src/lemon/list_graph.h
author alpar
Sat, 30 Oct 2004 18:30:29 +0000
changeset 949 b16a10926781
parent 948 bc86b64f958e
child 959 c80ef5912903
permissions -rw-r--r--
ListGraph compilation bug fixed.
alpar@948
     1
/* -*- C++ -*-
alpar@948
     2
 * src/lemon/list_graph.h - Part of LEMON, a generic C++ optimization library
alpar@948
     3
 *
alpar@948
     4
 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@948
     5
 * (Egervary Combinatorial Optimization Research Group, EGRES).
alpar@948
     6
 *
alpar@948
     7
 * Permission to use, modify and distribute this software is granted
alpar@948
     8
 * provided that this copyright notice appears in all copies. For
alpar@948
     9
 * precise terms see the accompanying LICENSE file.
alpar@948
    10
 *
alpar@948
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@948
    12
 * express or implied, and with no claim as to its suitability for any
alpar@948
    13
 * purpose.
alpar@948
    14
 *
alpar@948
    15
 */
alpar@395
    16
alpar@921
    17
#ifndef LEMON_LIST_GRAPH_H
alpar@921
    18
#define LEMON_LIST_GRAPH_H
alpar@395
    19
alpar@948
    20
///\ingroup graphs
alpar@948
    21
///\file
alpar@948
    22
///\brief ListGraph, SymListGraph, NodeSet and EdgeSet classes.
alpar@948
    23
klao@946
    24
#include <lemon/erasable_graph_extender.h>
klao@946
    25
#include <lemon/clearable_graph_extender.h>
klao@946
    26
#include <lemon/extendable_graph_extender.h>
alpar@395
    27
klao@946
    28
#include <lemon/idmappable_graph_extender.h>
alpar@395
    29
klao@946
    30
#include <lemon/iterable_graph_extender.h>
alpar@395
    31
klao@946
    32
#include <lemon/alteration_observer_registry.h>
deba@782
    33
klao@946
    34
#include <lemon/default_map.h>
deba@782
    35
deba@782
    36
alpar@921
    37
namespace lemon {
alpar@395
    38
klao@946
    39
  class ListGraphBase {
alpar@406
    40
alpar@949
    41
  protected:
klao@946
    42
    struct NodeT {
alpar@397
    43
      int first_in,first_out;
alpar@397
    44
      int prev, next;
alpar@395
    45
    };
klao@946
    46
 
klao@946
    47
    struct EdgeT {
alpar@397
    48
      int head, tail;
alpar@397
    49
      int prev_in, prev_out;
alpar@397
    50
      int next_in, next_out;
alpar@395
    51
    };
alpar@395
    52
alpar@395
    53
    std::vector<NodeT> nodes;
klao@946
    54
alpar@397
    55
    int first_node;
klao@946
    56
alpar@397
    57
    int first_free_node;
klao@946
    58
alpar@395
    59
    std::vector<EdgeT> edges;
klao@946
    60
alpar@397
    61
    int first_free_edge;
alpar@395
    62
    
deba@782
    63
  public:
alpar@395
    64
    
klao@946
    65
    typedef ListGraphBase Graph;
alpar@397
    66
    
klao@946
    67
    class Node {
klao@946
    68
      friend class Graph;
klao@946
    69
    protected:
alpar@395
    70
klao@946
    71
      int id;
klao@946
    72
      Node(int pid) { id = pid;}
alpar@395
    73
klao@946
    74
    public:
klao@946
    75
      Node() {}
klao@946
    76
      Node (Invalid) { id = -1; }
klao@946
    77
      bool operator==(const Node& node) const {return id == node.id;}
klao@946
    78
      bool operator!=(const Node& node) const {return id != node.id;}
klao@946
    79
      bool operator<(const Node& node) const {return id < node.id;}
klao@946
    80
    };
deba@782
    81
klao@946
    82
    class Edge {
klao@946
    83
      friend class Graph;
klao@946
    84
    protected:
deba@782
    85
klao@946
    86
      int id;
klao@946
    87
      Edge(int pid) { id = pid;}
alpar@395
    88
klao@946
    89
    public:
klao@946
    90
      Edge() {}
klao@946
    91
      Edge (Invalid) { id = -1; }
klao@946
    92
      bool operator==(const Edge& edge) const {return id == edge.id;}
klao@946
    93
      bool operator!=(const Edge& edge) const {return id != edge.id;}
klao@946
    94
      bool operator<(const Edge& edge) const {return id < edge.id;}
klao@946
    95
    };
klao@946
    96
klao@946
    97
klao@946
    98
klao@946
    99
    ListGraphBase()
deba@782
   100
      : nodes(), first_node(-1),
deba@782
   101
	first_free_node(-1), edges(), first_free_edge(-1) {}
deba@782
   102
alpar@395
   103
    
alpar@813
   104
    /// Maximum node ID.
alpar@813
   105
    
alpar@813
   106
    /// Maximum node ID.
alpar@813
   107
    ///\sa id(Node)
alpar@813
   108
    int maxNodeId() const { return nodes.size()-1; } 
klao@946
   109
alpar@813
   110
    /// Maximum edge ID.
alpar@813
   111
    
alpar@813
   112
    /// Maximum edge ID.
alpar@813
   113
    ///\sa id(Edge)
alpar@813
   114
    int maxEdgeId() const { return edges.size()-1; }
alpar@395
   115
klao@946
   116
    Node tail(Edge e) const { return edges[e.id].tail; }
klao@946
   117
    Node head(Edge e) const { return edges[e.id].head; }
alpar@395
   118
alpar@395
   119
klao@946
   120
    void first(Node& node) const { 
klao@946
   121
      node.id = first_node;
klao@946
   122
    }
klao@946
   123
klao@946
   124
    void next(Node& node) const {
klao@946
   125
      node.id = nodes[node.id].next;
klao@946
   126
    }
klao@946
   127
klao@946
   128
klao@946
   129
    void first(Edge& e) const { 
klao@946
   130
      int n;
klao@946
   131
      for(n = first_node; 
klao@946
   132
	  n!=-1 && nodes[n].first_in == -1; 
klao@946
   133
	  n = nodes[n].next);
klao@946
   134
      e.id = (n == -1) ? -1 : nodes[n].first_in;
klao@946
   135
    }
klao@946
   136
klao@946
   137
    void next(Edge& edge) const {
klao@946
   138
      if (edges[edge.id].next_in != -1) {
klao@946
   139
	edge.id = edges[edge.id].next_in;
klao@946
   140
      } else {
klao@946
   141
	int n;
klao@946
   142
	for(n = nodes[edges[edge.id].head].next;
klao@946
   143
	  n!=-1 && nodes[n].first_in == -1; 
klao@946
   144
	  n = nodes[n].next);
klao@946
   145
	edge.id = (n == -1) ? -1 : nodes[n].first_in;
klao@946
   146
      }      
klao@946
   147
    }
klao@946
   148
klao@946
   149
    void firstOut(Edge &e, const Node& v) const {
klao@946
   150
      e.id = nodes[v.id].first_out;
klao@946
   151
    }
klao@946
   152
    void nextOut(Edge &e) const {
klao@946
   153
      e.id=edges[e.id].next_out;
klao@946
   154
    }
klao@946
   155
klao@946
   156
    void firstIn(Edge &e, const Node& v) const {
klao@946
   157
      e.id = nodes[v.id].first_in;
klao@946
   158
    }
klao@946
   159
    void nextIn(Edge &e) const {
klao@946
   160
      e.id=edges[e.id].next_in;
klao@946
   161
    }
klao@946
   162
alpar@813
   163
    
klao@946
   164
    static int id(Node v) { return v.id; }
klao@946
   165
    static int id(Edge e) { return e.id; }
alpar@395
   166
alpar@397
   167
    /// Adds a new node to the graph.
alpar@397
   168
alpar@813
   169
    /// \warning It adds the new node to the front of the list.
alpar@397
   170
    /// (i.e. the lastly added node becomes the first.)
klao@946
   171
    Node addNode() {     
alpar@397
   172
      int n;
alpar@397
   173
      
klao@946
   174
      if(first_free_node==-1) {
klao@946
   175
	n = nodes.size();
klao@946
   176
	nodes.push_back(NodeT());
klao@946
   177
      } else {
alpar@397
   178
	n = first_free_node;
alpar@397
   179
	first_free_node = nodes[n].next;
alpar@397
   180
      }
alpar@397
   181
      
alpar@397
   182
      nodes[n].next = first_node;
alpar@397
   183
      if(first_node != -1) nodes[first_node].prev = n;
alpar@397
   184
      first_node = n;
alpar@397
   185
      nodes[n].prev = -1;
alpar@397
   186
      
alpar@397
   187
      nodes[n].first_in = nodes[n].first_out = -1;
alpar@397
   188
      
klao@946
   189
      return Node(n);
alpar@395
   190
    }
alpar@395
   191
    
alpar@395
   192
    Edge addEdge(Node u, Node v) {
klao@946
   193
      int n;      
klao@946
   194
klao@946
   195
      if (first_free_edge == -1) {
klao@946
   196
	n = edges.size();
klao@946
   197
	edges.push_back(EdgeT());
klao@946
   198
      } else {
alpar@397
   199
	n = first_free_edge;
alpar@397
   200
	first_free_edge = edges[n].next_in;
alpar@397
   201
      }
alpar@397
   202
      
klao@946
   203
      edges[n].tail = u.id; 
klao@946
   204
      edges[n].head = v.id;
alpar@395
   205
klao@946
   206
      edges[n].next_out = nodes[u.id].first_out;
klao@946
   207
      if(nodes[u.id].first_out != -1) {
klao@946
   208
	edges[nodes[u.id].first_out].prev_out = n;
klao@946
   209
      }
klao@946
   210
      
klao@946
   211
      edges[n].next_in = nodes[v.id].first_in;
klao@946
   212
      if(nodes[v.id].first_in != -1) {
klao@946
   213
	edges[nodes[v.id].first_in].prev_in = n;
klao@946
   214
      }
klao@946
   215
      
alpar@397
   216
      edges[n].prev_in = edges[n].prev_out = -1;
alpar@397
   217
	
klao@946
   218
      nodes[u.id].first_out = nodes[v.id].first_in = n;
alpar@397
   219
klao@946
   220
      return Edge(n);
alpar@395
   221
    }
alpar@774
   222
    
klao@946
   223
    void erase(const Node& node) {
klao@946
   224
      int n = node.id;
klao@946
   225
      
klao@946
   226
      if(nodes[n].next != -1) {
klao@946
   227
	nodes[nodes[n].next].prev = nodes[n].prev;
klao@946
   228
      }
klao@946
   229
      
klao@946
   230
      if(nodes[n].prev != -1) {
klao@946
   231
	nodes[nodes[n].prev].next = nodes[n].next;
klao@946
   232
      } else {
klao@946
   233
	first_node = nodes[n].next;
klao@946
   234
      }
klao@946
   235
      
klao@946
   236
      nodes[n].next = first_free_node;
klao@946
   237
      first_free_node = n;
alpar@395
   238
alpar@774
   239
    }
alpar@774
   240
    
klao@946
   241
    void erase(const Edge& edge) {
klao@946
   242
      int n = edge.id;
alpar@397
   243
      
klao@946
   244
      if(edges[n].next_in!=-1) {
alpar@397
   245
	edges[edges[n].next_in].prev_in = edges[n].prev_in;
klao@946
   246
      }
klao@946
   247
klao@946
   248
      if(edges[n].prev_in!=-1) {
alpar@397
   249
	edges[edges[n].prev_in].next_in = edges[n].next_in;
klao@946
   250
      } else {
klao@946
   251
	nodes[edges[n].head].first_in = edges[n].next_in;
klao@946
   252
      }
klao@946
   253
alpar@397
   254
      
klao@946
   255
      if(edges[n].next_out!=-1) {
alpar@397
   256
	edges[edges[n].next_out].prev_out = edges[n].prev_out;
klao@946
   257
      } 
klao@946
   258
klao@946
   259
      if(edges[n].prev_out!=-1) {
alpar@397
   260
	edges[edges[n].prev_out].next_out = edges[n].next_out;
klao@946
   261
      } else {
klao@946
   262
	nodes[edges[n].tail].first_out = edges[n].next_out;
klao@946
   263
      }
alpar@397
   264
      
alpar@397
   265
      edges[n].next_in = first_free_edge;
alpar@695
   266
      first_free_edge = n;      
alpar@397
   267
alpar@397
   268
    }
alpar@397
   269
alpar@397
   270
    void clear() {
deba@782
   271
      edges.clear();
deba@782
   272
      nodes.clear();
klao@946
   273
      first_node = first_free_node = first_free_edge = -1;
deba@937
   274
    }
deba@937
   275
alpar@949
   276
  protected:
alpar@949
   277
    void _moveHead(Edge e, Node n) 
alpar@949
   278
    {
alpar@949
   279
      if(edges[e.id].next_in != -1)
alpar@949
   280
	edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
alpar@949
   281
      if(edges[e.id].prev_in != -1)
alpar@949
   282
	edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
alpar@949
   283
      else nodes[edges[e.id].head].first_in = edges[e.id].next_in;
alpar@949
   284
      edges[e.id].head = n.id;
alpar@949
   285
      edges[e.id].prev_in = -1;
alpar@949
   286
      edges[e.id].next_in = nodes[n.id].first_in;
alpar@949
   287
      nodes[n.id].first_in = e.id;
alpar@949
   288
    }
alpar@949
   289
    void _moveTail(Edge e, Node n) 
alpar@949
   290
    {
alpar@949
   291
      if(edges[e.id].next_out != -1)
alpar@949
   292
	edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
alpar@949
   293
      if(edges[e.id].prev_out != -1)
alpar@949
   294
	edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
alpar@949
   295
      else nodes[edges[e.id].tail].first_out = edges[e.id].next_out;
alpar@949
   296
      edges[e.id].tail = n.id;
alpar@949
   297
      edges[e.id].prev_out = -1;
alpar@949
   298
      edges[e.id].next_out = nodes[n.id].first_out;
alpar@949
   299
      nodes[n.id].first_out = e.id;
alpar@949
   300
    }
alpar@949
   301
alpar@919
   302
  };
deba@909
   303
klao@946
   304
  typedef AlterableGraphExtender<ListGraphBase> AlterableListGraphBase;
klao@946
   305
  typedef IterableGraphExtender<AlterableListGraphBase> IterableListGraphBase;
klao@946
   306
  typedef IdMappableGraphExtender<IterableListGraphBase> IdMappableListGraphBase;
klao@946
   307
  typedef DefaultMappableGraphExtender<IdMappableListGraphBase> MappableListGraphBase;
klao@946
   308
  typedef ExtendableGraphExtender<MappableListGraphBase> ExtendableListGraphBase;
klao@946
   309
  typedef ClearableGraphExtender<ExtendableListGraphBase> ClearableListGraphBase;
klao@946
   310
  typedef ErasableGraphExtender<ClearableListGraphBase> ErasableListGraphBase;
alpar@400
   311
alpar@948
   312
/// \addtogroup graphs
alpar@948
   313
/// @{
alpar@400
   314
alpar@948
   315
  ///A list graph class.
alpar@400
   316
alpar@948
   317
  ///This is a simple and fast erasable graph implementation.
alpar@948
   318
  ///
alpar@948
   319
  ///It conforms to the
alpar@948
   320
  ///\ref skeleton::ErasableGraph "ErasableGraph" concept.
alpar@948
   321
  ///\sa skeleton::ErasableGraph.
deba@782
   322
alpar@948
   323
  class ListGraph : public ErasableListGraphBase 
alpar@948
   324
  {
alpar@948
   325
  public:
alpar@948
   326
    /// Moves the head of \c e to \c n
alpar@948
   327
alpar@948
   328
    /// Moves the head of \c e to \c n
alpar@948
   329
    ///
alpar@949
   330
    void moveHead(Edge e, Node n) { _moveHead(e,n); }
alpar@948
   331
    /// Moves the tail of \c e to \c n
alpar@948
   332
alpar@948
   333
    /// Moves the tail of \c e to \c n
alpar@948
   334
    ///
alpar@949
   335
    void moveTail(Edge e, Node n) { _moveTail(e,n); }
alpar@949
   336
alpar@949
   337
    ///Using this it possible to avoid the superfluous memory allocation.
alpar@949
   338
    ///\todo more docs...
alpar@949
   339
    void reserveEdge(int n) { edges.reserve(n); };
alpar@949
   340
    
alpar@949
   341
  };
alpar@949
   342
  
alpar@948
   343
  /// @}  
alpar@948
   344
} //namespace lemon
klao@946
   345
  
alpar@400
   346
klao@946
   347
#endif