src/lemon/list_graph.h
author alpar
Sat, 30 Oct 2004 16:30:12 +0000
changeset 948 bc86b64f958e
parent 946 c94ef40a22ce
child 949 b16a10926781
permissions -rw-r--r--
- moveHead() and moveTail() added. Not tested.
alpar@948
     1
/* -*- C++ -*-
alpar@948
     2
 * src/lemon/list_graph.h - Part of LEMON, a generic C++ optimization library
alpar@948
     3
 *
alpar@948
     4
 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@948
     5
 * (Egervary Combinatorial Optimization Research Group, EGRES).
alpar@948
     6
 *
alpar@948
     7
 * Permission to use, modify and distribute this software is granted
alpar@948
     8
 * provided that this copyright notice appears in all copies. For
alpar@948
     9
 * precise terms see the accompanying LICENSE file.
alpar@948
    10
 *
alpar@948
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@948
    12
 * express or implied, and with no claim as to its suitability for any
alpar@948
    13
 * purpose.
alpar@948
    14
 *
alpar@948
    15
 */
alpar@395
    16
alpar@921
    17
#ifndef LEMON_LIST_GRAPH_H
alpar@921
    18
#define LEMON_LIST_GRAPH_H
alpar@395
    19
alpar@948
    20
///\ingroup graphs
alpar@948
    21
///\file
alpar@948
    22
///\brief ListGraph, SymListGraph, NodeSet and EdgeSet classes.
alpar@948
    23
klao@946
    24
#include <lemon/erasable_graph_extender.h>
klao@946
    25
#include <lemon/clearable_graph_extender.h>
klao@946
    26
#include <lemon/extendable_graph_extender.h>
alpar@395
    27
klao@946
    28
#include <lemon/idmappable_graph_extender.h>
alpar@395
    29
klao@946
    30
#include <lemon/iterable_graph_extender.h>
alpar@395
    31
klao@946
    32
#include <lemon/alteration_observer_registry.h>
deba@782
    33
klao@946
    34
#include <lemon/default_map.h>
deba@782
    35
deba@782
    36
alpar@921
    37
namespace lemon {
alpar@395
    38
klao@946
    39
  class ListGraphBase {
alpar@406
    40
klao@946
    41
    struct NodeT {
alpar@397
    42
      int first_in,first_out;
alpar@397
    43
      int prev, next;
alpar@395
    44
    };
klao@946
    45
 
klao@946
    46
    struct EdgeT {
alpar@397
    47
      int head, tail;
alpar@397
    48
      int prev_in, prev_out;
alpar@397
    49
      int next_in, next_out;
alpar@395
    50
    };
alpar@395
    51
alpar@395
    52
    std::vector<NodeT> nodes;
klao@946
    53
alpar@397
    54
    int first_node;
klao@946
    55
alpar@397
    56
    int first_free_node;
klao@946
    57
alpar@395
    58
    std::vector<EdgeT> edges;
klao@946
    59
alpar@397
    60
    int first_free_edge;
alpar@395
    61
    
deba@782
    62
  public:
alpar@395
    63
    
klao@946
    64
    typedef ListGraphBase Graph;
alpar@397
    65
    
klao@946
    66
    class Node {
klao@946
    67
      friend class Graph;
klao@946
    68
    protected:
alpar@395
    69
klao@946
    70
      int id;
klao@946
    71
      Node(int pid) { id = pid;}
alpar@395
    72
klao@946
    73
    public:
klao@946
    74
      Node() {}
klao@946
    75
      Node (Invalid) { id = -1; }
klao@946
    76
      bool operator==(const Node& node) const {return id == node.id;}
klao@946
    77
      bool operator!=(const Node& node) const {return id != node.id;}
klao@946
    78
      bool operator<(const Node& node) const {return id < node.id;}
klao@946
    79
    };
deba@782
    80
klao@946
    81
    class Edge {
klao@946
    82
      friend class Graph;
klao@946
    83
    protected:
deba@782
    84
klao@946
    85
      int id;
klao@946
    86
      Edge(int pid) { id = pid;}
alpar@395
    87
klao@946
    88
    public:
klao@946
    89
      Edge() {}
klao@946
    90
      Edge (Invalid) { id = -1; }
klao@946
    91
      bool operator==(const Edge& edge) const {return id == edge.id;}
klao@946
    92
      bool operator!=(const Edge& edge) const {return id != edge.id;}
klao@946
    93
      bool operator<(const Edge& edge) const {return id < edge.id;}
klao@946
    94
    };
klao@946
    95
klao@946
    96
klao@946
    97
klao@946
    98
    ListGraphBase()
deba@782
    99
      : nodes(), first_node(-1),
deba@782
   100
	first_free_node(-1), edges(), first_free_edge(-1) {}
deba@782
   101
alpar@395
   102
    
alpar@948
   103
    ///Using this it possible to avoid the superfluous memory allocation.
alpar@948
   104
    ///\todo more docs...
alpar@948
   105
    ///\todo It should be defined in ListGraph.
alpar@695
   106
    void reserveEdge(int n) { edges.reserve(n); };
alpar@695
   107
    
alpar@813
   108
    /// Maximum node ID.
alpar@813
   109
    
alpar@813
   110
    /// Maximum node ID.
alpar@813
   111
    ///\sa id(Node)
alpar@813
   112
    int maxNodeId() const { return nodes.size()-1; } 
klao@946
   113
alpar@813
   114
    /// Maximum edge ID.
alpar@813
   115
    
alpar@813
   116
    /// Maximum edge ID.
alpar@813
   117
    ///\sa id(Edge)
alpar@813
   118
    int maxEdgeId() const { return edges.size()-1; }
alpar@395
   119
klao@946
   120
    Node tail(Edge e) const { return edges[e.id].tail; }
klao@946
   121
    Node head(Edge e) const { return edges[e.id].head; }
alpar@395
   122
alpar@395
   123
klao@946
   124
    void first(Node& node) const { 
klao@946
   125
      node.id = first_node;
klao@946
   126
    }
klao@946
   127
klao@946
   128
    void next(Node& node) const {
klao@946
   129
      node.id = nodes[node.id].next;
klao@946
   130
    }
klao@946
   131
klao@946
   132
klao@946
   133
    void first(Edge& e) const { 
klao@946
   134
      int n;
klao@946
   135
      for(n = first_node; 
klao@946
   136
	  n!=-1 && nodes[n].first_in == -1; 
klao@946
   137
	  n = nodes[n].next);
klao@946
   138
      e.id = (n == -1) ? -1 : nodes[n].first_in;
klao@946
   139
    }
klao@946
   140
klao@946
   141
    void next(Edge& edge) const {
klao@946
   142
      if (edges[edge.id].next_in != -1) {
klao@946
   143
	edge.id = edges[edge.id].next_in;
klao@946
   144
      } else {
klao@946
   145
	int n;
klao@946
   146
	for(n = nodes[edges[edge.id].head].next;
klao@946
   147
	  n!=-1 && nodes[n].first_in == -1; 
klao@946
   148
	  n = nodes[n].next);
klao@946
   149
	edge.id = (n == -1) ? -1 : nodes[n].first_in;
klao@946
   150
      }      
klao@946
   151
    }
klao@946
   152
klao@946
   153
    void firstOut(Edge &e, const Node& v) const {
klao@946
   154
      e.id = nodes[v.id].first_out;
klao@946
   155
    }
klao@946
   156
    void nextOut(Edge &e) const {
klao@946
   157
      e.id=edges[e.id].next_out;
klao@946
   158
    }
klao@946
   159
klao@946
   160
    void firstIn(Edge &e, const Node& v) const {
klao@946
   161
      e.id = nodes[v.id].first_in;
klao@946
   162
    }
klao@946
   163
    void nextIn(Edge &e) const {
klao@946
   164
      e.id=edges[e.id].next_in;
klao@946
   165
    }
klao@946
   166
alpar@813
   167
    
klao@946
   168
    static int id(Node v) { return v.id; }
klao@946
   169
    static int id(Edge e) { return e.id; }
alpar@395
   170
alpar@397
   171
    /// Adds a new node to the graph.
alpar@397
   172
alpar@813
   173
    /// \warning It adds the new node to the front of the list.
alpar@397
   174
    /// (i.e. the lastly added node becomes the first.)
klao@946
   175
    Node addNode() {     
alpar@397
   176
      int n;
alpar@397
   177
      
klao@946
   178
      if(first_free_node==-1) {
klao@946
   179
	n = nodes.size();
klao@946
   180
	nodes.push_back(NodeT());
klao@946
   181
      } else {
alpar@397
   182
	n = first_free_node;
alpar@397
   183
	first_free_node = nodes[n].next;
alpar@397
   184
      }
alpar@397
   185
      
alpar@397
   186
      nodes[n].next = first_node;
alpar@397
   187
      if(first_node != -1) nodes[first_node].prev = n;
alpar@397
   188
      first_node = n;
alpar@397
   189
      nodes[n].prev = -1;
alpar@397
   190
      
alpar@397
   191
      nodes[n].first_in = nodes[n].first_out = -1;
alpar@397
   192
      
klao@946
   193
      return Node(n);
alpar@395
   194
    }
alpar@395
   195
    
alpar@395
   196
    Edge addEdge(Node u, Node v) {
klao@946
   197
      int n;      
klao@946
   198
klao@946
   199
      if (first_free_edge == -1) {
klao@946
   200
	n = edges.size();
klao@946
   201
	edges.push_back(EdgeT());
klao@946
   202
      } else {
alpar@397
   203
	n = first_free_edge;
alpar@397
   204
	first_free_edge = edges[n].next_in;
alpar@397
   205
      }
alpar@397
   206
      
klao@946
   207
      edges[n].tail = u.id; 
klao@946
   208
      edges[n].head = v.id;
alpar@395
   209
klao@946
   210
      edges[n].next_out = nodes[u.id].first_out;
klao@946
   211
      if(nodes[u.id].first_out != -1) {
klao@946
   212
	edges[nodes[u.id].first_out].prev_out = n;
klao@946
   213
      }
klao@946
   214
      
klao@946
   215
      edges[n].next_in = nodes[v.id].first_in;
klao@946
   216
      if(nodes[v.id].first_in != -1) {
klao@946
   217
	edges[nodes[v.id].first_in].prev_in = n;
klao@946
   218
      }
klao@946
   219
      
alpar@397
   220
      edges[n].prev_in = edges[n].prev_out = -1;
alpar@397
   221
	
klao@946
   222
      nodes[u.id].first_out = nodes[v.id].first_in = n;
alpar@397
   223
klao@946
   224
      return Edge(n);
alpar@395
   225
    }
alpar@774
   226
    
klao@946
   227
    void erase(const Node& node) {
klao@946
   228
      int n = node.id;
klao@946
   229
      
klao@946
   230
      if(nodes[n].next != -1) {
klao@946
   231
	nodes[nodes[n].next].prev = nodes[n].prev;
klao@946
   232
      }
klao@946
   233
      
klao@946
   234
      if(nodes[n].prev != -1) {
klao@946
   235
	nodes[nodes[n].prev].next = nodes[n].next;
klao@946
   236
      } else {
klao@946
   237
	first_node = nodes[n].next;
klao@946
   238
      }
klao@946
   239
      
klao@946
   240
      nodes[n].next = first_free_node;
klao@946
   241
      first_free_node = n;
alpar@395
   242
alpar@774
   243
    }
alpar@774
   244
    
klao@946
   245
    void erase(const Edge& edge) {
klao@946
   246
      int n = edge.id;
alpar@397
   247
      
klao@946
   248
      if(edges[n].next_in!=-1) {
alpar@397
   249
	edges[edges[n].next_in].prev_in = edges[n].prev_in;
klao@946
   250
      }
klao@946
   251
klao@946
   252
      if(edges[n].prev_in!=-1) {
alpar@397
   253
	edges[edges[n].prev_in].next_in = edges[n].next_in;
klao@946
   254
      } else {
klao@946
   255
	nodes[edges[n].head].first_in = edges[n].next_in;
klao@946
   256
      }
klao@946
   257
alpar@397
   258
      
klao@946
   259
      if(edges[n].next_out!=-1) {
alpar@397
   260
	edges[edges[n].next_out].prev_out = edges[n].prev_out;
klao@946
   261
      } 
klao@946
   262
klao@946
   263
      if(edges[n].prev_out!=-1) {
alpar@397
   264
	edges[edges[n].prev_out].next_out = edges[n].next_out;
klao@946
   265
      } else {
klao@946
   266
	nodes[edges[n].tail].first_out = edges[n].next_out;
klao@946
   267
      }
alpar@397
   268
      
alpar@397
   269
      edges[n].next_in = first_free_edge;
alpar@695
   270
      first_free_edge = n;      
alpar@397
   271
alpar@397
   272
    }
alpar@397
   273
alpar@397
   274
    void clear() {
deba@782
   275
      edges.clear();
deba@782
   276
      nodes.clear();
klao@946
   277
      first_node = first_free_node = first_free_edge = -1;
deba@937
   278
    }
deba@937
   279
alpar@919
   280
  };
deba@909
   281
klao@946
   282
  typedef AlterableGraphExtender<ListGraphBase> AlterableListGraphBase;
klao@946
   283
  typedef IterableGraphExtender<AlterableListGraphBase> IterableListGraphBase;
klao@946
   284
  typedef IdMappableGraphExtender<IterableListGraphBase> IdMappableListGraphBase;
klao@946
   285
  typedef DefaultMappableGraphExtender<IdMappableListGraphBase> MappableListGraphBase;
klao@946
   286
  typedef ExtendableGraphExtender<MappableListGraphBase> ExtendableListGraphBase;
klao@946
   287
  typedef ClearableGraphExtender<ExtendableListGraphBase> ClearableListGraphBase;
klao@946
   288
  typedef ErasableGraphExtender<ClearableListGraphBase> ErasableListGraphBase;
alpar@400
   289
alpar@948
   290
/// \addtogroup graphs
alpar@948
   291
/// @{
alpar@400
   292
alpar@948
   293
  ///A list graph class.
alpar@400
   294
alpar@948
   295
  ///This is a simple and fast erasable graph implementation.
alpar@948
   296
  ///
alpar@948
   297
  ///It conforms to the
alpar@948
   298
  ///\ref skeleton::ErasableGraph "ErasableGraph" concept.
alpar@948
   299
  ///\sa skeleton::ErasableGraph.
deba@782
   300
alpar@948
   301
  class ListGraph : public ErasableListGraphBase 
alpar@948
   302
  {
alpar@948
   303
  public:
alpar@948
   304
    /// Moves the head of \c e to \c n
alpar@948
   305
alpar@948
   306
    /// Moves the head of \c e to \c n
alpar@948
   307
    ///
alpar@948
   308
    void moveHead(Edge e, Node n) 
alpar@948
   309
    {
alpar@948
   310
      if(edges[e.n].next_in != -1)
alpar@948
   311
	edges[edges[e.n].next_in].prev_in = edges[e.n].prev_in;
alpar@948
   312
      if(edges[e.n].prev_in != -1)
alpar@948
   313
	edges[edges[e.n].prev_in].next_in = edges[e.n].next_in;
alpar@948
   314
      else nodes[edges[e.n].head].first_in = edges[e.n].next_in;
alpar@948
   315
      edges[e.n].head = n.n;
alpar@948
   316
      edges[e.n].prev_in = -1;
alpar@948
   317
      edges[e.n].next_in = nodes[n.n].first_in;
alpar@948
   318
      nodes[n.n].first_in = e.n;
alpar@948
   319
    }
alpar@948
   320
    /// Moves the tail of \c e to \c n
alpar@948
   321
alpar@948
   322
    /// Moves the tail of \c e to \c n
alpar@948
   323
    ///
alpar@948
   324
    void moveTail(Edge e, Node n) 
alpar@948
   325
    {
alpar@948
   326
      if(edges[e.n].next_out != -1)
alpar@948
   327
	edges[edges[e.n].next_out].prev_out = edges[e.n].prev_out;
alpar@948
   328
      if(edges[e.n].prev_out != -1)
alpar@948
   329
	edges[edges[e.n].prev_out].next_out = edges[e.n].next_out;
alpar@948
   330
      else nodes[edges[e.n].tail].first_out = edges[e.n].next_out;
alpar@948
   331
      edges[e.n].tail = n.n;
alpar@948
   332
      edges[e.n].prev_out = -1;
alpar@948
   333
      edges[e.n].next_out = nodes[n.n].first_out;
alpar@948
   334
      nodes[n.n].first_out = e.n;
alpar@948
   335
    }
alpar@948
   336
  }
alpar@948
   337
  /// @}  
alpar@948
   338
} //namespace lemon
klao@946
   339
  
alpar@400
   340
klao@946
   341
#endif