lemon/list_graph.h
author hegyi
Wed, 29 Jun 2005 19:44:30 +0000
changeset 1525 6d94de269ab1
parent 1457 be025fc1b13d
child 1546 3fcb8ae9cea1
permissions -rw-r--r--
Uh, long comment arrives... Zoom update does not happen after editorial steps. Nodes initial color is light blue, if there is any item under them. Strange node-text relations disappeared. Initial values of new items are given now in a more common way. The wood-cutter way of handling default values of properties is now changed.
alpar@948
     1
/* -*- C++ -*-
ladanyi@1435
     2
 * lemon/list_graph.h - Part of LEMON, a generic C++ optimization library
alpar@948
     3
 *
alpar@1164
     4
 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     5
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@948
     6
 *
alpar@948
     7
 * Permission to use, modify and distribute this software is granted
alpar@948
     8
 * provided that this copyright notice appears in all copies. For
alpar@948
     9
 * precise terms see the accompanying LICENSE file.
alpar@948
    10
 *
alpar@948
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@948
    12
 * express or implied, and with no claim as to its suitability for any
alpar@948
    13
 * purpose.
alpar@948
    14
 *
alpar@948
    15
 */
alpar@395
    16
alpar@921
    17
#ifndef LEMON_LIST_GRAPH_H
alpar@921
    18
#define LEMON_LIST_GRAPH_H
alpar@395
    19
alpar@948
    20
///\ingroup graphs
alpar@948
    21
///\file
deba@1334
    22
///\brief ListGraph, SymListGraph classes.
alpar@948
    23
deba@1307
    24
#include <lemon/bits/erasable_graph_extender.h>
deba@1307
    25
#include <lemon/bits/clearable_graph_extender.h>
deba@1307
    26
#include <lemon/bits/extendable_graph_extender.h>
deba@1307
    27
#include <lemon/bits/iterable_graph_extender.h>
deba@1307
    28
#include <lemon/bits/alteration_notifier.h>
deba@1307
    29
#include <lemon/bits/default_map.h>
alpar@395
    30
deba@1307
    31
#include <lemon/bits/undir_graph_extender.h>
deba@782
    32
alpar@1011
    33
#include <list>
deba@782
    34
alpar@921
    35
namespace lemon {
alpar@395
    36
klao@946
    37
  class ListGraphBase {
alpar@406
    38
alpar@949
    39
  protected:
klao@946
    40
    struct NodeT {
deba@1470
    41
      int first_in, first_out;
alpar@397
    42
      int prev, next;
alpar@395
    43
    };
klao@946
    44
 
klao@946
    45
    struct EdgeT {
alpar@986
    46
      int target, source;
alpar@397
    47
      int prev_in, prev_out;
alpar@397
    48
      int next_in, next_out;
alpar@395
    49
    };
alpar@395
    50
alpar@395
    51
    std::vector<NodeT> nodes;
klao@946
    52
alpar@397
    53
    int first_node;
klao@946
    54
alpar@397
    55
    int first_free_node;
klao@946
    56
alpar@395
    57
    std::vector<EdgeT> edges;
klao@946
    58
alpar@397
    59
    int first_free_edge;
alpar@395
    60
    
deba@782
    61
  public:
alpar@395
    62
    
klao@946
    63
    typedef ListGraphBase Graph;
alpar@397
    64
    
klao@946
    65
    class Node {
marci@975
    66
      friend class ListGraphBase;
klao@946
    67
    protected:
alpar@395
    68
klao@946
    69
      int id;
klao@946
    70
      Node(int pid) { id = pid;}
alpar@395
    71
klao@946
    72
    public:
klao@946
    73
      Node() {}
klao@946
    74
      Node (Invalid) { id = -1; }
klao@946
    75
      bool operator==(const Node& node) const {return id == node.id;}
klao@946
    76
      bool operator!=(const Node& node) const {return id != node.id;}
klao@946
    77
      bool operator<(const Node& node) const {return id < node.id;}
klao@946
    78
    };
deba@782
    79
klao@946
    80
    class Edge {
marci@975
    81
      friend class ListGraphBase;
klao@946
    82
    protected:
deba@782
    83
klao@946
    84
      int id;
klao@946
    85
      Edge(int pid) { id = pid;}
alpar@395
    86
klao@946
    87
    public:
klao@946
    88
      Edge() {}
klao@946
    89
      Edge (Invalid) { id = -1; }
klao@946
    90
      bool operator==(const Edge& edge) const {return id == edge.id;}
klao@946
    91
      bool operator!=(const Edge& edge) const {return id != edge.id;}
klao@946
    92
      bool operator<(const Edge& edge) const {return id < edge.id;}
klao@946
    93
    };
klao@946
    94
klao@946
    95
klao@946
    96
klao@946
    97
    ListGraphBase()
deba@782
    98
      : nodes(), first_node(-1),
deba@782
    99
	first_free_node(-1), edges(), first_free_edge(-1) {}
deba@782
   100
alpar@395
   101
    
alpar@813
   102
    /// Maximum node ID.
alpar@813
   103
    
alpar@813
   104
    /// Maximum node ID.
alpar@813
   105
    ///\sa id(Node)
deba@980
   106
    int maxId(Node = INVALID) const { return nodes.size()-1; } 
klao@946
   107
alpar@813
   108
    /// Maximum edge ID.
alpar@813
   109
    
alpar@813
   110
    /// Maximum edge ID.
alpar@813
   111
    ///\sa id(Edge)
deba@980
   112
    int maxId(Edge = INVALID) const { return edges.size()-1; }
alpar@395
   113
alpar@986
   114
    Node source(Edge e) const { return edges[e.id].source; }
alpar@986
   115
    Node target(Edge e) const { return edges[e.id].target; }
alpar@395
   116
alpar@395
   117
klao@946
   118
    void first(Node& node) const { 
klao@946
   119
      node.id = first_node;
klao@946
   120
    }
klao@946
   121
klao@946
   122
    void next(Node& node) const {
klao@946
   123
      node.id = nodes[node.id].next;
klao@946
   124
    }
klao@946
   125
klao@946
   126
klao@946
   127
    void first(Edge& e) const { 
klao@946
   128
      int n;
klao@946
   129
      for(n = first_node; 
klao@946
   130
	  n!=-1 && nodes[n].first_in == -1; 
klao@946
   131
	  n = nodes[n].next);
klao@946
   132
      e.id = (n == -1) ? -1 : nodes[n].first_in;
klao@946
   133
    }
klao@946
   134
klao@946
   135
    void next(Edge& edge) const {
klao@946
   136
      if (edges[edge.id].next_in != -1) {
klao@946
   137
	edge.id = edges[edge.id].next_in;
klao@946
   138
      } else {
klao@946
   139
	int n;
alpar@986
   140
	for(n = nodes[edges[edge.id].target].next;
klao@946
   141
	  n!=-1 && nodes[n].first_in == -1; 
klao@946
   142
	  n = nodes[n].next);
klao@946
   143
	edge.id = (n == -1) ? -1 : nodes[n].first_in;
klao@946
   144
      }      
klao@946
   145
    }
klao@946
   146
klao@946
   147
    void firstOut(Edge &e, const Node& v) const {
klao@946
   148
      e.id = nodes[v.id].first_out;
klao@946
   149
    }
klao@946
   150
    void nextOut(Edge &e) const {
klao@946
   151
      e.id=edges[e.id].next_out;
klao@946
   152
    }
klao@946
   153
klao@946
   154
    void firstIn(Edge &e, const Node& v) const {
klao@946
   155
      e.id = nodes[v.id].first_in;
klao@946
   156
    }
klao@946
   157
    void nextIn(Edge &e) const {
klao@946
   158
      e.id=edges[e.id].next_in;
klao@946
   159
    }
klao@946
   160
alpar@813
   161
    
klao@946
   162
    static int id(Node v) { return v.id; }
klao@946
   163
    static int id(Edge e) { return e.id; }
alpar@395
   164
deba@1106
   165
    static Node fromId(int id, Node) { return Node(id);}
deba@1106
   166
    static Edge fromId(int id, Edge) { return Edge(id);}
deba@1106
   167
alpar@397
   168
    /// Adds a new node to the graph.
alpar@397
   169
alpar@813
   170
    /// \warning It adds the new node to the front of the list.
alpar@397
   171
    /// (i.e. the lastly added node becomes the first.)
klao@946
   172
    Node addNode() {     
alpar@397
   173
      int n;
alpar@397
   174
      
klao@946
   175
      if(first_free_node==-1) {
klao@946
   176
	n = nodes.size();
klao@946
   177
	nodes.push_back(NodeT());
klao@946
   178
      } else {
alpar@397
   179
	n = first_free_node;
alpar@397
   180
	first_free_node = nodes[n].next;
alpar@397
   181
      }
alpar@397
   182
      
alpar@397
   183
      nodes[n].next = first_node;
alpar@397
   184
      if(first_node != -1) nodes[first_node].prev = n;
alpar@397
   185
      first_node = n;
alpar@397
   186
      nodes[n].prev = -1;
alpar@397
   187
      
alpar@397
   188
      nodes[n].first_in = nodes[n].first_out = -1;
alpar@397
   189
      
klao@946
   190
      return Node(n);
alpar@395
   191
    }
alpar@395
   192
    
alpar@395
   193
    Edge addEdge(Node u, Node v) {
klao@946
   194
      int n;      
klao@946
   195
klao@946
   196
      if (first_free_edge == -1) {
klao@946
   197
	n = edges.size();
klao@946
   198
	edges.push_back(EdgeT());
klao@946
   199
      } else {
alpar@397
   200
	n = first_free_edge;
alpar@397
   201
	first_free_edge = edges[n].next_in;
alpar@397
   202
      }
alpar@397
   203
      
alpar@986
   204
      edges[n].source = u.id; 
alpar@986
   205
      edges[n].target = v.id;
alpar@395
   206
klao@946
   207
      edges[n].next_out = nodes[u.id].first_out;
klao@946
   208
      if(nodes[u.id].first_out != -1) {
klao@946
   209
	edges[nodes[u.id].first_out].prev_out = n;
klao@946
   210
      }
klao@946
   211
      
klao@946
   212
      edges[n].next_in = nodes[v.id].first_in;
klao@946
   213
      if(nodes[v.id].first_in != -1) {
klao@946
   214
	edges[nodes[v.id].first_in].prev_in = n;
klao@946
   215
      }
klao@946
   216
      
alpar@397
   217
      edges[n].prev_in = edges[n].prev_out = -1;
alpar@397
   218
	
klao@946
   219
      nodes[u.id].first_out = nodes[v.id].first_in = n;
alpar@397
   220
klao@946
   221
      return Edge(n);
alpar@395
   222
    }
alpar@774
   223
    
klao@946
   224
    void erase(const Node& node) {
klao@946
   225
      int n = node.id;
klao@946
   226
      
klao@946
   227
      if(nodes[n].next != -1) {
klao@946
   228
	nodes[nodes[n].next].prev = nodes[n].prev;
klao@946
   229
      }
klao@946
   230
      
klao@946
   231
      if(nodes[n].prev != -1) {
klao@946
   232
	nodes[nodes[n].prev].next = nodes[n].next;
klao@946
   233
      } else {
klao@946
   234
	first_node = nodes[n].next;
klao@946
   235
      }
klao@946
   236
      
klao@946
   237
      nodes[n].next = first_free_node;
klao@946
   238
      first_free_node = n;
alpar@395
   239
alpar@774
   240
    }
alpar@774
   241
    
klao@946
   242
    void erase(const Edge& edge) {
klao@946
   243
      int n = edge.id;
alpar@397
   244
      
klao@946
   245
      if(edges[n].next_in!=-1) {
alpar@397
   246
	edges[edges[n].next_in].prev_in = edges[n].prev_in;
klao@946
   247
      }
klao@946
   248
klao@946
   249
      if(edges[n].prev_in!=-1) {
alpar@397
   250
	edges[edges[n].prev_in].next_in = edges[n].next_in;
klao@946
   251
      } else {
alpar@986
   252
	nodes[edges[n].target].first_in = edges[n].next_in;
klao@946
   253
      }
klao@946
   254
alpar@397
   255
      
klao@946
   256
      if(edges[n].next_out!=-1) {
alpar@397
   257
	edges[edges[n].next_out].prev_out = edges[n].prev_out;
klao@946
   258
      } 
klao@946
   259
klao@946
   260
      if(edges[n].prev_out!=-1) {
alpar@397
   261
	edges[edges[n].prev_out].next_out = edges[n].next_out;
klao@946
   262
      } else {
alpar@986
   263
	nodes[edges[n].source].first_out = edges[n].next_out;
klao@946
   264
      }
alpar@397
   265
      
alpar@397
   266
      edges[n].next_in = first_free_edge;
alpar@695
   267
      first_free_edge = n;      
alpar@397
   268
alpar@397
   269
    }
alpar@397
   270
alpar@397
   271
    void clear() {
deba@782
   272
      edges.clear();
deba@782
   273
      nodes.clear();
klao@946
   274
      first_node = first_free_node = first_free_edge = -1;
deba@937
   275
    }
deba@937
   276
alpar@949
   277
  protected:
alpar@986
   278
    void _moveTarget(Edge e, Node n) 
alpar@949
   279
    {
alpar@949
   280
      if(edges[e.id].next_in != -1)
alpar@949
   281
	edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
alpar@949
   282
      if(edges[e.id].prev_in != -1)
alpar@949
   283
	edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
alpar@986
   284
      else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
alpar@986
   285
      edges[e.id].target = n.id;
alpar@949
   286
      edges[e.id].prev_in = -1;
alpar@949
   287
      edges[e.id].next_in = nodes[n.id].first_in;
alpar@949
   288
      nodes[n.id].first_in = e.id;
alpar@949
   289
    }
alpar@986
   290
    void _moveSource(Edge e, Node n) 
alpar@949
   291
    {
alpar@949
   292
      if(edges[e.id].next_out != -1)
alpar@949
   293
	edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
alpar@949
   294
      if(edges[e.id].prev_out != -1)
alpar@949
   295
	edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
alpar@986
   296
      else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
alpar@986
   297
      edges[e.id].source = n.id;
alpar@949
   298
      edges[e.id].prev_out = -1;
alpar@949
   299
      edges[e.id].next_out = nodes[n.id].first_out;
alpar@949
   300
      nodes[n.id].first_out = e.id;
alpar@949
   301
    }
alpar@949
   302
alpar@919
   303
  };
deba@909
   304
klao@946
   305
  typedef AlterableGraphExtender<ListGraphBase> AlterableListGraphBase;
klao@946
   306
  typedef IterableGraphExtender<AlterableListGraphBase> IterableListGraphBase;
deba@980
   307
  typedef DefaultMappableGraphExtender<IterableListGraphBase> MappableListGraphBase;
klao@946
   308
  typedef ExtendableGraphExtender<MappableListGraphBase> ExtendableListGraphBase;
klao@946
   309
  typedef ClearableGraphExtender<ExtendableListGraphBase> ClearableListGraphBase;
klao@946
   310
  typedef ErasableGraphExtender<ClearableListGraphBase> ErasableListGraphBase;
alpar@400
   311
alpar@948
   312
/// \addtogroup graphs
alpar@948
   313
/// @{
alpar@400
   314
alpar@948
   315
  ///A list graph class.
alpar@400
   316
alpar@948
   317
  ///This is a simple and fast erasable graph implementation.
alpar@948
   318
  ///
alpar@1010
   319
  ///It addition that it conforms to the
alpar@1010
   320
  ///\ref concept::ErasableGraph "ErasableGraph" concept,
alpar@1010
   321
  ///it also provides several additional useful extra functionalities.
klao@959
   322
  ///\sa concept::ErasableGraph.
deba@782
   323
alpar@948
   324
  class ListGraph : public ErasableListGraphBase 
alpar@948
   325
  {
alpar@948
   326
  public:
alpar@986
   327
    /// Moves the target of \c e to \c n
alpar@948
   328
alpar@986
   329
    /// Moves the target of \c e to \c n
alpar@948
   330
    ///
alpar@1010
   331
    ///\note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
alpar@1010
   332
    ///referencing the moved edge remain
alpar@1010
   333
    ///valid. However <tt>InEdge</tt>'s are invalidated.
alpar@986
   334
    void moveTarget(Edge e, Node n) { _moveTarget(e,n); }
alpar@986
   335
    /// Moves the source of \c e to \c n
alpar@948
   336
alpar@986
   337
    /// Moves the source of \c e to \c n
alpar@948
   338
    ///
alpar@1010
   339
    ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
alpar@1010
   340
    ///referencing the moved edge remain
alpar@1010
   341
    ///valid. However <tt>OutEdge</tt>'s are invalidated.
alpar@986
   342
    void moveSource(Edge e, Node n) { _moveSource(e,n); }
alpar@949
   343
alpar@1010
   344
    /// Invert the direction of an edge.
alpar@1010
   345
alpar@1010
   346
    ///\note The <tt>Edge</tt>'s
alpar@1010
   347
    ///referencing the moved edge remain
alpar@1010
   348
    ///valid. However <tt>OutEdge</tt>'s  and <tt>InEdge</tt>'s are invalidated.
alpar@1010
   349
    void reverseEdge(Edge e) {
alpar@1010
   350
      Node t=target(e);
alpar@1010
   351
      _moveTarget(e,source(e));
alpar@1010
   352
      _moveSource(e,t);
alpar@1010
   353
    }
alpar@1010
   354
alpar@1010
   355
    ///Using this it possible to avoid the superfluous memory allocation.
alpar@1010
   356
alpar@949
   357
    ///Using this it possible to avoid the superfluous memory allocation.
alpar@949
   358
    ///\todo more docs...
alpar@949
   359
    void reserveEdge(int n) { edges.reserve(n); };
alpar@1010
   360
alpar@1010
   361
    ///Contract two nodes.
alpar@1010
   362
alpar@1010
   363
    ///This function contracts two nodes.
alpar@1010
   364
    ///
alpar@1010
   365
    ///Node \p b will be removed but instead of deleting
alpar@1010
   366
    ///its neighboring edges, they will be joined to \p a.
alpar@1010
   367
    ///The last parameter \p r controls whether to remove loops. \c true
alpar@1010
   368
    ///means that loops will be removed.
alpar@1010
   369
    ///
alpar@1010
   370
    ///\note The <tt>Edge</tt>s
alpar@1281
   371
    ///referencing a moved edge remain
alpar@1010
   372
    ///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
alpar@1010
   373
    ///may be invalidated.
alpar@1010
   374
    void contract(Node a,Node b,bool r=true) 
alpar@1010
   375
    {
alpar@1010
   376
      for(OutEdgeIt e(*this,b);e!=INVALID;) {
alpar@1010
   377
	OutEdgeIt f=e;
alpar@1010
   378
	++f;
alpar@1010
   379
	if(r && target(e)==a) erase(e);
athos@1184
   380
	else moveSource(e,a);
alpar@1010
   381
	e=f;
alpar@1010
   382
      }
alpar@1010
   383
      for(InEdgeIt e(*this,b);e!=INVALID;) {
alpar@1010
   384
	InEdgeIt f=e;
alpar@1010
   385
	++f;
alpar@1010
   386
	if(r && source(e)==a) erase(e);
athos@1184
   387
	else moveTarget(e,a);
alpar@1010
   388
	e=f;
alpar@1010
   389
      }
alpar@1010
   390
      erase(b);
alpar@1010
   391
    }
alpar@1011
   392
alpar@1281
   393
    ///Split a node.
alpar@1011
   394
alpar@1284
   395
    ///This function splits a node. First a new node is added to the graph,
alpar@1284
   396
    ///then the source of each outgoing edge of \c n is moved to this new node.
alpar@1281
   397
    ///If \c connect is \c true (this is the default value), then a new edge
alpar@1281
   398
    ///from \c n to the newly created node is also added.
alpar@1281
   399
    ///\return The newly created node.
alpar@1281
   400
    ///
alpar@1281
   401
    ///\note The <tt>Edge</tt>s
alpar@1281
   402
    ///referencing a moved edge remain
alpar@1281
   403
    ///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
alpar@1281
   404
    ///may be invalidated.
alpar@1284
   405
    ///\warning This functionality cannot be used together with the SnapShot
alpar@1284
   406
    ///feature.
alpar@1281
   407
    ///\todo It could be implemented in a bit faster way.
alpar@1281
   408
    Node split(Node n, bool connect = true) 
alpar@1281
   409
    {
alpar@1281
   410
      Node b = addNode();
alpar@1281
   411
      for(OutEdgeIt e(*this,n);e!=INVALID;) {
alpar@1281
   412
 	OutEdgeIt f=e;
alpar@1281
   413
	++f;
alpar@1281
   414
	moveSource(e,b);
alpar@1281
   415
	e=f;
alpar@1281
   416
      }
alpar@1281
   417
      if(connect) addEdge(n,b);
alpar@1281
   418
      return b;
alpar@1281
   419
    }
alpar@1281
   420
      
alpar@1011
   421
    ///Class to make a snapshot of the graph and to restrore to it later.
alpar@1011
   422
alpar@1011
   423
    ///Class to make a snapshot of the graph and to restrore to it later.
alpar@1011
   424
    ///
alpar@1011
   425
    ///The newly added nodes and edges can be removed using the
alpar@1011
   426
    ///restore() function.
alpar@1011
   427
    ///
alpar@1011
   428
    ///\warning Edge and node deletions cannot be restored.
alpar@1011
   429
    ///\warning SnapShots cannot be nested.
alpar@1035
   430
    ///\todo \c SnapShot or \c Snapshot?
deba@1039
   431
    class SnapShot : protected AlterationNotifier<Node>::ObserverBase,
deba@1039
   432
		     protected AlterationNotifier<Edge>::ObserverBase
alpar@1011
   433
    {
alpar@1011
   434
      protected:
alpar@1011
   435
      
alpar@1011
   436
      ListGraph *g;
alpar@1011
   437
      std::list<Node> added_nodes;
alpar@1011
   438
      std::list<Edge> added_edges;
alpar@1011
   439
      
alpar@1011
   440
      bool active;
alpar@1011
   441
      virtual void add(const Node& n) {
alpar@1011
   442
	added_nodes.push_back(n);
alpar@1011
   443
      };
alpar@1011
   444
      ///\bug Exception...
alpar@1011
   445
      ///
alpar@1011
   446
      virtual void erase(const Node&) 
alpar@1011
   447
      {
alpar@1011
   448
	exit(1);
alpar@1011
   449
      }
alpar@1011
   450
      virtual void add(const Edge& n) {
alpar@1011
   451
	added_edges.push_back(n);
alpar@1011
   452
      };
alpar@1011
   453
      ///\bug Exception...
alpar@1011
   454
      ///
alpar@1011
   455
      virtual void erase(const Edge&) 
alpar@1011
   456
      {
alpar@1011
   457
	exit(1);
alpar@1011
   458
      }
alpar@1011
   459
alpar@1457
   460
      ///\bug What is this used for?
alpar@1457
   461
      ///
alpar@1457
   462
      virtual void build() {}
alpar@1457
   463
      ///\bug What is this used for?
alpar@1457
   464
      ///
alpar@1457
   465
      virtual void clear() {}
alpar@1457
   466
alpar@1011
   467
      void regist(ListGraph &_g) {
alpar@1011
   468
	g=&_g;
deba@1039
   469
	AlterationNotifier<Node>::ObserverBase::
deba@1040
   470
	  attach(g->getNotifier(Node()));
deba@1039
   471
	AlterationNotifier<Edge>::ObserverBase::
deba@1040
   472
	  attach(g->getNotifier(Edge()));
alpar@1011
   473
      }
alpar@1011
   474
            
alpar@1011
   475
      void deregist() {
deba@1039
   476
	AlterationNotifier<Node>::ObserverBase::
alpar@1011
   477
	  detach();
deba@1039
   478
	AlterationNotifier<Edge>::ObserverBase::
alpar@1011
   479
	  detach();
alpar@1011
   480
	g=0;
alpar@1011
   481
      }
alpar@1011
   482
            
alpar@1011
   483
    public:
alpar@1011
   484
      ///Default constructur.
alpar@1011
   485
      
alpar@1011
   486
      ///Default constructur.
alpar@1011
   487
      ///To actually make a snapshot you must call save().
alpar@1011
   488
      ///
alpar@1011
   489
      SnapShot() : g(0) {}
alpar@1011
   490
      ///Constructor that immediately makes a snapshot.
alpar@1011
   491
      
alpar@1011
   492
      ///This constructor immediately makes a snapshot of the graph.
alpar@1011
   493
      ///\param _g The graph we make a snapshot of.
alpar@1011
   494
      SnapShot(ListGraph &_g) {
alpar@1011
   495
	regist(_g);
alpar@1011
   496
      }
alpar@1011
   497
      ///\bug Is it necessary?
alpar@1011
   498
      ///
alpar@1011
   499
      ~SnapShot() 
alpar@1011
   500
      {
alpar@1011
   501
	if(g) deregist();
alpar@1011
   502
      }
alpar@1011
   503
      
alpar@1011
   504
      ///Make a snapshot.
alpar@1011
   505
alpar@1011
   506
      ///Make a snapshot of the graph.
alpar@1011
   507
      ///
alpar@1011
   508
      ///This function can be called more than once. In case of a repeated
alpar@1011
   509
      ///call, the previous snapshot gets lost.
alpar@1011
   510
      ///\param _g The graph we make the snapshot of.
alpar@1011
   511
      void save(ListGraph &_g) 
alpar@1011
   512
      {
alpar@1011
   513
	if(g!=&_g) {
alpar@1011
   514
	  if(g) deregist();
alpar@1011
   515
	  regist(_g);
alpar@1011
   516
	}
alpar@1011
   517
	added_nodes.clear();
alpar@1011
   518
	added_edges.clear();
alpar@1011
   519
      }
alpar@1011
   520
      
alpar@1011
   521
    ///Undo the changes until the last snapshot.
alpar@1011
   522
alpar@1011
   523
    ///Undo the changes until last snapshot created by save().
alpar@1011
   524
    ///
alpar@1011
   525
    ///\todo This function might be called undo().
alpar@1011
   526
      void restore() {
alpar@1457
   527
	ListGraph &old_g=*g;
alpar@1011
   528
	deregist();
alpar@1011
   529
	while(!added_edges.empty()) {
alpar@1457
   530
	  old_g.erase(added_edges.front());
alpar@1011
   531
	  added_edges.pop_front();
alpar@1011
   532
	}
alpar@1011
   533
 	while(!added_nodes.empty()) {
alpar@1457
   534
	  old_g.erase(added_nodes.front());
alpar@1011
   535
	  added_nodes.pop_front();
alpar@1011
   536
	}
alpar@1011
   537
      }
alpar@1011
   538
    };
alpar@1011
   539
    
alpar@949
   540
  };
klao@1034
   541
klao@1034
   542
klao@1034
   543
  /**************** Undirected List Graph ****************/
klao@1034
   544
klao@1034
   545
  typedef ErasableUndirGraphExtender<
klao@1034
   546
    ClearableUndirGraphExtender<
klao@1034
   547
    ExtendableUndirGraphExtender<
klao@1034
   548
    MappableUndirGraphExtender<
klao@1034
   549
    IterableUndirGraphExtender<
klao@1034
   550
    AlterableUndirGraphExtender<
klao@1034
   551
    UndirGraphExtender<ListGraphBase> > > > > > > ErasableUndirListGraphBase;
klao@1034
   552
alpar@1035
   553
  ///An undirected list graph class.
alpar@1035
   554
alpar@1035
   555
  ///This is a simple and fast erasable undirected graph implementation.
alpar@1035
   556
  ///
alpar@1035
   557
  ///It conforms to the
alpar@1035
   558
  ///\ref concept::UndirGraph "UndirGraph" concept.
alpar@1035
   559
  ///
alpar@1035
   560
  ///\sa concept::UndirGraph.
alpar@1035
   561
  ///
alpar@1161
   562
  ///\todo SnapShot, reverseEdge(), moveTarget(), moveSource(), contract()
alpar@1161
   563
  ///haven't been implemented yet.
alpar@1035
   564
  ///
klao@1034
   565
  class UndirListGraph : public ErasableUndirListGraphBase {
klao@1034
   566
  };
klao@1034
   567
alpar@949
   568
  
alpar@948
   569
  /// @}  
alpar@948
   570
} //namespace lemon
klao@946
   571
  
alpar@400
   572
klao@946
   573
#endif