375 |
of the expressions on the left-hand side of the inequalities is zero). |
|
376 |
It means that the total demand must be greater or equal to the total |
|
377 |
supply and all the supplies have to be carried out from the supply nodes, |
|
378 |
but there could be demands that are not satisfied. |
|
379 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
|
380 |
constraints have to be satisfied with equality, i.e. all demands |
|
381 |
have to be satisfied and all supplies have to be used. |
|
382 |
|
|
383 |
If you need the opposite inequalities in the supply/demand constraints |
|
384 |
(i.e. the total demand is less than the total supply and all the demands |
|
385 |
have to be satisfied while there could be supplies that are not used), |
|
386 |
then you could easily transform the problem to the above form by reversing |
|
387 |
the direction of the arcs and taking the negative of the supply values |
|
388 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
|
389 |
However \ref NetworkSimplex algorithm also supports this form directly |
|
390 |
for the sake of convenience. |
|
391 |
|
|
392 |
A feasible solution for this problem can be found using \ref Circulation. |
|
393 |
|
|
394 |
Note that the above formulation is actually more general than the usual |
|
395 |
definition of the minimum cost flow problem, in which strict equalities |
|
396 |
are required in the supply/demand contraints, i.e. |
|
397 |
|
|
398 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
|
399 |
sup(u) \quad \forall u\in V. \f] |
|
400 |
|
|
401 |
However if the sum of the supply values is zero, then these two problems |
|
402 |
are equivalent. So if you need the equality form, you have to ensure this |
|
403 |
additional contraint for the algorithms. |
|
404 |
|
|
405 |
The dual solution of the minimum cost flow problem is represented by node |
|
406 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$. |
|
407 |
An \f$f: A\rightarrow\mathbf{Z}^+_0\f$ feasible solution of the problem |
|
408 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$ |
|
409 |
node potentials the following \e complementary \e slackness optimality |
|
410 |
conditions hold. |
|
411 |
|
|
412 |
- For all \f$uv\in A\f$ arcs: |
|
413 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
414 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
415 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
416 |
- For all \f$u\in V\f$: |
|
417 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
|
418 |
then \f$\pi(u)=0\f$. |
|
419 |
|
|
420 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
|
421 |
\f$uv\in A\f$ with respect to the node potentials \f$\pi\f$, i.e. |
|
422 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
|
423 |
|
|
424 |
All algorithms provide dual solution (node potentials) as well |
|
425 |
if an optimal flow is found. |
|
426 |
|
|
427 |
LEMON contains several algorithms for solving minimum cost flow problems. |
|
428 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
|
429 |
pivot strategies. |
|
430 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
|
431 |
cost scaling. |
|
432 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
|
372 | 433 |
capacity scaling. |
373 |
- \ref CostScaling Push-relabel and augment-relabel algorithms based on |
|
374 |
cost scaling. |
|
375 |
- \ref NetworkSimplex Primal network simplex algorithm with various |
|
376 |
pivot strategies. |
|
434 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
|
435 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
|
436 |
|
|
437 |
Most of these implementations support the general inequality form of the |
|
438 |
minimum cost flow problem, but CancelAndTighten and CycleCanceling |
|
439 |
only support the equality form due to the primal method they use. |
|
440 |
|
|
441 |
In general NetworkSimplex is the most efficient implementation, |
|
442 |
but in special cases other algorithms could be faster. |
|
443 |
For example, if the total supply and/or capacities are rather small, |
|
444 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
|
377 | 445 |
*/ |
378 | 446 |
|
379 | 447 |
/** |
380 | 448 |
@defgroup min_cut Minimum Cut Algorithms |
381 | 449 |
@ingroup algs |
382 | 450 |
|
383 | 451 |
\brief Algorithms for finding minimum cut in graphs. |
384 | 452 |
|
385 | 453 |
This group describes the algorithms for finding minimum cut in graphs. |
386 | 454 |
|
387 | 455 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
388 | 456 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
389 | 457 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
390 | 458 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
391 | 459 |
cut is the \f$X\f$ solution of the next optimization problem: |
392 | 460 |
|
393 | 461 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
394 | 462 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
395 | 463 |
|
396 | 464 |
LEMON contains several algorithms related to minimum cut problems: |
397 | 465 |
|
398 | 466 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
399 | 467 |
in directed graphs. |
400 | 468 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
... | ... |
@@ -9,173 +9,239 @@ |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 |
#include <lemon/maps.h> |
|
34 |
#include <lemon/circulation.h> |
|
35 |
#include <lemon/adaptors.h> |
|
33 | 36 |
|
34 | 37 |
namespace lemon { |
35 | 38 |
|
36 | 39 |
/// \addtogroup min_cost_flow |
37 | 40 |
/// @{ |
38 | 41 |
|
39 | 42 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 44 |
/// |
42 | 45 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 46 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
44 | 47 |
/// This algorithm is a specialized version of the linear programming |
45 | 48 |
/// simplex method directly for the minimum cost flow problem. |
46 | 49 |
/// It is one of the most efficient solution methods. |
47 | 50 |
/// |
48 | 51 |
/// In general this class is the fastest implementation available |
49 | 52 |
/// in LEMON for the minimum cost flow problem. |
53 |
/// Moreover it supports both direction of the supply/demand inequality |
|
54 |
/// constraints. For more information see \ref ProblemType. |
|
50 | 55 |
/// |
51 | 56 |
/// \tparam GR The digraph type the algorithm runs on. |
52 | 57 |
/// \tparam F The value type used for flow amounts, capacity bounds |
53 | 58 |
/// and supply values in the algorithm. By default it is \c int. |
54 | 59 |
/// \tparam C The value type used for costs and potentials in the |
55 | 60 |
/// algorithm. By default it is the same as \c F. |
56 | 61 |
/// |
57 | 62 |
/// \warning Both value types must be signed and all input data must |
58 | 63 |
/// be integer. |
59 | 64 |
/// |
60 | 65 |
/// \note %NetworkSimplex provides five different pivot rule |
61 |
/// implementations |
|
66 |
/// implementations, from which the most efficient one is used |
|
67 |
/// by default. For more information see \ref PivotRule. |
|
62 | 68 |
template <typename GR, typename F = int, typename C = F> |
63 | 69 |
class NetworkSimplex |
64 | 70 |
{ |
65 | 71 |
public: |
66 | 72 |
|
67 | 73 |
/// The flow type of the algorithm |
68 | 74 |
typedef F Flow; |
69 | 75 |
/// The cost type of the algorithm |
70 | 76 |
typedef C Cost; |
77 |
#ifdef DOXYGEN |
|
78 |
/// The type of the flow map |
|
79 |
typedef GR::ArcMap<Flow> FlowMap; |
|
80 |
/// The type of the potential map |
|
81 |
typedef GR::NodeMap<Cost> PotentialMap; |
|
82 |
#else |
|
71 | 83 |
/// The type of the flow map |
72 | 84 |
typedef typename GR::template ArcMap<Flow> FlowMap; |
73 | 85 |
/// The type of the potential map |
74 | 86 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
87 |
#endif |
|
75 | 88 |
|
76 | 89 |
public: |
77 | 90 |
|
78 | 91 |
/// \brief Enum type for selecting the pivot rule. |
79 | 92 |
/// |
80 | 93 |
/// Enum type for selecting the pivot rule for the \ref run() |
81 | 94 |
/// function. |
82 | 95 |
/// |
83 | 96 |
/// \ref NetworkSimplex provides five different pivot rule |
84 | 97 |
/// implementations that significantly affect the running time |
85 | 98 |
/// of the algorithm. |
86 | 99 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
87 | 100 |
/// proved to be the most efficient and the most robust on various |
88 | 101 |
/// test inputs according to our benchmark tests. |
89 | 102 |
/// However another pivot rule can be selected using the \ref run() |
90 | 103 |
/// function with the proper parameter. |
91 | 104 |
enum PivotRule { |
92 | 105 |
|
93 | 106 |
/// The First Eligible pivot rule. |
94 | 107 |
/// The next eligible arc is selected in a wraparound fashion |
95 | 108 |
/// in every iteration. |
96 | 109 |
FIRST_ELIGIBLE, |
97 | 110 |
|
98 | 111 |
/// The Best Eligible pivot rule. |
99 | 112 |
/// The best eligible arc is selected in every iteration. |
100 | 113 |
BEST_ELIGIBLE, |
101 | 114 |
|
102 | 115 |
/// The Block Search pivot rule. |
103 | 116 |
/// A specified number of arcs are examined in every iteration |
104 | 117 |
/// in a wraparound fashion and the best eligible arc is selected |
105 | 118 |
/// from this block. |
106 | 119 |
BLOCK_SEARCH, |
107 | 120 |
|
108 | 121 |
/// The Candidate List pivot rule. |
109 | 122 |
/// In a major iteration a candidate list is built from eligible arcs |
110 | 123 |
/// in a wraparound fashion and in the following minor iterations |
111 | 124 |
/// the best eligible arc is selected from this list. |
112 | 125 |
CANDIDATE_LIST, |
113 | 126 |
|
114 | 127 |
/// The Altering Candidate List pivot rule. |
115 | 128 |
/// It is a modified version of the Candidate List method. |
116 | 129 |
/// It keeps only the several best eligible arcs from the former |
117 | 130 |
/// candidate list and extends this list in every iteration. |
118 | 131 |
ALTERING_LIST |
119 | 132 |
}; |
133 |
|
|
134 |
/// \brief Enum type for selecting the problem type. |
|
135 |
/// |
|
136 |
/// Enum type for selecting the problem type, i.e. the direction of |
|
137 |
/// the inequalities in the supply/demand constraints of the |
|
138 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
139 |
/// |
|
140 |
/// The default problem type is \c GEQ, since this form is supported |
|
141 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
142 |
/// algorithm as well. |
|
143 |
/// The \c LEQ problem type can be selected using the \ref problemType() |
|
144 |
/// function. |
|
145 |
/// |
|
146 |
/// Note that the equality form is a special case of both problem type. |
|
147 |
enum ProblemType { |
|
148 |
|
|
149 |
/// This option means that there are "<em>greater or equal</em>" |
|
150 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
151 |
/// problem is the following. |
|
152 |
/** |
|
153 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
154 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
155 |
sup(u) \quad \forall u\in V \f] |
|
156 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
157 |
*/ |
|
158 |
/// It means that the total demand must be greater or equal to the |
|
159 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
160 |
/// negative) and all the supplies have to be carried out from |
|
161 |
/// the supply nodes, but there could be demands that are not |
|
162 |
/// satisfied. |
|
163 |
GEQ, |
|
164 |
/// It is just an alias for the \c GEQ option. |
|
165 |
CARRY_SUPPLIES = GEQ, |
|
166 |
|
|
167 |
/// This option means that there are "<em>less or equal</em>" |
|
168 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
169 |
/// problem is the following. |
|
170 |
/** |
|
171 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
172 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
173 |
sup(u) \quad \forall u\in V \f] |
|
174 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
175 |
*/ |
|
176 |
/// It means that the total demand must be less or equal to the |
|
177 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
178 |
/// positive) and all the demands have to be satisfied, but there |
|
179 |
/// could be supplies that are not carried out from the supply |
|
180 |
/// nodes. |
|
181 |
LEQ, |
|
182 |
/// It is just an alias for the \c LEQ option. |
|
183 |
SATISFY_DEMANDS = LEQ |
|
184 |
}; |
|
120 | 185 |
|
121 | 186 |
private: |
122 | 187 |
|
123 | 188 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
124 | 189 |
|
125 | 190 |
typedef typename GR::template ArcMap<Flow> FlowArcMap; |
126 | 191 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
127 | 192 |
typedef typename GR::template NodeMap<Flow> FlowNodeMap; |
128 | 193 |
|
129 | 194 |
typedef std::vector<Arc> ArcVector; |
130 | 195 |
typedef std::vector<Node> NodeVector; |
131 | 196 |
typedef std::vector<int> IntVector; |
132 | 197 |
typedef std::vector<bool> BoolVector; |
133 | 198 |
typedef std::vector<Flow> FlowVector; |
134 | 199 |
typedef std::vector<Cost> CostVector; |
135 | 200 |
|
136 | 201 |
// State constants for arcs |
137 | 202 |
enum ArcStateEnum { |
138 | 203 |
STATE_UPPER = -1, |
139 | 204 |
STATE_TREE = 0, |
140 | 205 |
STATE_LOWER = 1 |
141 | 206 |
}; |
142 | 207 |
|
143 | 208 |
private: |
144 | 209 |
|
145 | 210 |
// Data related to the underlying digraph |
146 | 211 |
const GR &_graph; |
147 | 212 |
int _node_num; |
148 | 213 |
int _arc_num; |
149 | 214 |
|
150 | 215 |
// Parameters of the problem |
151 | 216 |
FlowArcMap *_plower; |
152 | 217 |
FlowArcMap *_pupper; |
153 | 218 |
CostArcMap *_pcost; |
154 | 219 |
FlowNodeMap *_psupply; |
155 | 220 |
bool _pstsup; |
156 | 221 |
Node _psource, _ptarget; |
157 | 222 |
Flow _pstflow; |
223 |
ProblemType _ptype; |
|
158 | 224 |
|
159 | 225 |
// Result maps |
160 | 226 |
FlowMap *_flow_map; |
161 | 227 |
PotentialMap *_potential_map; |
162 | 228 |
bool _local_flow; |
163 | 229 |
bool _local_potential; |
164 | 230 |
|
165 | 231 |
// Data structures for storing the digraph |
166 | 232 |
IntNodeMap _node_id; |
167 | 233 |
ArcVector _arc_ref; |
168 | 234 |
IntVector _source; |
169 | 235 |
IntVector _target; |
170 | 236 |
|
171 | 237 |
// Node and arc data |
172 | 238 |
FlowVector _cap; |
173 | 239 |
CostVector _cost; |
174 | 240 |
FlowVector _supply; |
175 | 241 |
FlowVector _flow; |
176 | 242 |
CostVector _pi; |
177 | 243 |
|
178 | 244 |
// Data for storing the spanning tree structure |
179 | 245 |
IntVector _parent; |
180 | 246 |
IntVector _pred; |
181 | 247 |
IntVector _thread; |
... | ... |
@@ -565,73 +631,79 @@ |
565 | 631 |
} |
566 | 632 |
} |
567 | 633 |
} |
568 | 634 |
if (_curr_length == 0) return false; |
569 | 635 |
_next_arc = last_arc + 1; |
570 | 636 |
|
571 | 637 |
// Make heap of the candidate list (approximating a partial sort) |
572 | 638 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
573 | 639 |
_sort_func ); |
574 | 640 |
|
575 | 641 |
// Pop the first element of the heap |
576 | 642 |
_in_arc = _candidates[0]; |
577 | 643 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
578 | 644 |
_sort_func ); |
579 | 645 |
_curr_length = std::min(_head_length, _curr_length - 1); |
580 | 646 |
return true; |
581 | 647 |
} |
582 | 648 |
|
583 | 649 |
}; //class AlteringListPivotRule |
584 | 650 |
|
585 | 651 |
public: |
586 | 652 |
|
587 | 653 |
/// \brief Constructor. |
588 | 654 |
/// |
589 |
/// |
|
655 |
/// The constructor of the class. |
|
590 | 656 |
/// |
591 | 657 |
/// \param graph The digraph the algorithm runs on. |
592 | 658 |
NetworkSimplex(const GR& graph) : |
593 | 659 |
_graph(graph), |
594 | 660 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
595 |
_psupply(NULL), _pstsup(false), |
|
661 |
_psupply(NULL), _pstsup(false), _ptype(GEQ), |
|
596 | 662 |
_flow_map(NULL), _potential_map(NULL), |
597 | 663 |
_local_flow(false), _local_potential(false), |
598 | 664 |
_node_id(graph) |
599 | 665 |
{ |
600 | 666 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_integer && |
601 | 667 |
std::numeric_limits<Flow>::is_signed, |
602 | 668 |
"The flow type of NetworkSimplex must be signed integer"); |
603 | 669 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_integer && |
604 | 670 |
std::numeric_limits<Cost>::is_signed, |
605 | 671 |
"The cost type of NetworkSimplex must be signed integer"); |
606 | 672 |
} |
607 | 673 |
|
608 | 674 |
/// Destructor. |
609 | 675 |
~NetworkSimplex() { |
610 | 676 |
if (_local_flow) delete _flow_map; |
611 | 677 |
if (_local_potential) delete _potential_map; |
612 | 678 |
} |
613 | 679 |
|
680 |
/// \name Parameters |
|
681 |
/// The parameters of the algorithm can be specified using these |
|
682 |
/// functions. |
|
683 |
|
|
684 |
/// @{ |
|
685 |
|
|
614 | 686 |
/// \brief Set the lower bounds on the arcs. |
615 | 687 |
/// |
616 | 688 |
/// This function sets the lower bounds on the arcs. |
617 | 689 |
/// If neither this function nor \ref boundMaps() is used before |
618 | 690 |
/// calling \ref run(), the lower bounds will be set to zero |
619 | 691 |
/// on all arcs. |
620 | 692 |
/// |
621 | 693 |
/// \param map An arc map storing the lower bounds. |
622 | 694 |
/// Its \c Value type must be convertible to the \c Flow type |
623 | 695 |
/// of the algorithm. |
624 | 696 |
/// |
625 | 697 |
/// \return <tt>(*this)</tt> |
626 | 698 |
template <typename LOWER> |
627 | 699 |
NetworkSimplex& lowerMap(const LOWER& map) { |
628 | 700 |
delete _plower; |
629 | 701 |
_plower = new FlowArcMap(_graph); |
630 | 702 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
631 | 703 |
(*_plower)[a] = map[a]; |
632 | 704 |
} |
633 | 705 |
return *this; |
634 | 706 |
} |
635 | 707 |
|
636 | 708 |
/// \brief Set the upper bounds (capacities) on the arcs. |
637 | 709 |
/// |
... | ... |
@@ -739,157 +811,183 @@ |
739 | 811 |
|
740 | 812 |
/// \brief Set single source and target nodes and a supply value. |
741 | 813 |
/// |
742 | 814 |
/// This function sets a single source node and a single target node |
743 | 815 |
/// and the required flow value. |
744 | 816 |
/// If neither this function nor \ref supplyMap() is used before |
745 | 817 |
/// calling \ref run(), the supply of each node will be set to zero. |
746 | 818 |
/// (It makes sense only if non-zero lower bounds are given.) |
747 | 819 |
/// |
748 | 820 |
/// \param s The source node. |
749 | 821 |
/// \param t The target node. |
750 | 822 |
/// \param k The required amount of flow from node \c s to node \c t |
751 | 823 |
/// (i.e. the supply of \c s and the demand of \c t). |
752 | 824 |
/// |
753 | 825 |
/// \return <tt>(*this)</tt> |
754 | 826 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) { |
755 | 827 |
delete _psupply; |
756 | 828 |
_psupply = NULL; |
757 | 829 |
_pstsup = true; |
758 | 830 |
_psource = s; |
759 | 831 |
_ptarget = t; |
760 | 832 |
_pstflow = k; |
761 | 833 |
return *this; |
762 | 834 |
} |
835 |
|
|
836 |
/// \brief Set the problem type. |
|
837 |
/// |
|
838 |
/// This function sets the problem type for the algorithm. |
|
839 |
/// If it is not used before calling \ref run(), the \ref GEQ problem |
|
840 |
/// type will be used. |
|
841 |
/// |
|
842 |
/// For more information see \ref ProblemType. |
|
843 |
/// |
|
844 |
/// \return <tt>(*this)</tt> |
|
845 |
NetworkSimplex& problemType(ProblemType problem_type) { |
|
846 |
_ptype = problem_type; |
|
847 |
return *this; |
|
848 |
} |
|
763 | 849 |
|
764 | 850 |
/// \brief Set the flow map. |
765 | 851 |
/// |
766 | 852 |
/// This function sets the flow map. |
767 | 853 |
/// If it is not used before calling \ref run(), an instance will |
768 | 854 |
/// be allocated automatically. The destructor deallocates this |
769 | 855 |
/// automatically allocated map, of course. |
770 | 856 |
/// |
771 | 857 |
/// \return <tt>(*this)</tt> |
772 | 858 |
NetworkSimplex& flowMap(FlowMap& map) { |
773 | 859 |
if (_local_flow) { |
774 | 860 |
delete _flow_map; |
775 | 861 |
_local_flow = false; |
776 | 862 |
} |
777 | 863 |
_flow_map = ↦ |
778 | 864 |
return *this; |
779 | 865 |
} |
780 | 866 |
|
781 | 867 |
/// \brief Set the potential map. |
782 | 868 |
/// |
783 | 869 |
/// This function sets the potential map, which is used for storing |
784 | 870 |
/// the dual solution. |
785 | 871 |
/// If it is not used before calling \ref run(), an instance will |
786 | 872 |
/// be allocated automatically. The destructor deallocates this |
787 | 873 |
/// automatically allocated map, of course. |
788 | 874 |
/// |
789 | 875 |
/// \return <tt>(*this)</tt> |
790 | 876 |
NetworkSimplex& potentialMap(PotentialMap& map) { |
791 | 877 |
if (_local_potential) { |
792 | 878 |
delete _potential_map; |
793 | 879 |
_local_potential = false; |
794 | 880 |
} |
795 | 881 |
_potential_map = ↦ |
796 | 882 |
return *this; |
797 | 883 |
} |
884 |
|
|
885 |
/// @} |
|
798 | 886 |
|
799 | 887 |
/// \name Execution Control |
800 | 888 |
/// The algorithm can be executed using \ref run(). |
801 | 889 |
|
802 | 890 |
/// @{ |
803 | 891 |
|
804 | 892 |
/// \brief Run the algorithm. |
805 | 893 |
/// |
806 | 894 |
/// This function runs the algorithm. |
807 |
/// The paramters can be specified using \ref lowerMap(), |
|
895 |
/// The paramters can be specified using functions \ref lowerMap(), |
|
808 | 896 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
809 |
/// \ref costMap(), \ref supplyMap() and \ref stSupply() |
|
810 |
/// functions. For example, |
|
897 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
898 |
/// \ref problemType(), \ref flowMap() and \ref potentialMap(). |
|
899 |
/// For example, |
|
811 | 900 |
/// \code |
812 | 901 |
/// NetworkSimplex<ListDigraph> ns(graph); |
813 | 902 |
/// ns.boundMaps(lower, upper).costMap(cost) |
814 | 903 |
/// .supplyMap(sup).run(); |
815 | 904 |
/// \endcode |
816 | 905 |
/// |
817 | 906 |
/// This function can be called more than once. All the parameters |
818 | 907 |
/// that have been given are kept for the next call, unless |
819 | 908 |
/// \ref reset() is called, thus only the modified parameters |
820 | 909 |
/// have to be set again. See \ref reset() for examples. |
821 | 910 |
/// |
822 | 911 |
/// \param pivot_rule The pivot rule that will be used during the |
823 | 912 |
/// algorithm. For more information see \ref PivotRule. |
824 | 913 |
/// |
825 | 914 |
/// \return \c true if a feasible flow can be found. |
826 | 915 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) { |
827 | 916 |
return init() && start(pivot_rule); |
828 | 917 |
} |
829 | 918 |
|
830 | 919 |
/// \brief Reset all the parameters that have been given before. |
831 | 920 |
/// |
832 | 921 |
/// This function resets all the paramaters that have been given |
833 |
/// using \ref lowerMap(), \ref upperMap(), \ref capacityMap(), |
|
834 |
/// \ref boundMaps(), \ref costMap(), \ref supplyMap() and |
|
835 |
/// \ref |
|
922 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
923 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(), |
|
924 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(), |
|
925 |
/// \ref flowMap() and \ref potentialMap(). |
|
836 | 926 |
/// |
837 | 927 |
/// It is useful for multiple run() calls. If this function is not |
838 | 928 |
/// used, all the parameters given before are kept for the next |
839 | 929 |
/// \ref run() call. |
840 | 930 |
/// |
841 | 931 |
/// For example, |
842 | 932 |
/// \code |
843 | 933 |
/// NetworkSimplex<ListDigraph> ns(graph); |
844 | 934 |
/// |
845 | 935 |
/// // First run |
846 | 936 |
/// ns.lowerMap(lower).capacityMap(cap).costMap(cost) |
847 | 937 |
/// .supplyMap(sup).run(); |
848 | 938 |
/// |
849 | 939 |
/// // Run again with modified cost map (reset() is not called, |
850 | 940 |
/// // so only the cost map have to be set again) |
851 | 941 |
/// cost[e] += 100; |
852 | 942 |
/// ns.costMap(cost).run(); |
853 | 943 |
/// |
854 | 944 |
/// // Run again from scratch using reset() |
855 | 945 |
/// // (the lower bounds will be set to zero on all arcs) |
856 | 946 |
/// ns.reset(); |
857 | 947 |
/// ns.capacityMap(cap).costMap(cost) |
858 | 948 |
/// .supplyMap(sup).run(); |
859 | 949 |
/// \endcode |
860 | 950 |
/// |
861 | 951 |
/// \return <tt>(*this)</tt> |
862 | 952 |
NetworkSimplex& reset() { |
863 | 953 |
delete _plower; |
864 | 954 |
delete _pupper; |
865 | 955 |
delete _pcost; |
866 | 956 |
delete _psupply; |
867 | 957 |
_plower = NULL; |
868 | 958 |
_pupper = NULL; |
869 | 959 |
_pcost = NULL; |
870 | 960 |
_psupply = NULL; |
871 | 961 |
_pstsup = false; |
962 |
_ptype = GEQ; |
|
963 |
if (_local_flow) delete _flow_map; |
|
964 |
if (_local_potential) delete _potential_map; |
|
965 |
_flow_map = NULL; |
|
966 |
_potential_map = NULL; |
|
967 |
_local_flow = false; |
|
968 |
_local_potential = false; |
|
969 |
|
|
872 | 970 |
return *this; |
873 | 971 |
} |
874 | 972 |
|
875 | 973 |
/// @} |
876 | 974 |
|
877 | 975 |
/// \name Query Functions |
878 | 976 |
/// The results of the algorithm can be obtained using these |
879 | 977 |
/// functions.\n |
880 | 978 |
/// The \ref run() function must be called before using them. |
881 | 979 |
|
882 | 980 |
/// @{ |
883 | 981 |
|
884 | 982 |
/// \brief Return the total cost of the found flow. |
885 | 983 |
/// |
886 | 984 |
/// This function returns the total cost of the found flow. |
887 | 985 |
/// The complexity of the function is O(e). |
888 | 986 |
/// |
889 | 987 |
/// \note The return type of the function can be specified as a |
890 | 988 |
/// template parameter. For example, |
891 | 989 |
/// \code |
892 | 990 |
/// ns.totalCost<double>(); |
893 | 991 |
/// \endcode |
894 | 992 |
/// It is useful if the total cost cannot be stored in the \c Cost |
895 | 993 |
/// type of the algorithm, which is the default return type of the |
... | ... |
@@ -979,174 +1077,248 @@ |
979 | 1077 |
int all_arc_num = _arc_num + _node_num; |
980 | 1078 |
if (_node_num == 0) return false; |
981 | 1079 |
|
982 | 1080 |
_arc_ref.resize(_arc_num); |
983 | 1081 |
_source.resize(all_arc_num); |
984 | 1082 |
_target.resize(all_arc_num); |
985 | 1083 |
|
986 | 1084 |
_cap.resize(all_arc_num); |
987 | 1085 |
_cost.resize(all_arc_num); |
988 | 1086 |
_supply.resize(all_node_num); |
989 | 1087 |
_flow.resize(all_arc_num); |
990 | 1088 |
_pi.resize(all_node_num); |
991 | 1089 |
|
992 | 1090 |
_parent.resize(all_node_num); |
993 | 1091 |
_pred.resize(all_node_num); |
994 | 1092 |
_forward.resize(all_node_num); |
995 | 1093 |
_thread.resize(all_node_num); |
996 | 1094 |
_rev_thread.resize(all_node_num); |
997 | 1095 |
_succ_num.resize(all_node_num); |
998 | 1096 |
_last_succ.resize(all_node_num); |
999 | 1097 |
_state.resize(all_arc_num); |
1000 | 1098 |
|
1001 | 1099 |
// Initialize node related data |
1002 | 1100 |
bool valid_supply = true; |
1101 |
Flow sum_supply = 0; |
|
1003 | 1102 |
if (!_pstsup && !_psupply) { |
1004 | 1103 |
_pstsup = true; |
1005 | 1104 |
_psource = _ptarget = NodeIt(_graph); |
1006 | 1105 |
_pstflow = 0; |
1007 | 1106 |
} |
1008 | 1107 |
if (_psupply) { |
1009 |
Flow sum = 0; |
|
1010 | 1108 |
int i = 0; |
1011 | 1109 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
1012 | 1110 |
_node_id[n] = i; |
1013 | 1111 |
_supply[i] = (*_psupply)[n]; |
1014 |
|
|
1112 |
sum_supply += _supply[i]; |
|
1015 | 1113 |
} |
1016 |
valid_supply = ( |
|
1114 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
|
1115 |
(_ptype == LEQ && sum_supply >= 0); |
|
1017 | 1116 |
} else { |
1018 | 1117 |
int i = 0; |
1019 | 1118 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
1020 | 1119 |
_node_id[n] = i; |
1021 | 1120 |
_supply[i] = 0; |
1022 | 1121 |
} |
1023 | 1122 |
_supply[_node_id[_psource]] = _pstflow; |
1024 |
_supply[_node_id[_ptarget]] |
|
1123 |
_supply[_node_id[_ptarget]] = -_pstflow; |
|
1025 | 1124 |
} |
1026 | 1125 |
if (!valid_supply) return false; |
1027 | 1126 |
|
1127 |
// Infinite capacity value |
|
1128 |
Flow inf_cap = |
|
1129 |
std::numeric_limits<Flow>::has_infinity ? |
|
1130 |
std::numeric_limits<Flow>::infinity() : |
|
1131 |
std::numeric_limits<Flow>::max(); |
|
1132 |
|
|
1133 |
// Initialize artifical cost |
|
1134 |
Cost art_cost; |
|
1135 |
if (std::numeric_limits<Cost>::is_exact) { |
|
1136 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1137 |
} else { |
|
1138 |
art_cost = std::numeric_limits<Cost>::min(); |
|
1139 |
for (int i = 0; i != _arc_num; ++i) { |
|
1140 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
1141 |
} |
|
1142 |
art_cost = (art_cost + 1) * _node_num; |
|
1143 |
} |
|
1144 |
|
|
1145 |
// Run Circulation to check if a feasible solution exists |
|
1146 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
|
1147 |
FlowNodeMap *csup = NULL; |
|
1148 |
bool local_csup = false; |
|
1149 |
if (_psupply) { |
|
1150 |
csup = _psupply; |
|
1151 |
} else { |
|
1152 |
csup = new FlowNodeMap(_graph, 0); |
|
1153 |
(*csup)[_psource] = _pstflow; |
|
1154 |
(*csup)[_ptarget] = -_pstflow; |
|
1155 |
local_csup = true; |
|
1156 |
} |
|
1157 |
bool circ_result = false; |
|
1158 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) { |
|
1159 |
// GEQ problem type |
|
1160 |
if (_plower) { |
|
1161 |
if (_pupper) { |
|
1162 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
|
1163 |
circ(_graph, *_plower, *_pupper, *csup); |
|
1164 |
circ_result = circ.run(); |
|
1165 |
} else { |
|
1166 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
|
1167 |
circ(_graph, *_plower, ConstArcMap(inf_cap), *csup); |
|
1168 |
circ_result = circ.run(); |
|
1169 |
} |
|
1170 |
} else { |
|
1171 |
if (_pupper) { |
|
1172 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
|
1173 |
circ(_graph, ConstArcMap(0), *_pupper, *csup); |
|
1174 |
circ_result = circ.run(); |
|
1175 |
} else { |
|
1176 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
|
1177 |
circ(_graph, ConstArcMap(0), ConstArcMap(inf_cap), *csup); |
|
1178 |
circ_result = circ.run(); |
|
1179 |
} |
|
1180 |
} |
|
1181 |
} else { |
|
1182 |
// LEQ problem type |
|
1183 |
typedef ReverseDigraph<const GR> RevGraph; |
|
1184 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
|
1185 |
RevGraph rgraph(_graph); |
|
1186 |
NegNodeMap neg_csup(*csup); |
|
1187 |
if (_plower) { |
|
1188 |
if (_pupper) { |
|
1189 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
|
1190 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
|
1191 |
circ_result = circ.run(); |
|
1192 |
} else { |
|
1193 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
|
1194 |
circ(rgraph, *_plower, ConstArcMap(inf_cap), neg_csup); |
|
1195 |
circ_result = circ.run(); |
|
1196 |
} |
|
1197 |
} else { |
|
1198 |
if (_pupper) { |
|
1199 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
|
1200 |
circ(rgraph, ConstArcMap(0), *_pupper, neg_csup); |
|
1201 |
circ_result = circ.run(); |
|
1202 |
} else { |
|
1203 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
|
1204 |
circ(rgraph, ConstArcMap(0), ConstArcMap(inf_cap), neg_csup); |
|
1205 |
circ_result = circ.run(); |
|
1206 |
} |
|
1207 |
} |
|
1208 |
} |
|
1209 |
if (local_csup) delete csup; |
|
1210 |
if (!circ_result) return false; |
|
1211 |
|
|
1028 | 1212 |
// Set data for the artificial root node |
1029 | 1213 |
_root = _node_num; |
1030 | 1214 |
_parent[_root] = -1; |
1031 | 1215 |
_pred[_root] = -1; |
1032 | 1216 |
_thread[_root] = 0; |
1033 | 1217 |
_rev_thread[0] = _root; |
1034 | 1218 |
_succ_num[_root] = all_node_num; |
1035 | 1219 |
_last_succ[_root] = _root - 1; |
1036 |
_supply[_root] = 0; |
|
1037 |
_pi[_root] = 0; |
|
1220 |
_supply[_root] = -sum_supply; |
|
1221 |
if (sum_supply < 0) { |
|
1222 |
_pi[_root] = -art_cost; |
|
1223 |
} else { |
|
1224 |
_pi[_root] = art_cost; |
|
1225 |
} |
|
1038 | 1226 |
|
1039 | 1227 |
// Store the arcs in a mixed order |
1040 | 1228 |
int k = std::max(int(sqrt(_arc_num)), 10); |
1041 | 1229 |
int i = 0; |
1042 | 1230 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
1043 | 1231 |
_arc_ref[i] = e; |
1044 | 1232 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
1045 | 1233 |
} |
1046 | 1234 |
|
1047 | 1235 |
// Initialize arc maps |
1048 |
Flow inf_cap = |
|
1049 |
std::numeric_limits<Flow>::has_infinity ? |
|
1050 |
std::numeric_limits<Flow>::infinity() : |
|
1051 |
std::numeric_limits<Flow>::max(); |
|
1052 | 1236 |
if (_pupper && _pcost) { |
1053 | 1237 |
for (int i = 0; i != _arc_num; ++i) { |
1054 | 1238 |
Arc e = _arc_ref[i]; |
1055 | 1239 |
_source[i] = _node_id[_graph.source(e)]; |
1056 | 1240 |
_target[i] = _node_id[_graph.target(e)]; |
1057 | 1241 |
_cap[i] = (*_pupper)[e]; |
1058 | 1242 |
_cost[i] = (*_pcost)[e]; |
1059 | 1243 |
_flow[i] = 0; |
1060 | 1244 |
_state[i] = STATE_LOWER; |
1061 | 1245 |
} |
1062 | 1246 |
} else { |
1063 | 1247 |
for (int i = 0; i != _arc_num; ++i) { |
1064 | 1248 |
Arc e = _arc_ref[i]; |
1065 | 1249 |
_source[i] = _node_id[_graph.source(e)]; |
1066 | 1250 |
_target[i] = _node_id[_graph.target(e)]; |
1067 | 1251 |
_flow[i] = 0; |
1068 | 1252 |
_state[i] = STATE_LOWER; |
1069 | 1253 |
} |
1070 | 1254 |
if (_pupper) { |
1071 | 1255 |
for (int i = 0; i != _arc_num; ++i) |
1072 | 1256 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
1073 | 1257 |
} else { |
1074 | 1258 |
for (int i = 0; i != _arc_num; ++i) |
1075 | 1259 |
_cap[i] = inf_cap; |
1076 | 1260 |
} |
1077 | 1261 |
if (_pcost) { |
1078 | 1262 |
for (int i = 0; i != _arc_num; ++i) |
1079 | 1263 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
1080 | 1264 |
} else { |
1081 | 1265 |
for (int i = 0; i != _arc_num; ++i) |
1082 | 1266 |
_cost[i] = 1; |
1083 | 1267 |
} |
1084 | 1268 |
} |
1085 | 1269 |
|
1086 |
// Initialize artifical cost |
|
1087 |
Cost art_cost; |
|
1088 |
if (std::numeric_limits<Cost>::is_exact) { |
|
1089 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1090 |
} else { |
|
1091 |
art_cost = std::numeric_limits<Cost>::min(); |
|
1092 |
for (int i = 0; i != _arc_num; ++i) { |
|
1093 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
1094 |
} |
|
1095 |
art_cost = (art_cost + 1) * _node_num; |
|
1096 |
} |
|
1097 |
|
|
1098 | 1270 |
// Remove non-zero lower bounds |
1099 | 1271 |
if (_plower) { |
1100 | 1272 |
for (int i = 0; i != _arc_num; ++i) { |
1101 | 1273 |
Flow c = (*_plower)[_arc_ref[i]]; |
1102 | 1274 |
if (c != 0) { |
1103 | 1275 |
_cap[i] -= c; |
1104 | 1276 |
_supply[_source[i]] -= c; |
1105 | 1277 |
_supply[_target[i]] += c; |
1106 | 1278 |
} |
1107 | 1279 |
} |
1108 | 1280 |
} |
1109 | 1281 |
|
1110 | 1282 |
// Add artificial arcs and initialize the spanning tree data structure |
1111 | 1283 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1112 | 1284 |
_thread[u] = u + 1; |
1113 | 1285 |
_rev_thread[u + 1] = u; |
1114 | 1286 |
_succ_num[u] = 1; |
1115 | 1287 |
_last_succ[u] = u; |
1116 | 1288 |
_parent[u] = _root; |
1117 | 1289 |
_pred[u] = e; |
1118 | 1290 |
_cost[e] = art_cost; |
1119 | 1291 |
_cap[e] = inf_cap; |
1120 | 1292 |
_state[e] = STATE_TREE; |
1121 |
if (_supply[u] >= 0) { |
|
1293 |
if (_supply[u] > 0 || (_supply[u] == 0 && sum_supply <= 0)) { |
|
1122 | 1294 |
_flow[e] = _supply[u]; |
1123 | 1295 |
_forward[u] = true; |
1124 |
_pi[u] = -art_cost; |
|
1296 |
_pi[u] = -art_cost + _pi[_root]; |
|
1125 | 1297 |
} else { |
1126 | 1298 |
_flow[e] = -_supply[u]; |
1127 | 1299 |
_forward[u] = false; |
1128 |
_pi[u] = art_cost; |
|
1300 |
_pi[u] = art_cost + _pi[_root]; |
|
1129 | 1301 |
} |
1130 | 1302 |
} |
1131 | 1303 |
|
1132 | 1304 |
return true; |
1133 | 1305 |
} |
1134 | 1306 |
|
1135 | 1307 |
// Find the join node |
1136 | 1308 |
void findJoinNode() { |
1137 | 1309 |
int u = _source[in_arc]; |
1138 | 1310 |
int v = _target[in_arc]; |
1139 | 1311 |
while (u != v) { |
1140 | 1312 |
if (_succ_num[u] < _succ_num[v]) { |
1141 | 1313 |
u = _parent[u]; |
1142 | 1314 |
} else { |
1143 | 1315 |
v = _parent[v]; |
1144 | 1316 |
} |
1145 | 1317 |
} |
1146 | 1318 |
join = u; |
1147 | 1319 |
} |
1148 | 1320 |
|
1149 | 1321 |
// Find the leaving arc of the cycle and returns true if the |
1150 | 1322 |
// leaving arc is not the same as the entering arc |
1151 | 1323 |
bool findLeavingArc() { |
1152 | 1324 |
// Initialize first and second nodes according to the direction |
... | ... |
@@ -1361,53 +1533,48 @@ |
1361 | 1533 |
return start<BlockSearchPivotRule>(); |
1362 | 1534 |
case CANDIDATE_LIST: |
1363 | 1535 |
return start<CandidateListPivotRule>(); |
1364 | 1536 |
case ALTERING_LIST: |
1365 | 1537 |
return start<AlteringListPivotRule>(); |
1366 | 1538 |
} |
1367 | 1539 |
return false; |
1368 | 1540 |
} |
1369 | 1541 |
|
1370 | 1542 |
template <typename PivotRuleImpl> |
1371 | 1543 |
bool start() { |
1372 | 1544 |
PivotRuleImpl pivot(*this); |
1373 | 1545 |
|
1374 | 1546 |
// Execute the Network Simplex algorithm |
1375 | 1547 |
while (pivot.findEnteringArc()) { |
1376 | 1548 |
findJoinNode(); |
1377 | 1549 |
bool change = findLeavingArc(); |
1378 | 1550 |
changeFlow(change); |
1379 | 1551 |
if (change) { |
1380 | 1552 |
updateTreeStructure(); |
1381 | 1553 |
updatePotential(); |
1382 | 1554 |
} |
1383 | 1555 |
} |
1384 | 1556 |
|
1385 |
// Check if the flow amount equals zero on all the artificial arcs |
|
1386 |
for (int e = _arc_num; e != _arc_num + _node_num; ++e) { |
|
1387 |
if (_flow[e] > 0) return false; |
|
1388 |
} |
|
1389 |
|
|
1390 | 1557 |
// Copy flow values to _flow_map |
1391 | 1558 |
if (_plower) { |
1392 | 1559 |
for (int i = 0; i != _arc_num; ++i) { |
1393 | 1560 |
Arc e = _arc_ref[i]; |
1394 | 1561 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
1395 | 1562 |
} |
1396 | 1563 |
} else { |
1397 | 1564 |
for (int i = 0; i != _arc_num; ++i) { |
1398 | 1565 |
_flow_map->set(_arc_ref[i], _flow[i]); |
1399 | 1566 |
} |
1400 | 1567 |
} |
1401 | 1568 |
// Copy potential values to _potential_map |
1402 | 1569 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1403 | 1570 |
_potential_map->set(n, _pi[_node_id[n]]); |
1404 | 1571 |
} |
1405 | 1572 |
|
1406 | 1573 |
return true; |
1407 | 1574 |
} |
1408 | 1575 |
|
1409 | 1576 |
}; //class NetworkSimplex |
1410 | 1577 |
|
1411 | 1578 |
///@} |
1412 | 1579 |
|
1413 | 1580 |
} //namespace lemon |
... | ... |
@@ -12,279 +12,328 @@ |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <fstream> |
21 | 21 |
|
22 | 22 |
#include <lemon/list_graph.h> |
23 | 23 |
#include <lemon/lgf_reader.h> |
24 | 24 |
|
25 | 25 |
#include <lemon/network_simplex.h> |
26 | 26 |
|
27 | 27 |
#include <lemon/concepts/digraph.h> |
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
|
30 | 30 |
#include "test_tools.h" |
31 | 31 |
|
32 | 32 |
using namespace lemon; |
33 | 33 |
|
34 | 34 |
char test_lgf[] = |
35 | 35 |
"@nodes\n" |
36 |
"label sup1 sup2 sup3\n" |
|
37 |
" 1 20 27 0\n" |
|
38 |
" 2 -4 0 0\n" |
|
39 |
" 3 0 0 0\n" |
|
40 |
" 4 0 0 0\n" |
|
41 |
" 5 9 0 0\n" |
|
42 |
" 6 -6 0 0\n" |
|
43 |
" 7 0 0 0\n" |
|
44 |
" 8 0 0 0\n" |
|
45 |
" 9 3 0 0\n" |
|
46 |
" 10 -2 0 0\n" |
|
47 |
" 11 0 0 0\n" |
|
48 |
" |
|
36 |
"label sup1 sup2 sup3 sup4 sup5\n" |
|
37 |
" 1 20 27 0 20 30\n" |
|
38 |
" 2 -4 0 0 -8 -3\n" |
|
39 |
" 3 0 0 0 0 0\n" |
|
40 |
" 4 0 0 0 0 0\n" |
|
41 |
" 5 9 0 0 6 11\n" |
|
42 |
" 6 -6 0 0 -5 -6\n" |
|
43 |
" 7 0 0 0 0 0\n" |
|
44 |
" 8 0 0 0 0 3\n" |
|
45 |
" 9 3 0 0 0 0\n" |
|
46 |
" 10 -2 0 0 -7 -2\n" |
|
47 |
" 11 0 0 0 -10 0\n" |
|
48 |
" 12 -20 -27 0 -30 -20\n" |
|
49 | 49 |
"\n" |
50 | 50 |
"@arcs\n" |
51 | 51 |
" cost cap low1 low2\n" |
52 | 52 |
" 1 2 70 11 0 8\n" |
53 | 53 |
" 1 3 150 3 0 1\n" |
54 | 54 |
" 1 4 80 15 0 2\n" |
55 | 55 |
" 2 8 80 12 0 0\n" |
56 | 56 |
" 3 5 140 5 0 3\n" |
57 | 57 |
" 4 6 60 10 0 1\n" |
58 | 58 |
" 4 7 80 2 0 0\n" |
59 | 59 |
" 4 8 110 3 0 0\n" |
60 | 60 |
" 5 7 60 14 0 0\n" |
61 | 61 |
" 5 11 120 12 0 0\n" |
62 | 62 |
" 6 3 0 3 0 0\n" |
63 | 63 |
" 6 9 140 4 0 0\n" |
64 | 64 |
" 6 10 90 8 0 0\n" |
65 | 65 |
" 7 1 30 5 0 0\n" |
66 | 66 |
" 8 12 60 16 0 4\n" |
67 | 67 |
" 9 12 50 6 0 0\n" |
68 | 68 |
"10 12 70 13 0 5\n" |
69 | 69 |
"10 2 100 7 0 0\n" |
70 | 70 |
"10 7 60 10 0 0\n" |
71 | 71 |
"11 10 20 14 0 6\n" |
72 | 72 |
"12 11 30 10 0 0\n" |
73 | 73 |
"\n" |
74 | 74 |
"@attributes\n" |
75 | 75 |
"source 1\n" |
76 | 76 |
"target 12\n"; |
77 | 77 |
|
78 | 78 |
|
79 |
enum ProblemType { |
|
80 |
EQ, |
|
81 |
GEQ, |
|
82 |
LEQ |
|
83 |
}; |
|
84 |
|
|
79 | 85 |
// Check the interface of an MCF algorithm |
80 | 86 |
template <typename GR, typename Flow, typename Cost> |
81 | 87 |
class McfClassConcept |
82 | 88 |
{ |
83 | 89 |
public: |
84 | 90 |
|
85 | 91 |
template <typename MCF> |
86 | 92 |
struct Constraints { |
87 | 93 |
void constraints() { |
88 | 94 |
checkConcept<concepts::Digraph, GR>(); |
89 | 95 |
|
90 | 96 |
MCF mcf(g); |
91 | 97 |
|
92 | 98 |
b = mcf.reset() |
93 | 99 |
.lowerMap(lower) |
94 | 100 |
.upperMap(upper) |
95 | 101 |
.capacityMap(upper) |
96 | 102 |
.boundMaps(lower, upper) |
97 | 103 |
.costMap(cost) |
98 | 104 |
.supplyMap(sup) |
99 | 105 |
.stSupply(n, n, k) |
106 |
.flowMap(flow) |
|
107 |
.potentialMap(pot) |
|
100 | 108 |
.run(); |
109 |
|
|
110 |
const MCF& const_mcf = mcf; |
|
101 | 111 |
|
102 |
const typename MCF::FlowMap &fm = mcf.flowMap(); |
|
103 |
const typename MCF::PotentialMap &pm = mcf.potentialMap(); |
|
112 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
|
113 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
|
104 | 114 |
|
105 |
v = mcf.totalCost(); |
|
106 |
double x = mcf.template totalCost<double>(); |
|
107 |
v = mcf.flow(a); |
|
108 |
v = mcf.potential(n); |
|
109 |
mcf.flowMap(flow); |
|
110 |
mcf.potentialMap(pot); |
|
115 |
v = const_mcf.totalCost(); |
|
116 |
double x = const_mcf.template totalCost<double>(); |
|
117 |
v = const_mcf.flow(a); |
|
118 |
v = const_mcf.potential(n); |
|
111 | 119 |
|
112 | 120 |
ignore_unused_variable_warning(fm); |
113 | 121 |
ignore_unused_variable_warning(pm); |
114 | 122 |
ignore_unused_variable_warning(x); |
115 | 123 |
} |
116 | 124 |
|
117 | 125 |
typedef typename GR::Node Node; |
118 | 126 |
typedef typename GR::Arc Arc; |
119 | 127 |
typedef concepts::ReadMap<Node, Flow> NM; |
120 | 128 |
typedef concepts::ReadMap<Arc, Flow> FAM; |
121 | 129 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
122 | 130 |
|
123 | 131 |
const GR &g; |
124 | 132 |
const FAM &lower; |
125 | 133 |
const FAM &upper; |
126 | 134 |
const CAM &cost; |
127 | 135 |
const NM ⊃ |
128 | 136 |
const Node &n; |
129 | 137 |
const Arc &a; |
130 | 138 |
const Flow &k; |
131 | 139 |
Flow v; |
132 | 140 |
bool b; |
133 | 141 |
|
134 | 142 |
typename MCF::FlowMap &flow; |
135 | 143 |
typename MCF::PotentialMap &pot; |
136 | 144 |
}; |
137 | 145 |
|
138 | 146 |
}; |
139 | 147 |
|
140 | 148 |
|
141 | 149 |
// Check the feasibility of the given flow (primal soluiton) |
142 | 150 |
template < typename GR, typename LM, typename UM, |
143 | 151 |
typename SM, typename FM > |
144 | 152 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
145 |
const SM& supply, const FM& flow |
|
153 |
const SM& supply, const FM& flow, |
|
154 |
ProblemType type = EQ ) |
|
146 | 155 |
{ |
147 | 156 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
148 | 157 |
|
149 | 158 |
for (ArcIt e(gr); e != INVALID; ++e) { |
150 | 159 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
151 | 160 |
} |
152 | 161 |
|
153 | 162 |
for (NodeIt n(gr); n != INVALID; ++n) { |
154 | 163 |
typename SM::Value sum = 0; |
155 | 164 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
156 | 165 |
sum += flow[e]; |
157 | 166 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
158 | 167 |
sum -= flow[e]; |
159 |
|
|
168 |
bool b = (type == EQ && sum == supply[n]) || |
|
169 |
(type == GEQ && sum >= supply[n]) || |
|
170 |
(type == LEQ && sum <= supply[n]); |
|
171 |
if (!b) return false; |
|
160 | 172 |
} |
161 | 173 |
|
162 | 174 |
return true; |
163 | 175 |
} |
164 | 176 |
|
165 | 177 |
// Check the feasibility of the given potentials (dual soluiton) |
166 | 178 |
// using the "Complementary Slackness" optimality condition |
167 | 179 |
template < typename GR, typename LM, typename UM, |
168 |
typename CM, typename FM, typename PM > |
|
180 |
typename CM, typename SM, typename FM, typename PM > |
|
169 | 181 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
170 |
const CM& cost, const FM& flow, |
|
182 |
const CM& cost, const SM& supply, const FM& flow, |
|
183 |
const PM& pi ) |
|
171 | 184 |
{ |
172 | 185 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
173 | 186 |
|
174 | 187 |
bool opt = true; |
175 | 188 |
for (ArcIt e(gr); opt && e != INVALID; ++e) { |
176 | 189 |
typename CM::Value red_cost = |
177 | 190 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
178 | 191 |
opt = red_cost == 0 || |
179 | 192 |
(red_cost > 0 && flow[e] == lower[e]) || |
180 | 193 |
(red_cost < 0 && flow[e] == upper[e]); |
181 | 194 |
} |
195 |
|
|
196 |
for (NodeIt n(gr); opt && n != INVALID; ++n) { |
|
197 |
typename SM::Value sum = 0; |
|
198 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
|
199 |
sum += flow[e]; |
|
200 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
|
201 |
sum -= flow[e]; |
|
202 |
opt = (sum == supply[n]) || (pi[n] == 0); |
|
203 |
} |
|
204 |
|
|
182 | 205 |
return opt; |
183 | 206 |
} |
184 | 207 |
|
185 | 208 |
// Run a minimum cost flow algorithm and check the results |
186 | 209 |
template < typename MCF, typename GR, |
187 | 210 |
typename LM, typename UM, |
188 | 211 |
typename CM, typename SM > |
189 | 212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
190 | 213 |
const GR& gr, const LM& lower, const UM& upper, |
191 | 214 |
const CM& cost, const SM& supply, |
192 | 215 |
bool result, typename CM::Value total, |
193 |
const std::string &test_id = "" |
|
216 |
const std::string &test_id = "", |
|
217 |
ProblemType type = EQ ) |
|
194 | 218 |
{ |
195 | 219 |
check(mcf_result == result, "Wrong result " + test_id); |
196 | 220 |
if (result) { |
197 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap()), |
|
221 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
|
198 | 222 |
"The flow is not feasible " + test_id); |
199 | 223 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
200 |
check(checkPotential(gr, lower, upper, cost, mcf.flowMap(), |
|
224 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
|
201 | 225 |
mcf.potentialMap()), |
202 | 226 |
"Wrong potentials " + test_id); |
203 | 227 |
} |
204 | 228 |
} |
205 | 229 |
|
206 | 230 |
int main() |
207 | 231 |
{ |
208 | 232 |
// Check the interfaces |
209 | 233 |
{ |
210 | 234 |
typedef int Flow; |
211 | 235 |
typedef int Cost; |
212 | 236 |
// TODO: This typedef should be enabled if the standard maps are |
213 | 237 |
// reference maps in the graph concepts (See #190). |
214 | 238 |
/**/ |
215 | 239 |
//typedef concepts::Digraph GR; |
216 | 240 |
typedef ListDigraph GR; |
217 | 241 |
/**/ |
218 | 242 |
checkConcept< McfClassConcept<GR, Flow, Cost>, |
219 | 243 |
NetworkSimplex<GR, Flow, Cost> >(); |
220 | 244 |
} |
221 | 245 |
|
222 | 246 |
// Run various MCF tests |
223 | 247 |
typedef ListDigraph Digraph; |
224 | 248 |
DIGRAPH_TYPEDEFS(ListDigraph); |
225 | 249 |
|
226 | 250 |
// Read the test digraph |
227 | 251 |
Digraph gr; |
228 | 252 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
229 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr); |
|
253 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
|
230 | 254 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
231 | 255 |
Node v, w; |
232 | 256 |
|
233 | 257 |
std::istringstream input(test_lgf); |
234 | 258 |
DigraphReader<Digraph>(gr, input) |
235 | 259 |
.arcMap("cost", c) |
236 | 260 |
.arcMap("cap", u) |
237 | 261 |
.arcMap("low1", l1) |
238 | 262 |
.arcMap("low2", l2) |
239 | 263 |
.nodeMap("sup1", s1) |
240 | 264 |
.nodeMap("sup2", s2) |
241 | 265 |
.nodeMap("sup3", s3) |
266 |
.nodeMap("sup4", s4) |
|
267 |
.nodeMap("sup5", s5) |
|
242 | 268 |
.node("source", v) |
243 | 269 |
.node("target", w) |
244 | 270 |
.run(); |
245 | 271 |
|
246 | 272 |
// A. Test NetworkSimplex with the default pivot rule |
247 | 273 |
{ |
248 | 274 |
NetworkSimplex<Digraph> mcf(gr); |
249 | 275 |
|
276 |
// Check the equality form |
|
250 | 277 |
mcf.upperMap(u).costMap(c); |
251 | 278 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
252 | 279 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
253 | 280 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
254 | 281 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
255 | 282 |
mcf.lowerMap(l2); |
256 | 283 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
257 | 284 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
258 | 285 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
259 | 286 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
260 | 287 |
mcf.reset(); |
261 | 288 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
262 | 289 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
263 | 290 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
264 | 291 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
265 | 292 |
mcf.reset(); |
266 | 293 |
checkMcf(mcf, mcf.run(), |
267 | 294 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
268 | 295 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
269 | 296 |
gr, l2, u, cc, s3, false, 0, "#A8"); |
297 |
|
|
298 |
// Check the GEQ form |
|
299 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s4); |
|
300 |
checkMcf(mcf, mcf.run(), |
|
301 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
|
302 |
mcf.problemType(mcf.GEQ); |
|
303 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
|
304 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
|
305 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
|
306 |
checkMcf(mcf, mcf.run(), |
|
307 |
gr, l2, u, c, s5, false, 0, "#A11", GEQ); |
|
308 |
|
|
309 |
// Check the LEQ form |
|
310 |
mcf.reset().problemType(mcf.LEQ); |
|
311 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
|
312 |
checkMcf(mcf, mcf.run(), |
|
313 |
gr, l1, u, c, s5, true, 5080, "#A12", LEQ); |
|
314 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
|
315 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
|
316 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
|
317 |
checkMcf(mcf, mcf.run(), |
|
318 |
gr, l2, u, c, s4, false, 0, "#A14", LEQ); |
|
270 | 319 |
} |
271 | 320 |
|
272 | 321 |
// B. Test NetworkSimplex with each pivot rule |
273 | 322 |
{ |
274 | 323 |
NetworkSimplex<Digraph> mcf(gr); |
275 | 324 |
mcf.supplyMap(s1).costMap(c).capacityMap(u).lowerMap(l2); |
276 | 325 |
|
277 | 326 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
278 | 327 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
279 | 328 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
280 | 329 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
281 | 330 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
282 | 331 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
283 | 332 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
284 | 333 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
285 | 334 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
286 | 335 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
287 | 336 |
} |
288 | 337 |
|
289 | 338 |
return 0; |
290 | 339 |
} |
0 comments (0 inline)