alpar@948
|
1 |
/* -*- C++ -*-
|
ladanyi@1435
|
2 |
* lemon/list_graph.h - Part of LEMON, a generic C++ optimization library
|
alpar@948
|
3 |
*
|
alpar@1164
|
4 |
* Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@1359
|
5 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@948
|
6 |
*
|
alpar@948
|
7 |
* Permission to use, modify and distribute this software is granted
|
alpar@948
|
8 |
* provided that this copyright notice appears in all copies. For
|
alpar@948
|
9 |
* precise terms see the accompanying LICENSE file.
|
alpar@948
|
10 |
*
|
alpar@948
|
11 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@948
|
12 |
* express or implied, and with no claim as to its suitability for any
|
alpar@948
|
13 |
* purpose.
|
alpar@948
|
14 |
*
|
alpar@948
|
15 |
*/
|
alpar@395
|
16 |
|
alpar@921
|
17 |
#ifndef LEMON_LIST_GRAPH_H
|
alpar@921
|
18 |
#define LEMON_LIST_GRAPH_H
|
alpar@395
|
19 |
|
alpar@948
|
20 |
///\ingroup graphs
|
alpar@948
|
21 |
///\file
|
deba@1334
|
22 |
///\brief ListGraph, SymListGraph classes.
|
alpar@948
|
23 |
|
deba@1307
|
24 |
#include <lemon/bits/erasable_graph_extender.h>
|
deba@1307
|
25 |
#include <lemon/bits/clearable_graph_extender.h>
|
deba@1307
|
26 |
#include <lemon/bits/extendable_graph_extender.h>
|
deba@1307
|
27 |
#include <lemon/bits/iterable_graph_extender.h>
|
deba@1307
|
28 |
#include <lemon/bits/alteration_notifier.h>
|
deba@1307
|
29 |
#include <lemon/bits/default_map.h>
|
alpar@395
|
30 |
|
deba@1307
|
31 |
#include <lemon/bits/undir_graph_extender.h>
|
deba@782
|
32 |
|
alpar@1011
|
33 |
#include <list>
|
deba@782
|
34 |
|
alpar@921
|
35 |
namespace lemon {
|
alpar@395
|
36 |
|
klao@946
|
37 |
class ListGraphBase {
|
alpar@406
|
38 |
|
alpar@949
|
39 |
protected:
|
klao@946
|
40 |
struct NodeT {
|
alpar@397
|
41 |
int first_in,first_out;
|
alpar@397
|
42 |
int prev, next;
|
alpar@395
|
43 |
};
|
klao@946
|
44 |
|
klao@946
|
45 |
struct EdgeT {
|
alpar@986
|
46 |
int target, source;
|
alpar@397
|
47 |
int prev_in, prev_out;
|
alpar@397
|
48 |
int next_in, next_out;
|
alpar@395
|
49 |
};
|
alpar@395
|
50 |
|
alpar@395
|
51 |
std::vector<NodeT> nodes;
|
klao@946
|
52 |
|
alpar@397
|
53 |
int first_node;
|
klao@946
|
54 |
|
alpar@397
|
55 |
int first_free_node;
|
klao@946
|
56 |
|
alpar@395
|
57 |
std::vector<EdgeT> edges;
|
klao@946
|
58 |
|
alpar@397
|
59 |
int first_free_edge;
|
alpar@395
|
60 |
|
deba@782
|
61 |
public:
|
alpar@395
|
62 |
|
klao@946
|
63 |
typedef ListGraphBase Graph;
|
alpar@397
|
64 |
|
klao@946
|
65 |
class Node {
|
marci@975
|
66 |
friend class ListGraphBase;
|
klao@946
|
67 |
protected:
|
alpar@395
|
68 |
|
klao@946
|
69 |
int id;
|
klao@946
|
70 |
Node(int pid) { id = pid;}
|
alpar@395
|
71 |
|
klao@946
|
72 |
public:
|
klao@946
|
73 |
Node() {}
|
klao@946
|
74 |
Node (Invalid) { id = -1; }
|
klao@946
|
75 |
bool operator==(const Node& node) const {return id == node.id;}
|
klao@946
|
76 |
bool operator!=(const Node& node) const {return id != node.id;}
|
klao@946
|
77 |
bool operator<(const Node& node) const {return id < node.id;}
|
klao@946
|
78 |
};
|
deba@782
|
79 |
|
klao@946
|
80 |
class Edge {
|
marci@975
|
81 |
friend class ListGraphBase;
|
klao@946
|
82 |
protected:
|
deba@782
|
83 |
|
klao@946
|
84 |
int id;
|
klao@946
|
85 |
Edge(int pid) { id = pid;}
|
alpar@395
|
86 |
|
klao@946
|
87 |
public:
|
klao@946
|
88 |
Edge() {}
|
klao@946
|
89 |
Edge (Invalid) { id = -1; }
|
klao@946
|
90 |
bool operator==(const Edge& edge) const {return id == edge.id;}
|
klao@946
|
91 |
bool operator!=(const Edge& edge) const {return id != edge.id;}
|
klao@946
|
92 |
bool operator<(const Edge& edge) const {return id < edge.id;}
|
klao@946
|
93 |
};
|
klao@946
|
94 |
|
klao@946
|
95 |
|
klao@946
|
96 |
|
klao@946
|
97 |
ListGraphBase()
|
deba@782
|
98 |
: nodes(), first_node(-1),
|
deba@782
|
99 |
first_free_node(-1), edges(), first_free_edge(-1) {}
|
deba@782
|
100 |
|
alpar@395
|
101 |
|
alpar@813
|
102 |
/// Maximum node ID.
|
alpar@813
|
103 |
|
alpar@813
|
104 |
/// Maximum node ID.
|
alpar@813
|
105 |
///\sa id(Node)
|
deba@980
|
106 |
int maxId(Node = INVALID) const { return nodes.size()-1; }
|
klao@946
|
107 |
|
alpar@813
|
108 |
/// Maximum edge ID.
|
alpar@813
|
109 |
|
alpar@813
|
110 |
/// Maximum edge ID.
|
alpar@813
|
111 |
///\sa id(Edge)
|
deba@980
|
112 |
int maxId(Edge = INVALID) const { return edges.size()-1; }
|
alpar@395
|
113 |
|
alpar@986
|
114 |
Node source(Edge e) const { return edges[e.id].source; }
|
alpar@986
|
115 |
Node target(Edge e) const { return edges[e.id].target; }
|
alpar@395
|
116 |
|
alpar@395
|
117 |
|
klao@946
|
118 |
void first(Node& node) const {
|
klao@946
|
119 |
node.id = first_node;
|
klao@946
|
120 |
}
|
klao@946
|
121 |
|
klao@946
|
122 |
void next(Node& node) const {
|
klao@946
|
123 |
node.id = nodes[node.id].next;
|
klao@946
|
124 |
}
|
klao@946
|
125 |
|
klao@946
|
126 |
|
klao@946
|
127 |
void first(Edge& e) const {
|
klao@946
|
128 |
int n;
|
klao@946
|
129 |
for(n = first_node;
|
klao@946
|
130 |
n!=-1 && nodes[n].first_in == -1;
|
klao@946
|
131 |
n = nodes[n].next);
|
klao@946
|
132 |
e.id = (n == -1) ? -1 : nodes[n].first_in;
|
klao@946
|
133 |
}
|
klao@946
|
134 |
|
klao@946
|
135 |
void next(Edge& edge) const {
|
klao@946
|
136 |
if (edges[edge.id].next_in != -1) {
|
klao@946
|
137 |
edge.id = edges[edge.id].next_in;
|
klao@946
|
138 |
} else {
|
klao@946
|
139 |
int n;
|
alpar@986
|
140 |
for(n = nodes[edges[edge.id].target].next;
|
klao@946
|
141 |
n!=-1 && nodes[n].first_in == -1;
|
klao@946
|
142 |
n = nodes[n].next);
|
klao@946
|
143 |
edge.id = (n == -1) ? -1 : nodes[n].first_in;
|
klao@946
|
144 |
}
|
klao@946
|
145 |
}
|
klao@946
|
146 |
|
klao@946
|
147 |
void firstOut(Edge &e, const Node& v) const {
|
klao@946
|
148 |
e.id = nodes[v.id].first_out;
|
klao@946
|
149 |
}
|
klao@946
|
150 |
void nextOut(Edge &e) const {
|
klao@946
|
151 |
e.id=edges[e.id].next_out;
|
klao@946
|
152 |
}
|
klao@946
|
153 |
|
klao@946
|
154 |
void firstIn(Edge &e, const Node& v) const {
|
klao@946
|
155 |
e.id = nodes[v.id].first_in;
|
klao@946
|
156 |
}
|
klao@946
|
157 |
void nextIn(Edge &e) const {
|
klao@946
|
158 |
e.id=edges[e.id].next_in;
|
klao@946
|
159 |
}
|
klao@946
|
160 |
|
alpar@813
|
161 |
|
klao@946
|
162 |
static int id(Node v) { return v.id; }
|
klao@946
|
163 |
static int id(Edge e) { return e.id; }
|
alpar@395
|
164 |
|
deba@1106
|
165 |
static Node fromId(int id, Node) { return Node(id);}
|
deba@1106
|
166 |
static Edge fromId(int id, Edge) { return Edge(id);}
|
deba@1106
|
167 |
|
alpar@397
|
168 |
/// Adds a new node to the graph.
|
alpar@397
|
169 |
|
alpar@813
|
170 |
/// \warning It adds the new node to the front of the list.
|
alpar@397
|
171 |
/// (i.e. the lastly added node becomes the first.)
|
klao@946
|
172 |
Node addNode() {
|
alpar@397
|
173 |
int n;
|
alpar@397
|
174 |
|
klao@946
|
175 |
if(first_free_node==-1) {
|
klao@946
|
176 |
n = nodes.size();
|
klao@946
|
177 |
nodes.push_back(NodeT());
|
klao@946
|
178 |
} else {
|
alpar@397
|
179 |
n = first_free_node;
|
alpar@397
|
180 |
first_free_node = nodes[n].next;
|
alpar@397
|
181 |
}
|
alpar@397
|
182 |
|
alpar@397
|
183 |
nodes[n].next = first_node;
|
alpar@397
|
184 |
if(first_node != -1) nodes[first_node].prev = n;
|
alpar@397
|
185 |
first_node = n;
|
alpar@397
|
186 |
nodes[n].prev = -1;
|
alpar@397
|
187 |
|
alpar@397
|
188 |
nodes[n].first_in = nodes[n].first_out = -1;
|
alpar@397
|
189 |
|
klao@946
|
190 |
return Node(n);
|
alpar@395
|
191 |
}
|
alpar@395
|
192 |
|
alpar@395
|
193 |
Edge addEdge(Node u, Node v) {
|
klao@946
|
194 |
int n;
|
klao@946
|
195 |
|
klao@946
|
196 |
if (first_free_edge == -1) {
|
klao@946
|
197 |
n = edges.size();
|
klao@946
|
198 |
edges.push_back(EdgeT());
|
klao@946
|
199 |
} else {
|
alpar@397
|
200 |
n = first_free_edge;
|
alpar@397
|
201 |
first_free_edge = edges[n].next_in;
|
alpar@397
|
202 |
}
|
alpar@397
|
203 |
|
alpar@986
|
204 |
edges[n].source = u.id;
|
alpar@986
|
205 |
edges[n].target = v.id;
|
alpar@395
|
206 |
|
klao@946
|
207 |
edges[n].next_out = nodes[u.id].first_out;
|
klao@946
|
208 |
if(nodes[u.id].first_out != -1) {
|
klao@946
|
209 |
edges[nodes[u.id].first_out].prev_out = n;
|
klao@946
|
210 |
}
|
klao@946
|
211 |
|
klao@946
|
212 |
edges[n].next_in = nodes[v.id].first_in;
|
klao@946
|
213 |
if(nodes[v.id].first_in != -1) {
|
klao@946
|
214 |
edges[nodes[v.id].first_in].prev_in = n;
|
klao@946
|
215 |
}
|
klao@946
|
216 |
|
alpar@397
|
217 |
edges[n].prev_in = edges[n].prev_out = -1;
|
alpar@397
|
218 |
|
klao@946
|
219 |
nodes[u.id].first_out = nodes[v.id].first_in = n;
|
alpar@397
|
220 |
|
klao@946
|
221 |
return Edge(n);
|
alpar@395
|
222 |
}
|
alpar@774
|
223 |
|
klao@946
|
224 |
void erase(const Node& node) {
|
klao@946
|
225 |
int n = node.id;
|
klao@946
|
226 |
|
klao@946
|
227 |
if(nodes[n].next != -1) {
|
klao@946
|
228 |
nodes[nodes[n].next].prev = nodes[n].prev;
|
klao@946
|
229 |
}
|
klao@946
|
230 |
|
klao@946
|
231 |
if(nodes[n].prev != -1) {
|
klao@946
|
232 |
nodes[nodes[n].prev].next = nodes[n].next;
|
klao@946
|
233 |
} else {
|
klao@946
|
234 |
first_node = nodes[n].next;
|
klao@946
|
235 |
}
|
klao@946
|
236 |
|
klao@946
|
237 |
nodes[n].next = first_free_node;
|
klao@946
|
238 |
first_free_node = n;
|
alpar@395
|
239 |
|
alpar@774
|
240 |
}
|
alpar@774
|
241 |
|
klao@946
|
242 |
void erase(const Edge& edge) {
|
klao@946
|
243 |
int n = edge.id;
|
alpar@397
|
244 |
|
klao@946
|
245 |
if(edges[n].next_in!=-1) {
|
alpar@397
|
246 |
edges[edges[n].next_in].prev_in = edges[n].prev_in;
|
klao@946
|
247 |
}
|
klao@946
|
248 |
|
klao@946
|
249 |
if(edges[n].prev_in!=-1) {
|
alpar@397
|
250 |
edges[edges[n].prev_in].next_in = edges[n].next_in;
|
klao@946
|
251 |
} else {
|
alpar@986
|
252 |
nodes[edges[n].target].first_in = edges[n].next_in;
|
klao@946
|
253 |
}
|
klao@946
|
254 |
|
alpar@397
|
255 |
|
klao@946
|
256 |
if(edges[n].next_out!=-1) {
|
alpar@397
|
257 |
edges[edges[n].next_out].prev_out = edges[n].prev_out;
|
klao@946
|
258 |
}
|
klao@946
|
259 |
|
klao@946
|
260 |
if(edges[n].prev_out!=-1) {
|
alpar@397
|
261 |
edges[edges[n].prev_out].next_out = edges[n].next_out;
|
klao@946
|
262 |
} else {
|
alpar@986
|
263 |
nodes[edges[n].source].first_out = edges[n].next_out;
|
klao@946
|
264 |
}
|
alpar@397
|
265 |
|
alpar@397
|
266 |
edges[n].next_in = first_free_edge;
|
alpar@695
|
267 |
first_free_edge = n;
|
alpar@397
|
268 |
|
alpar@397
|
269 |
}
|
alpar@397
|
270 |
|
alpar@397
|
271 |
void clear() {
|
deba@782
|
272 |
edges.clear();
|
deba@782
|
273 |
nodes.clear();
|
klao@946
|
274 |
first_node = first_free_node = first_free_edge = -1;
|
deba@937
|
275 |
}
|
deba@937
|
276 |
|
alpar@949
|
277 |
protected:
|
alpar@986
|
278 |
void _moveTarget(Edge e, Node n)
|
alpar@949
|
279 |
{
|
alpar@949
|
280 |
if(edges[e.id].next_in != -1)
|
alpar@949
|
281 |
edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
|
alpar@949
|
282 |
if(edges[e.id].prev_in != -1)
|
alpar@949
|
283 |
edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
|
alpar@986
|
284 |
else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
|
alpar@986
|
285 |
edges[e.id].target = n.id;
|
alpar@949
|
286 |
edges[e.id].prev_in = -1;
|
alpar@949
|
287 |
edges[e.id].next_in = nodes[n.id].first_in;
|
alpar@949
|
288 |
nodes[n.id].first_in = e.id;
|
alpar@949
|
289 |
}
|
alpar@986
|
290 |
void _moveSource(Edge e, Node n)
|
alpar@949
|
291 |
{
|
alpar@949
|
292 |
if(edges[e.id].next_out != -1)
|
alpar@949
|
293 |
edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
|
alpar@949
|
294 |
if(edges[e.id].prev_out != -1)
|
alpar@949
|
295 |
edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
|
alpar@986
|
296 |
else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
|
alpar@986
|
297 |
edges[e.id].source = n.id;
|
alpar@949
|
298 |
edges[e.id].prev_out = -1;
|
alpar@949
|
299 |
edges[e.id].next_out = nodes[n.id].first_out;
|
alpar@949
|
300 |
nodes[n.id].first_out = e.id;
|
alpar@949
|
301 |
}
|
alpar@949
|
302 |
|
alpar@919
|
303 |
};
|
deba@909
|
304 |
|
klao@946
|
305 |
typedef AlterableGraphExtender<ListGraphBase> AlterableListGraphBase;
|
klao@946
|
306 |
typedef IterableGraphExtender<AlterableListGraphBase> IterableListGraphBase;
|
deba@980
|
307 |
typedef DefaultMappableGraphExtender<IterableListGraphBase> MappableListGraphBase;
|
klao@946
|
308 |
typedef ExtendableGraphExtender<MappableListGraphBase> ExtendableListGraphBase;
|
klao@946
|
309 |
typedef ClearableGraphExtender<ExtendableListGraphBase> ClearableListGraphBase;
|
klao@946
|
310 |
typedef ErasableGraphExtender<ClearableListGraphBase> ErasableListGraphBase;
|
alpar@400
|
311 |
|
alpar@948
|
312 |
/// \addtogroup graphs
|
alpar@948
|
313 |
/// @{
|
alpar@400
|
314 |
|
alpar@948
|
315 |
///A list graph class.
|
alpar@400
|
316 |
|
alpar@948
|
317 |
///This is a simple and fast erasable graph implementation.
|
alpar@948
|
318 |
///
|
alpar@1010
|
319 |
///It addition that it conforms to the
|
alpar@1010
|
320 |
///\ref concept::ErasableGraph "ErasableGraph" concept,
|
alpar@1010
|
321 |
///it also provides several additional useful extra functionalities.
|
klao@959
|
322 |
///\sa concept::ErasableGraph.
|
deba@782
|
323 |
|
alpar@948
|
324 |
class ListGraph : public ErasableListGraphBase
|
alpar@948
|
325 |
{
|
alpar@948
|
326 |
public:
|
alpar@986
|
327 |
/// Moves the target of \c e to \c n
|
alpar@948
|
328 |
|
alpar@986
|
329 |
/// Moves the target of \c e to \c n
|
alpar@948
|
330 |
///
|
alpar@1010
|
331 |
///\note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
|
alpar@1010
|
332 |
///referencing the moved edge remain
|
alpar@1010
|
333 |
///valid. However <tt>InEdge</tt>'s are invalidated.
|
alpar@986
|
334 |
void moveTarget(Edge e, Node n) { _moveTarget(e,n); }
|
alpar@986
|
335 |
/// Moves the source of \c e to \c n
|
alpar@948
|
336 |
|
alpar@986
|
337 |
/// Moves the source of \c e to \c n
|
alpar@948
|
338 |
///
|
alpar@1010
|
339 |
///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
|
alpar@1010
|
340 |
///referencing the moved edge remain
|
alpar@1010
|
341 |
///valid. However <tt>OutEdge</tt>'s are invalidated.
|
alpar@986
|
342 |
void moveSource(Edge e, Node n) { _moveSource(e,n); }
|
alpar@949
|
343 |
|
alpar@1010
|
344 |
/// Invert the direction of an edge.
|
alpar@1010
|
345 |
|
alpar@1010
|
346 |
///\note The <tt>Edge</tt>'s
|
alpar@1010
|
347 |
///referencing the moved edge remain
|
alpar@1010
|
348 |
///valid. However <tt>OutEdge</tt>'s and <tt>InEdge</tt>'s are invalidated.
|
alpar@1010
|
349 |
void reverseEdge(Edge e) {
|
alpar@1010
|
350 |
Node t=target(e);
|
alpar@1010
|
351 |
_moveTarget(e,source(e));
|
alpar@1010
|
352 |
_moveSource(e,t);
|
alpar@1010
|
353 |
}
|
alpar@1010
|
354 |
|
alpar@1010
|
355 |
///Using this it possible to avoid the superfluous memory allocation.
|
alpar@1010
|
356 |
|
alpar@949
|
357 |
///Using this it possible to avoid the superfluous memory allocation.
|
alpar@949
|
358 |
///\todo more docs...
|
alpar@949
|
359 |
void reserveEdge(int n) { edges.reserve(n); };
|
alpar@1010
|
360 |
|
alpar@1010
|
361 |
///Contract two nodes.
|
alpar@1010
|
362 |
|
alpar@1010
|
363 |
///This function contracts two nodes.
|
alpar@1010
|
364 |
///
|
alpar@1010
|
365 |
///Node \p b will be removed but instead of deleting
|
alpar@1010
|
366 |
///its neighboring edges, they will be joined to \p a.
|
alpar@1010
|
367 |
///The last parameter \p r controls whether to remove loops. \c true
|
alpar@1010
|
368 |
///means that loops will be removed.
|
alpar@1010
|
369 |
///
|
alpar@1010
|
370 |
///\note The <tt>Edge</tt>s
|
alpar@1281
|
371 |
///referencing a moved edge remain
|
alpar@1010
|
372 |
///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
|
alpar@1010
|
373 |
///may be invalidated.
|
alpar@1010
|
374 |
void contract(Node a,Node b,bool r=true)
|
alpar@1010
|
375 |
{
|
alpar@1010
|
376 |
for(OutEdgeIt e(*this,b);e!=INVALID;) {
|
alpar@1010
|
377 |
OutEdgeIt f=e;
|
alpar@1010
|
378 |
++f;
|
alpar@1010
|
379 |
if(r && target(e)==a) erase(e);
|
athos@1184
|
380 |
else moveSource(e,a);
|
alpar@1010
|
381 |
e=f;
|
alpar@1010
|
382 |
}
|
alpar@1010
|
383 |
for(InEdgeIt e(*this,b);e!=INVALID;) {
|
alpar@1010
|
384 |
InEdgeIt f=e;
|
alpar@1010
|
385 |
++f;
|
alpar@1010
|
386 |
if(r && source(e)==a) erase(e);
|
athos@1184
|
387 |
else moveTarget(e,a);
|
alpar@1010
|
388 |
e=f;
|
alpar@1010
|
389 |
}
|
alpar@1010
|
390 |
erase(b);
|
alpar@1010
|
391 |
}
|
alpar@1011
|
392 |
|
alpar@1281
|
393 |
///Split a node.
|
alpar@1011
|
394 |
|
alpar@1284
|
395 |
///This function splits a node. First a new node is added to the graph,
|
alpar@1284
|
396 |
///then the source of each outgoing edge of \c n is moved to this new node.
|
alpar@1281
|
397 |
///If \c connect is \c true (this is the default value), then a new edge
|
alpar@1281
|
398 |
///from \c n to the newly created node is also added.
|
alpar@1281
|
399 |
///\return The newly created node.
|
alpar@1281
|
400 |
///
|
alpar@1281
|
401 |
///\note The <tt>Edge</tt>s
|
alpar@1281
|
402 |
///referencing a moved edge remain
|
alpar@1281
|
403 |
///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
|
alpar@1281
|
404 |
///may be invalidated.
|
alpar@1284
|
405 |
///\warning This functionality cannot be used together with the SnapShot
|
alpar@1284
|
406 |
///feature.
|
alpar@1281
|
407 |
///\todo It could be implemented in a bit faster way.
|
alpar@1281
|
408 |
Node split(Node n, bool connect = true)
|
alpar@1281
|
409 |
{
|
alpar@1281
|
410 |
Node b = addNode();
|
alpar@1281
|
411 |
for(OutEdgeIt e(*this,n);e!=INVALID;) {
|
alpar@1281
|
412 |
OutEdgeIt f=e;
|
alpar@1281
|
413 |
++f;
|
alpar@1281
|
414 |
moveSource(e,b);
|
alpar@1281
|
415 |
e=f;
|
alpar@1281
|
416 |
}
|
alpar@1281
|
417 |
if(connect) addEdge(n,b);
|
alpar@1281
|
418 |
return b;
|
alpar@1281
|
419 |
}
|
alpar@1281
|
420 |
|
alpar@1011
|
421 |
///Class to make a snapshot of the graph and to restrore to it later.
|
alpar@1011
|
422 |
|
alpar@1011
|
423 |
///Class to make a snapshot of the graph and to restrore to it later.
|
alpar@1011
|
424 |
///
|
alpar@1011
|
425 |
///The newly added nodes and edges can be removed using the
|
alpar@1011
|
426 |
///restore() function.
|
alpar@1011
|
427 |
///
|
alpar@1011
|
428 |
///\warning Edge and node deletions cannot be restored.
|
alpar@1011
|
429 |
///\warning SnapShots cannot be nested.
|
alpar@1035
|
430 |
///\todo \c SnapShot or \c Snapshot?
|
deba@1039
|
431 |
class SnapShot : protected AlterationNotifier<Node>::ObserverBase,
|
deba@1039
|
432 |
protected AlterationNotifier<Edge>::ObserverBase
|
alpar@1011
|
433 |
{
|
alpar@1011
|
434 |
protected:
|
alpar@1011
|
435 |
|
alpar@1011
|
436 |
ListGraph *g;
|
alpar@1011
|
437 |
std::list<Node> added_nodes;
|
alpar@1011
|
438 |
std::list<Edge> added_edges;
|
alpar@1011
|
439 |
|
alpar@1011
|
440 |
bool active;
|
alpar@1011
|
441 |
virtual void add(const Node& n) {
|
alpar@1011
|
442 |
added_nodes.push_back(n);
|
alpar@1011
|
443 |
};
|
alpar@1011
|
444 |
///\bug Exception...
|
alpar@1011
|
445 |
///
|
alpar@1011
|
446 |
virtual void erase(const Node&)
|
alpar@1011
|
447 |
{
|
alpar@1011
|
448 |
exit(1);
|
alpar@1011
|
449 |
}
|
alpar@1011
|
450 |
virtual void add(const Edge& n) {
|
alpar@1011
|
451 |
added_edges.push_back(n);
|
alpar@1011
|
452 |
};
|
alpar@1011
|
453 |
///\bug Exception...
|
alpar@1011
|
454 |
///
|
alpar@1011
|
455 |
virtual void erase(const Edge&)
|
alpar@1011
|
456 |
{
|
alpar@1011
|
457 |
exit(1);
|
alpar@1011
|
458 |
}
|
alpar@1011
|
459 |
|
alpar@1457
|
460 |
///\bug What is this used for?
|
alpar@1457
|
461 |
///
|
alpar@1457
|
462 |
virtual void build() {}
|
alpar@1457
|
463 |
///\bug What is this used for?
|
alpar@1457
|
464 |
///
|
alpar@1457
|
465 |
virtual void clear() {}
|
alpar@1457
|
466 |
|
alpar@1011
|
467 |
void regist(ListGraph &_g) {
|
alpar@1011
|
468 |
g=&_g;
|
deba@1039
|
469 |
AlterationNotifier<Node>::ObserverBase::
|
deba@1040
|
470 |
attach(g->getNotifier(Node()));
|
deba@1039
|
471 |
AlterationNotifier<Edge>::ObserverBase::
|
deba@1040
|
472 |
attach(g->getNotifier(Edge()));
|
alpar@1011
|
473 |
}
|
alpar@1011
|
474 |
|
alpar@1011
|
475 |
void deregist() {
|
deba@1039
|
476 |
AlterationNotifier<Node>::ObserverBase::
|
alpar@1011
|
477 |
detach();
|
deba@1039
|
478 |
AlterationNotifier<Edge>::ObserverBase::
|
alpar@1011
|
479 |
detach();
|
alpar@1011
|
480 |
g=0;
|
alpar@1011
|
481 |
}
|
alpar@1011
|
482 |
|
alpar@1011
|
483 |
public:
|
alpar@1011
|
484 |
///Default constructur.
|
alpar@1011
|
485 |
|
alpar@1011
|
486 |
///Default constructur.
|
alpar@1011
|
487 |
///To actually make a snapshot you must call save().
|
alpar@1011
|
488 |
///
|
alpar@1011
|
489 |
SnapShot() : g(0) {}
|
alpar@1011
|
490 |
///Constructor that immediately makes a snapshot.
|
alpar@1011
|
491 |
|
alpar@1011
|
492 |
///This constructor immediately makes a snapshot of the graph.
|
alpar@1011
|
493 |
///\param _g The graph we make a snapshot of.
|
alpar@1011
|
494 |
SnapShot(ListGraph &_g) {
|
alpar@1011
|
495 |
regist(_g);
|
alpar@1011
|
496 |
}
|
alpar@1011
|
497 |
///\bug Is it necessary?
|
alpar@1011
|
498 |
///
|
alpar@1011
|
499 |
~SnapShot()
|
alpar@1011
|
500 |
{
|
alpar@1011
|
501 |
if(g) deregist();
|
alpar@1011
|
502 |
}
|
alpar@1011
|
503 |
|
alpar@1011
|
504 |
///Make a snapshot.
|
alpar@1011
|
505 |
|
alpar@1011
|
506 |
///Make a snapshot of the graph.
|
alpar@1011
|
507 |
///
|
alpar@1011
|
508 |
///This function can be called more than once. In case of a repeated
|
alpar@1011
|
509 |
///call, the previous snapshot gets lost.
|
alpar@1011
|
510 |
///\param _g The graph we make the snapshot of.
|
alpar@1011
|
511 |
void save(ListGraph &_g)
|
alpar@1011
|
512 |
{
|
alpar@1011
|
513 |
if(g!=&_g) {
|
alpar@1011
|
514 |
if(g) deregist();
|
alpar@1011
|
515 |
regist(_g);
|
alpar@1011
|
516 |
}
|
alpar@1011
|
517 |
added_nodes.clear();
|
alpar@1011
|
518 |
added_edges.clear();
|
alpar@1011
|
519 |
}
|
alpar@1011
|
520 |
|
alpar@1011
|
521 |
///Undo the changes until the last snapshot.
|
alpar@1011
|
522 |
|
alpar@1011
|
523 |
///Undo the changes until last snapshot created by save().
|
alpar@1011
|
524 |
///
|
alpar@1011
|
525 |
///\todo This function might be called undo().
|
alpar@1011
|
526 |
void restore() {
|
alpar@1457
|
527 |
ListGraph &old_g=*g;
|
alpar@1011
|
528 |
deregist();
|
alpar@1011
|
529 |
while(!added_edges.empty()) {
|
alpar@1457
|
530 |
old_g.erase(added_edges.front());
|
alpar@1011
|
531 |
added_edges.pop_front();
|
alpar@1011
|
532 |
}
|
alpar@1011
|
533 |
while(!added_nodes.empty()) {
|
alpar@1457
|
534 |
old_g.erase(added_nodes.front());
|
alpar@1011
|
535 |
added_nodes.pop_front();
|
alpar@1011
|
536 |
}
|
alpar@1011
|
537 |
}
|
alpar@1011
|
538 |
};
|
alpar@1011
|
539 |
|
alpar@949
|
540 |
};
|
klao@1034
|
541 |
|
klao@1034
|
542 |
|
klao@1034
|
543 |
/**************** Undirected List Graph ****************/
|
klao@1034
|
544 |
|
klao@1034
|
545 |
typedef ErasableUndirGraphExtender<
|
klao@1034
|
546 |
ClearableUndirGraphExtender<
|
klao@1034
|
547 |
ExtendableUndirGraphExtender<
|
klao@1034
|
548 |
MappableUndirGraphExtender<
|
klao@1034
|
549 |
IterableUndirGraphExtender<
|
klao@1034
|
550 |
AlterableUndirGraphExtender<
|
klao@1034
|
551 |
UndirGraphExtender<ListGraphBase> > > > > > > ErasableUndirListGraphBase;
|
klao@1034
|
552 |
|
alpar@1035
|
553 |
///An undirected list graph class.
|
alpar@1035
|
554 |
|
alpar@1035
|
555 |
///This is a simple and fast erasable undirected graph implementation.
|
alpar@1035
|
556 |
///
|
alpar@1035
|
557 |
///It conforms to the
|
alpar@1035
|
558 |
///\ref concept::UndirGraph "UndirGraph" concept.
|
alpar@1035
|
559 |
///
|
alpar@1035
|
560 |
///\sa concept::UndirGraph.
|
alpar@1035
|
561 |
///
|
alpar@1161
|
562 |
///\todo SnapShot, reverseEdge(), moveTarget(), moveSource(), contract()
|
alpar@1161
|
563 |
///haven't been implemented yet.
|
alpar@1035
|
564 |
///
|
klao@1034
|
565 |
class UndirListGraph : public ErasableUndirListGraphBase {
|
klao@1034
|
566 |
};
|
klao@1034
|
567 |
|
alpar@949
|
568 |
|
alpar@948
|
569 |
/// @}
|
alpar@948
|
570 |
} //namespace lemon
|
klao@946
|
571 |
|
alpar@400
|
572 |
|
klao@946
|
573 |
#endif
|