lemon/list_graph.h
author klao
Fri, 03 Mar 2006 21:49:39 +0000
changeset 1997 b7a70cdb5520
parent 1991 d7442141d9ef
child 1999 2ff283124dfc
permissions -rw-r--r--
Bugfix: an ugly artefact of the 'id' -> 'label' renaming
alpar@948
     1
/* -*- C++ -*-
alpar@948
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@948
     8
 *
alpar@948
     9
 * Permission to use, modify and distribute this software is granted
alpar@948
    10
 * provided that this copyright notice appears in all copies. For
alpar@948
    11
 * precise terms see the accompanying LICENSE file.
alpar@948
    12
 *
alpar@948
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@948
    14
 * express or implied, and with no claim as to its suitability for any
alpar@948
    15
 * purpose.
alpar@948
    16
 *
alpar@948
    17
 */
alpar@395
    18
alpar@921
    19
#ifndef LEMON_LIST_GRAPH_H
alpar@921
    20
#define LEMON_LIST_GRAPH_H
alpar@395
    21
alpar@948
    22
///\ingroup graphs
alpar@948
    23
///\file
klao@1909
    24
///\brief ListGraph, ListUGraph classes.
alpar@948
    25
deba@1791
    26
#include <lemon/bits/graph_extender.h>
deba@782
    27
deba@1774
    28
#include <lemon/error.h>
deba@1774
    29
deba@1979
    30
#include <vector>
alpar@1011
    31
#include <list>
deba@782
    32
alpar@921
    33
namespace lemon {
alpar@395
    34
klao@946
    35
  class ListGraphBase {
alpar@406
    36
alpar@949
    37
  protected:
klao@946
    38
    struct NodeT {
deba@1470
    39
      int first_in, first_out;
alpar@397
    40
      int prev, next;
alpar@395
    41
    };
klao@946
    42
 
klao@946
    43
    struct EdgeT {
alpar@986
    44
      int target, source;
alpar@397
    45
      int prev_in, prev_out;
alpar@397
    46
      int next_in, next_out;
alpar@395
    47
    };
alpar@395
    48
alpar@395
    49
    std::vector<NodeT> nodes;
klao@946
    50
alpar@397
    51
    int first_node;
klao@946
    52
alpar@397
    53
    int first_free_node;
klao@946
    54
alpar@395
    55
    std::vector<EdgeT> edges;
klao@946
    56
alpar@397
    57
    int first_free_edge;
alpar@395
    58
    
deba@782
    59
  public:
alpar@395
    60
    
klao@946
    61
    typedef ListGraphBase Graph;
alpar@397
    62
    
klao@946
    63
    class Node {
marci@975
    64
      friend class ListGraphBase;
klao@946
    65
    protected:
alpar@395
    66
klao@946
    67
      int id;
klao@946
    68
      Node(int pid) { id = pid;}
alpar@395
    69
klao@946
    70
    public:
klao@946
    71
      Node() {}
klao@946
    72
      Node (Invalid) { id = -1; }
klao@946
    73
      bool operator==(const Node& node) const {return id == node.id;}
klao@946
    74
      bool operator!=(const Node& node) const {return id != node.id;}
klao@946
    75
      bool operator<(const Node& node) const {return id < node.id;}
klao@946
    76
    };
deba@782
    77
klao@946
    78
    class Edge {
marci@975
    79
      friend class ListGraphBase;
klao@946
    80
    protected:
deba@782
    81
klao@946
    82
      int id;
klao@946
    83
      Edge(int pid) { id = pid;}
alpar@395
    84
klao@946
    85
    public:
klao@946
    86
      Edge() {}
klao@946
    87
      Edge (Invalid) { id = -1; }
klao@946
    88
      bool operator==(const Edge& edge) const {return id == edge.id;}
klao@946
    89
      bool operator!=(const Edge& edge) const {return id != edge.id;}
klao@946
    90
      bool operator<(const Edge& edge) const {return id < edge.id;}
klao@946
    91
    };
klao@946
    92
klao@946
    93
klao@946
    94
klao@946
    95
    ListGraphBase()
deba@782
    96
      : nodes(), first_node(-1),
deba@782
    97
	first_free_node(-1), edges(), first_free_edge(-1) {}
deba@782
    98
alpar@395
    99
    
alpar@813
   100
    /// Maximum node ID.
alpar@813
   101
    
alpar@813
   102
    /// Maximum node ID.
alpar@813
   103
    ///\sa id(Node)
deba@1791
   104
    int maxNodeId() const { return nodes.size()-1; } 
klao@946
   105
alpar@813
   106
    /// Maximum edge ID.
alpar@813
   107
    
alpar@813
   108
    /// Maximum edge ID.
alpar@813
   109
    ///\sa id(Edge)
deba@1791
   110
    int maxEdgeId() const { return edges.size()-1; }
alpar@395
   111
alpar@986
   112
    Node source(Edge e) const { return edges[e.id].source; }
alpar@986
   113
    Node target(Edge e) const { return edges[e.id].target; }
alpar@395
   114
alpar@395
   115
klao@946
   116
    void first(Node& node) const { 
klao@946
   117
      node.id = first_node;
klao@946
   118
    }
klao@946
   119
klao@946
   120
    void next(Node& node) const {
klao@946
   121
      node.id = nodes[node.id].next;
klao@946
   122
    }
klao@946
   123
klao@946
   124
klao@946
   125
    void first(Edge& e) const { 
klao@946
   126
      int n;
klao@946
   127
      for(n = first_node; 
klao@946
   128
	  n!=-1 && nodes[n].first_in == -1; 
klao@946
   129
	  n = nodes[n].next);
klao@946
   130
      e.id = (n == -1) ? -1 : nodes[n].first_in;
klao@946
   131
    }
klao@946
   132
klao@946
   133
    void next(Edge& edge) const {
klao@946
   134
      if (edges[edge.id].next_in != -1) {
klao@946
   135
	edge.id = edges[edge.id].next_in;
klao@946
   136
      } else {
klao@946
   137
	int n;
alpar@986
   138
	for(n = nodes[edges[edge.id].target].next;
klao@946
   139
	  n!=-1 && nodes[n].first_in == -1; 
klao@946
   140
	  n = nodes[n].next);
klao@946
   141
	edge.id = (n == -1) ? -1 : nodes[n].first_in;
klao@946
   142
      }      
klao@946
   143
    }
klao@946
   144
klao@946
   145
    void firstOut(Edge &e, const Node& v) const {
klao@946
   146
      e.id = nodes[v.id].first_out;
klao@946
   147
    }
klao@946
   148
    void nextOut(Edge &e) const {
klao@946
   149
      e.id=edges[e.id].next_out;
klao@946
   150
    }
klao@946
   151
klao@946
   152
    void firstIn(Edge &e, const Node& v) const {
klao@946
   153
      e.id = nodes[v.id].first_in;
klao@946
   154
    }
klao@946
   155
    void nextIn(Edge &e) const {
klao@946
   156
      e.id=edges[e.id].next_in;
klao@946
   157
    }
klao@946
   158
alpar@813
   159
    
klao@946
   160
    static int id(Node v) { return v.id; }
klao@946
   161
    static int id(Edge e) { return e.id; }
alpar@395
   162
deba@1791
   163
    static Node nodeFromId(int id) { return Node(id);}
deba@1791
   164
    static Edge edgeFromId(int id) { return Edge(id);}
deba@1106
   165
alpar@397
   166
    /// Adds a new node to the graph.
alpar@397
   167
alpar@813
   168
    /// \warning It adds the new node to the front of the list.
alpar@397
   169
    /// (i.e. the lastly added node becomes the first.)
klao@946
   170
    Node addNode() {     
alpar@397
   171
      int n;
alpar@397
   172
      
klao@946
   173
      if(first_free_node==-1) {
klao@946
   174
	n = nodes.size();
klao@946
   175
	nodes.push_back(NodeT());
klao@946
   176
      } else {
alpar@397
   177
	n = first_free_node;
alpar@397
   178
	first_free_node = nodes[n].next;
alpar@397
   179
      }
alpar@397
   180
      
alpar@397
   181
      nodes[n].next = first_node;
alpar@397
   182
      if(first_node != -1) nodes[first_node].prev = n;
alpar@397
   183
      first_node = n;
alpar@397
   184
      nodes[n].prev = -1;
alpar@397
   185
      
alpar@397
   186
      nodes[n].first_in = nodes[n].first_out = -1;
alpar@397
   187
      
klao@946
   188
      return Node(n);
alpar@395
   189
    }
alpar@395
   190
    
alpar@395
   191
    Edge addEdge(Node u, Node v) {
klao@946
   192
      int n;      
klao@946
   193
klao@946
   194
      if (first_free_edge == -1) {
klao@946
   195
	n = edges.size();
klao@946
   196
	edges.push_back(EdgeT());
klao@946
   197
      } else {
alpar@397
   198
	n = first_free_edge;
alpar@397
   199
	first_free_edge = edges[n].next_in;
alpar@397
   200
      }
alpar@397
   201
      
alpar@986
   202
      edges[n].source = u.id; 
alpar@986
   203
      edges[n].target = v.id;
alpar@395
   204
klao@946
   205
      edges[n].next_out = nodes[u.id].first_out;
klao@946
   206
      if(nodes[u.id].first_out != -1) {
klao@946
   207
	edges[nodes[u.id].first_out].prev_out = n;
klao@946
   208
      }
klao@946
   209
      
klao@946
   210
      edges[n].next_in = nodes[v.id].first_in;
klao@946
   211
      if(nodes[v.id].first_in != -1) {
klao@946
   212
	edges[nodes[v.id].first_in].prev_in = n;
klao@946
   213
      }
klao@946
   214
      
alpar@397
   215
      edges[n].prev_in = edges[n].prev_out = -1;
alpar@397
   216
	
klao@946
   217
      nodes[u.id].first_out = nodes[v.id].first_in = n;
alpar@397
   218
klao@946
   219
      return Edge(n);
alpar@395
   220
    }
alpar@774
   221
    
klao@946
   222
    void erase(const Node& node) {
klao@946
   223
      int n = node.id;
klao@946
   224
      
klao@946
   225
      if(nodes[n].next != -1) {
klao@946
   226
	nodes[nodes[n].next].prev = nodes[n].prev;
klao@946
   227
      }
klao@946
   228
      
klao@946
   229
      if(nodes[n].prev != -1) {
klao@946
   230
	nodes[nodes[n].prev].next = nodes[n].next;
klao@946
   231
      } else {
klao@946
   232
	first_node = nodes[n].next;
klao@946
   233
      }
klao@946
   234
      
klao@946
   235
      nodes[n].next = first_free_node;
klao@946
   236
      first_free_node = n;
alpar@395
   237
alpar@774
   238
    }
alpar@774
   239
    
klao@946
   240
    void erase(const Edge& edge) {
klao@946
   241
      int n = edge.id;
alpar@397
   242
      
klao@946
   243
      if(edges[n].next_in!=-1) {
alpar@397
   244
	edges[edges[n].next_in].prev_in = edges[n].prev_in;
klao@946
   245
      }
klao@946
   246
klao@946
   247
      if(edges[n].prev_in!=-1) {
alpar@397
   248
	edges[edges[n].prev_in].next_in = edges[n].next_in;
klao@946
   249
      } else {
alpar@986
   250
	nodes[edges[n].target].first_in = edges[n].next_in;
klao@946
   251
      }
klao@946
   252
alpar@397
   253
      
klao@946
   254
      if(edges[n].next_out!=-1) {
alpar@397
   255
	edges[edges[n].next_out].prev_out = edges[n].prev_out;
klao@946
   256
      } 
klao@946
   257
klao@946
   258
      if(edges[n].prev_out!=-1) {
alpar@397
   259
	edges[edges[n].prev_out].next_out = edges[n].next_out;
klao@946
   260
      } else {
alpar@986
   261
	nodes[edges[n].source].first_out = edges[n].next_out;
klao@946
   262
      }
alpar@397
   263
      
alpar@397
   264
      edges[n].next_in = first_free_edge;
alpar@695
   265
      first_free_edge = n;      
alpar@397
   266
alpar@397
   267
    }
alpar@397
   268
alpar@397
   269
    void clear() {
deba@782
   270
      edges.clear();
deba@782
   271
      nodes.clear();
klao@946
   272
      first_node = first_free_node = first_free_edge = -1;
deba@937
   273
    }
deba@937
   274
alpar@949
   275
  protected:
alpar@1546
   276
    void _changeTarget(Edge e, Node n) 
alpar@949
   277
    {
alpar@949
   278
      if(edges[e.id].next_in != -1)
alpar@949
   279
	edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
alpar@949
   280
      if(edges[e.id].prev_in != -1)
alpar@949
   281
	edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
alpar@986
   282
      else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
deba@1702
   283
      if (nodes[n.id].first_in != -1) {
deba@1702
   284
	edges[nodes[n.id].first_in].prev_in = e.id;
deba@1702
   285
      }
alpar@986
   286
      edges[e.id].target = n.id;
alpar@949
   287
      edges[e.id].prev_in = -1;
alpar@949
   288
      edges[e.id].next_in = nodes[n.id].first_in;
alpar@949
   289
      nodes[n.id].first_in = e.id;
alpar@949
   290
    }
alpar@1546
   291
    void _changeSource(Edge e, Node n) 
alpar@949
   292
    {
alpar@949
   293
      if(edges[e.id].next_out != -1)
alpar@949
   294
	edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
alpar@949
   295
      if(edges[e.id].prev_out != -1)
alpar@949
   296
	edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
alpar@986
   297
      else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
deba@1702
   298
      if (nodes[n.id].first_out != -1) {
deba@1702
   299
	edges[nodes[n.id].first_out].prev_out = e.id;
deba@1702
   300
      }
alpar@986
   301
      edges[e.id].source = n.id;
alpar@949
   302
      edges[e.id].prev_out = -1;
alpar@949
   303
      edges[e.id].next_out = nodes[n.id].first_out;
alpar@949
   304
      nodes[n.id].first_out = e.id;
alpar@949
   305
    }
alpar@949
   306
alpar@919
   307
  };
deba@909
   308
deba@1979
   309
  typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
alpar@400
   310
deba@1718
   311
  /// \addtogroup graphs
deba@1718
   312
  /// @{
alpar@400
   313
alpar@948
   314
  ///A list graph class.
alpar@400
   315
alpar@948
   316
  ///This is a simple and fast erasable graph implementation.
alpar@948
   317
  ///
alpar@1010
   318
  ///It addition that it conforms to the
alpar@1010
   319
  ///\ref concept::ErasableGraph "ErasableGraph" concept,
alpar@1010
   320
  ///it also provides several additional useful extra functionalities.
klao@959
   321
  ///\sa concept::ErasableGraph.
deba@782
   322
deba@1669
   323
  class ListGraph : public ExtendedListGraphBase 
alpar@948
   324
  {
alpar@948
   325
  public:
alpar@1546
   326
    /// Changes the target of \c e to \c n
alpar@948
   327
alpar@1546
   328
    /// Changes the target of \c e to \c n
alpar@948
   329
    ///
alpar@1010
   330
    ///\note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
alpar@1546
   331
    ///referencing the changed edge remain
alpar@1010
   332
    ///valid. However <tt>InEdge</tt>'s are invalidated.
deba@1718
   333
    void changeTarget(Edge e, Node n) { 
deba@1718
   334
      _changeTarget(e,n); 
deba@1718
   335
    }
alpar@1546
   336
    /// Changes the source of \c e to \c n
alpar@948
   337
alpar@1546
   338
    /// Changes the source of \c e to \c n
alpar@948
   339
    ///
alpar@1010
   340
    ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
alpar@1546
   341
    ///referencing the changed edge remain
alpar@1010
   342
    ///valid. However <tt>OutEdge</tt>'s are invalidated.
deba@1718
   343
    void changeSource(Edge e, Node n) { 
deba@1718
   344
      _changeSource(e,n);
deba@1718
   345
    }
alpar@949
   346
alpar@1010
   347
    /// Invert the direction of an edge.
alpar@1010
   348
alpar@1010
   349
    ///\note The <tt>Edge</tt>'s
alpar@1546
   350
    ///referencing the changed edge remain
alpar@1010
   351
    ///valid. However <tt>OutEdge</tt>'s  and <tt>InEdge</tt>'s are invalidated.
alpar@1010
   352
    void reverseEdge(Edge e) {
alpar@1010
   353
      Node t=target(e);
alpar@1546
   354
      _changeTarget(e,source(e));
alpar@1546
   355
      _changeSource(e,t);
alpar@1010
   356
    }
alpar@1010
   357
alpar@1010
   358
    ///Using this it possible to avoid the superfluous memory allocation.
alpar@1010
   359
alpar@949
   360
    ///Using this it possible to avoid the superfluous memory allocation.
alpar@949
   361
    ///\todo more docs...
alpar@949
   362
    void reserveEdge(int n) { edges.reserve(n); };
alpar@1010
   363
alpar@1010
   364
    ///Contract two nodes.
alpar@1010
   365
alpar@1010
   366
    ///This function contracts two nodes.
alpar@1010
   367
    ///
alpar@1010
   368
    ///Node \p b will be removed but instead of deleting
alpar@1010
   369
    ///its neighboring edges, they will be joined to \p a.
alpar@1010
   370
    ///The last parameter \p r controls whether to remove loops. \c true
alpar@1010
   371
    ///means that loops will be removed.
alpar@1010
   372
    ///
alpar@1010
   373
    ///\note The <tt>Edge</tt>s
alpar@1281
   374
    ///referencing a moved edge remain
alpar@1010
   375
    ///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
alpar@1010
   376
    ///may be invalidated.
deba@1718
   377
    void contract(Node a, Node b, bool r = true) 
alpar@1010
   378
    {
alpar@1010
   379
      for(OutEdgeIt e(*this,b);e!=INVALID;) {
alpar@1010
   380
	OutEdgeIt f=e;
alpar@1010
   381
	++f;
alpar@1010
   382
	if(r && target(e)==a) erase(e);
alpar@1546
   383
	else changeSource(e,a);
alpar@1010
   384
	e=f;
alpar@1010
   385
      }
alpar@1010
   386
      for(InEdgeIt e(*this,b);e!=INVALID;) {
alpar@1010
   387
	InEdgeIt f=e;
alpar@1010
   388
	++f;
alpar@1010
   389
	if(r && source(e)==a) erase(e);
alpar@1546
   390
	else changeTarget(e,a);
alpar@1010
   391
	e=f;
alpar@1010
   392
      }
alpar@1010
   393
      erase(b);
alpar@1010
   394
    }
alpar@1011
   395
alpar@1281
   396
    ///Split a node.
alpar@1011
   397
alpar@1284
   398
    ///This function splits a node. First a new node is added to the graph,
alpar@1284
   399
    ///then the source of each outgoing edge of \c n is moved to this new node.
alpar@1281
   400
    ///If \c connect is \c true (this is the default value), then a new edge
alpar@1281
   401
    ///from \c n to the newly created node is also added.
alpar@1281
   402
    ///\return The newly created node.
alpar@1281
   403
    ///
alpar@1281
   404
    ///\note The <tt>Edge</tt>s
alpar@1281
   405
    ///referencing a moved edge remain
alpar@1281
   406
    ///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
alpar@1281
   407
    ///may be invalidated.
alpar@1770
   408
    ///\warning This functionality cannot be used together with the Snapshot
alpar@1284
   409
    ///feature.
alpar@1281
   410
    ///\todo It could be implemented in a bit faster way.
alpar@1281
   411
    Node split(Node n, bool connect = true) 
alpar@1281
   412
    {
alpar@1281
   413
      Node b = addNode();
alpar@1281
   414
      for(OutEdgeIt e(*this,n);e!=INVALID;) {
alpar@1281
   415
 	OutEdgeIt f=e;
alpar@1281
   416
	++f;
alpar@1546
   417
	changeSource(e,b);
alpar@1281
   418
	e=f;
alpar@1281
   419
      }
alpar@1281
   420
      if(connect) addEdge(n,b);
alpar@1281
   421
      return b;
alpar@1281
   422
    }
alpar@1281
   423
      
alpar@1812
   424
    ///Split an edge.
alpar@1812
   425
alpar@1812
   426
    ///This function splits an edge. First a new node \c b is added to the graph,
alpar@1812
   427
    ///then the original edge is re-targetes to \c b. Finally an edge
alpar@1812
   428
    ///from \c b to the original target is added.
alpar@1812
   429
    ///\return The newly created node.
alpar@1812
   430
    ///\warning This functionality cannot be used together with the Snapshot
alpar@1812
   431
    ///feature.
alpar@1812
   432
    Node split(Edge e) 
alpar@1812
   433
    {
alpar@1812
   434
      Node b = addNode();
alpar@1812
   435
      addEdge(b,target(e));
alpar@1812
   436
      changeTarget(e,b);
alpar@1812
   437
      return b;
alpar@1812
   438
    }
alpar@1812
   439
      
alpar@1011
   440
    ///Class to make a snapshot of the graph and to restrore to it later.
alpar@1011
   441
alpar@1011
   442
    ///Class to make a snapshot of the graph and to restrore to it later.
alpar@1011
   443
    ///
alpar@1011
   444
    ///The newly added nodes and edges can be removed using the
alpar@1011
   445
    ///restore() function.
alpar@1011
   446
    ///
alpar@1011
   447
    ///\warning Edge and node deletions cannot be restored.
alpar@1770
   448
    ///\warning Snapshots cannot be nested.
alpar@1770
   449
    class Snapshot : protected AlterationNotifier<Node>::ObserverBase,
deba@1039
   450
		     protected AlterationNotifier<Edge>::ObserverBase
alpar@1011
   451
    {
deba@1774
   452
    public:
deba@1774
   453
      
deba@1774
   454
      class UnsupportedOperation : public LogicError {
deba@1774
   455
      public:
deba@1774
   456
	virtual const char* exceptionName() const {
deba@1774
   457
	  return "lemon::ListGraph::Snapshot::UnsupportedOperation";
deba@1774
   458
	}
deba@1774
   459
      };
deba@1774
   460
            
deba@1774
   461
alpar@1011
   462
      protected:
alpar@1011
   463
      
alpar@1011
   464
      ListGraph *g;
alpar@1011
   465
      std::list<Node> added_nodes;
alpar@1011
   466
      std::list<Edge> added_edges;
alpar@1011
   467
      
alpar@1011
   468
      bool active;
alpar@1011
   469
      virtual void add(const Node& n) {
alpar@1011
   470
	added_nodes.push_back(n);
alpar@1011
   471
      };
alpar@1011
   472
      virtual void erase(const Node&) 
alpar@1011
   473
      {
deba@1774
   474
	throw UnsupportedOperation();
alpar@1011
   475
      }
alpar@1011
   476
      virtual void add(const Edge& n) {
alpar@1011
   477
	added_edges.push_back(n);
alpar@1011
   478
      };
alpar@1011
   479
      virtual void erase(const Edge&) 
alpar@1011
   480
      {
deba@1774
   481
	throw UnsupportedOperation();
alpar@1011
   482
      }
alpar@1011
   483
alpar@1457
   484
      ///\bug What is this used for?
alpar@1457
   485
      ///
alpar@1457
   486
      virtual void build() {}
alpar@1457
   487
      ///\bug What is this used for?
alpar@1457
   488
      ///
alpar@1457
   489
      virtual void clear() {}
alpar@1457
   490
alpar@1011
   491
      void regist(ListGraph &_g) {
alpar@1011
   492
	g=&_g;
deba@1039
   493
	AlterationNotifier<Node>::ObserverBase::
deba@1040
   494
	  attach(g->getNotifier(Node()));
deba@1039
   495
	AlterationNotifier<Edge>::ObserverBase::
deba@1040
   496
	  attach(g->getNotifier(Edge()));
alpar@1011
   497
      }
alpar@1011
   498
            
alpar@1011
   499
      void deregist() {
deba@1039
   500
	AlterationNotifier<Node>::ObserverBase::
alpar@1011
   501
	  detach();
deba@1039
   502
	AlterationNotifier<Edge>::ObserverBase::
alpar@1011
   503
	  detach();
alpar@1011
   504
	g=0;
alpar@1011
   505
      }
deba@1774
   506
alpar@1011
   507
    public:
alpar@1011
   508
      ///Default constructur.
alpar@1011
   509
      
alpar@1011
   510
      ///Default constructur.
alpar@1011
   511
      ///To actually make a snapshot you must call save().
alpar@1011
   512
      ///
alpar@1770
   513
      Snapshot() : g(0) {}
alpar@1011
   514
      ///Constructor that immediately makes a snapshot.
alpar@1011
   515
      
alpar@1011
   516
      ///This constructor immediately makes a snapshot of the graph.
alpar@1011
   517
      ///\param _g The graph we make a snapshot of.
alpar@1770
   518
      Snapshot(ListGraph &_g) {
alpar@1011
   519
	regist(_g);
alpar@1011
   520
      }
alpar@1011
   521
      ///\bug Is it necessary?
alpar@1011
   522
      ///
alpar@1770
   523
      ~Snapshot() 
alpar@1011
   524
      {
alpar@1011
   525
	if(g) deregist();
alpar@1011
   526
      }
alpar@1011
   527
      
alpar@1011
   528
      ///Make a snapshot.
alpar@1011
   529
alpar@1011
   530
      ///Make a snapshot of the graph.
alpar@1011
   531
      ///
alpar@1011
   532
      ///This function can be called more than once. In case of a repeated
alpar@1011
   533
      ///call, the previous snapshot gets lost.
alpar@1011
   534
      ///\param _g The graph we make the snapshot of.
alpar@1011
   535
      void save(ListGraph &_g) 
alpar@1011
   536
      {
alpar@1011
   537
	if(g!=&_g) {
alpar@1011
   538
	  if(g) deregist();
alpar@1011
   539
	  regist(_g);
alpar@1011
   540
	}
alpar@1011
   541
	added_nodes.clear();
alpar@1011
   542
	added_edges.clear();
alpar@1011
   543
      }
alpar@1011
   544
      
alpar@1011
   545
    ///Undo the changes until the last snapshot.
alpar@1011
   546
alpar@1011
   547
    ///Undo the changes until last snapshot created by save().
alpar@1011
   548
    ///
alpar@1011
   549
    ///\todo This function might be called undo().
alpar@1011
   550
      void restore() {
alpar@1457
   551
	ListGraph &old_g=*g;
alpar@1011
   552
	deregist();
alpar@1011
   553
	while(!added_edges.empty()) {
alpar@1457
   554
	  old_g.erase(added_edges.front());
alpar@1011
   555
	  added_edges.pop_front();
alpar@1011
   556
	}
alpar@1011
   557
 	while(!added_nodes.empty()) {
alpar@1457
   558
	  old_g.erase(added_nodes.front());
alpar@1011
   559
	  added_nodes.pop_front();
alpar@1011
   560
	}
alpar@1011
   561
      }
alpar@1011
   562
    };
alpar@1011
   563
    
alpar@949
   564
  };
klao@1034
   565
alpar@1555
   566
  ///@}
klao@1034
   567
klao@1034
   568
  /**************** Undirected List Graph ****************/
klao@1034
   569
deba@1979
   570
  typedef UGraphExtender<UGraphBaseExtender<
deba@1979
   571
    ListGraphBase> > ExtendedListUGraphBase;
klao@1034
   572
deba@1718
   573
  /// \addtogroup graphs
deba@1718
   574
  /// @{
alpar@1555
   575
alpar@1035
   576
  ///An undirected list graph class.
alpar@1035
   577
alpar@1035
   578
  ///This is a simple and fast erasable undirected graph implementation.
alpar@1035
   579
  ///
alpar@1035
   580
  ///It conforms to the
klao@1909
   581
  ///\ref concept::UGraph "UGraph" concept.
alpar@1035
   582
  ///
klao@1909
   583
  ///\sa concept::UGraph.
alpar@1035
   584
  ///
alpar@1770
   585
  ///\todo Snapshot, reverseEdge(), changeTarget(), changeSource(), contract()
alpar@1161
   586
  ///haven't been implemented yet.
alpar@1035
   587
  ///
klao@1909
   588
  class ListUGraph : public ExtendedListUGraphBase {
deba@1718
   589
  public:
klao@1909
   590
    typedef ExtendedListUGraphBase Parent;
deba@1718
   591
    /// \brief Changes the target of \c e to \c n
deba@1718
   592
    ///
deba@1718
   593
    /// Changes the target of \c e to \c n
deba@1718
   594
    ///
deba@1718
   595
    /// \note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
deba@1718
   596
    /// referencing the changed edge remain
deba@1718
   597
    /// valid. However <tt>InEdge</tt>'s are invalidated.
klao@1909
   598
    void changeTarget(UEdge e, Node n) { 
deba@1718
   599
      _changeTarget(e,n); 
deba@1718
   600
    }
deba@1718
   601
    /// Changes the source of \c e to \c n
deba@1718
   602
    ///
deba@1718
   603
    /// Changes the source of \c e to \c n
deba@1718
   604
    ///
deba@1718
   605
    ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
deba@1718
   606
    ///referencing the changed edge remain
deba@1718
   607
    ///valid. However <tt>OutEdge</tt>'s are invalidated.
klao@1909
   608
    void changeSource(UEdge e, Node n) { 
deba@1718
   609
      _changeSource(e,n); 
deba@1718
   610
    }
deba@1718
   611
    /// \brief Contract two nodes.
deba@1718
   612
    ///
deba@1718
   613
    /// This function contracts two nodes.
deba@1718
   614
    ///
deba@1718
   615
    /// Node \p b will be removed but instead of deleting
deba@1718
   616
    /// its neighboring edges, they will be joined to \p a.
deba@1718
   617
    /// The last parameter \p r controls whether to remove loops. \c true
deba@1718
   618
    /// means that loops will be removed.
deba@1718
   619
    ///
deba@1718
   620
    /// \note The <tt>Edge</tt>s
deba@1718
   621
    /// referencing a moved edge remain
deba@1718
   622
    /// valid.
deba@1718
   623
    void contract(Node a, Node b, bool r = true) {
deba@1718
   624
      for(IncEdgeIt e(*this, b); e!=INVALID;) {
deba@1718
   625
	IncEdgeIt f = e; ++f;
deba@1718
   626
	if (r && runningNode(e) == a) {
deba@1718
   627
	  erase(e);
deba@1718
   628
	} else if (source(e) == b) {
deba@1718
   629
	  changeSource(e, a);
deba@1718
   630
	} else {
deba@1718
   631
	  changeTarget(e, a);
deba@1718
   632
	}
deba@1718
   633
	e = f;
deba@1718
   634
      }
deba@1718
   635
      erase(b);
deba@1718
   636
    }
klao@1034
   637
  };
klao@1034
   638
deba@1982
   639
deba@1982
   640
  class ListBpUGraphBase {
deba@1982
   641
  public:
deba@1982
   642
deba@1982
   643
    class NodeSetError : public LogicError {
deba@1982
   644
      virtual const char* exceptionName() const { 
deba@1982
   645
	return "lemon::ListBpUGraph::NodeSetError";
deba@1982
   646
      }
deba@1982
   647
    };
deba@1982
   648
deba@1982
   649
  protected:
deba@1982
   650
deba@1982
   651
    struct NodeT {
deba@1982
   652
      int first_edge, next_node;
deba@1982
   653
    };
deba@1982
   654
deba@1982
   655
    struct EdgeT {
deba@1982
   656
      int aNode, prev_out, next_out;
deba@1982
   657
      int bNode, prev_in, next_in;
deba@1982
   658
    };
deba@1982
   659
deba@1982
   660
    std::vector<NodeT> aNodes;
deba@1982
   661
    std::vector<NodeT> bNodes;
deba@1982
   662
deba@1982
   663
    std::vector<EdgeT> edges;
deba@1982
   664
deba@1982
   665
    int first_anode;
deba@1982
   666
    int first_free_anode;
deba@1982
   667
deba@1982
   668
    int first_bnode;
deba@1982
   669
    int first_free_bnode;
deba@1982
   670
deba@1982
   671
    int first_free_edge;
deba@1982
   672
deba@1982
   673
  public:
deba@1982
   674
  
deba@1982
   675
    class Node {
deba@1982
   676
      friend class ListBpUGraphBase;
deba@1982
   677
    protected:
deba@1982
   678
      int id;
deba@1982
   679
deba@1982
   680
      Node(int _id) : id(_id) {}
deba@1982
   681
    public:
deba@1982
   682
      Node() {}
deba@1982
   683
      Node(Invalid) { id = -1; }
deba@1982
   684
      bool operator==(const Node i) const {return id==i.id;}
deba@1982
   685
      bool operator!=(const Node i) const {return id!=i.id;}
deba@1982
   686
      bool operator<(const Node i) const {return id<i.id;}
deba@1982
   687
    };
deba@1982
   688
deba@1982
   689
    class Edge {
deba@1982
   690
      friend class ListBpUGraphBase;
deba@1982
   691
    protected:
deba@1982
   692
      int id;
deba@1982
   693
deba@1982
   694
      Edge(int _id) { id = _id;}
deba@1982
   695
    public:
deba@1982
   696
      Edge() {}
deba@1982
   697
      Edge (Invalid) { id = -1; }
deba@1982
   698
      bool operator==(const Edge i) const {return id==i.id;}
deba@1982
   699
      bool operator!=(const Edge i) const {return id!=i.id;}
deba@1982
   700
      bool operator<(const Edge i) const {return id<i.id;}
deba@1982
   701
    };
deba@1982
   702
deba@1982
   703
    ListBpUGraphBase()
deba@1982
   704
      : first_anode(-1), first_free_anode(-1),
deba@1982
   705
        first_bnode(-1), first_free_bnode(-1),
deba@1982
   706
        first_free_edge(-1) {}
deba@1982
   707
deba@1982
   708
    void firstANode(Node& node) const {
deba@1982
   709
      node.id = first_anode != -1 ? (first_anode << 1) : -1;
deba@1982
   710
    }
deba@1982
   711
    void nextANode(Node& node) const {
deba@1982
   712
      node.id = aNodes[node.id >> 1].next_node;
deba@1982
   713
    }
deba@1982
   714
deba@1982
   715
    void firstBNode(Node& node) const {
deba@1982
   716
      node.id =  first_bnode != -1 ? (first_bnode << 1) + 1 : -1;
deba@1982
   717
    }
deba@1982
   718
    void nextBNode(Node& node) const {
deba@1984
   719
      node.id = bNodes[node.id >> 1].next_node;
deba@1982
   720
    }
deba@1982
   721
deba@1982
   722
    void first(Node& node) const {
deba@1982
   723
      if (first_anode != -1) {
deba@1982
   724
        node.id = (first_anode << 1);
deba@1982
   725
      } else if (first_bnode != -1) {
deba@1982
   726
        node.id = (first_bnode << 1) + 1;
deba@1982
   727
      } else {
deba@1982
   728
        node.id = -1;
deba@1982
   729
      }
deba@1982
   730
    }
deba@1982
   731
    void next(Node& node) const {
deba@1982
   732
      if (aNode(node)) {
deba@1982
   733
        node.id = aNodes[node.id >> 1].next_node;
deba@1982
   734
        if (node.id == -1) {
deba@1982
   735
          if (first_bnode != -1) {
deba@1982
   736
            node.id = (first_bnode << 1) + 1;
deba@1982
   737
          }
deba@1982
   738
        }
deba@1982
   739
      } else {
deba@1982
   740
        node.id = bNodes[node.id >> 1].next_node;
deba@1982
   741
      }
deba@1982
   742
    }
deba@1982
   743
  
deba@1982
   744
    void first(Edge& edge) const {
deba@1982
   745
      int aNodeId = first_anode;
deba@1982
   746
      while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
deba@1982
   747
        aNodeId = aNodes[aNodeId].next_node != -1 ? 
deba@1982
   748
          aNodes[aNodeId].next_node >> 1 : -1;
deba@1982
   749
      }
deba@1982
   750
      if (aNodeId != -1) {
deba@1982
   751
        edge.id = aNodes[aNodeId].first_edge;
deba@1982
   752
      } else {
deba@1982
   753
        edge.id = -1;
deba@1982
   754
      }
deba@1982
   755
    }
deba@1982
   756
    void next(Edge& edge) const {
deba@1982
   757
      int aNodeId = edges[edge.id].aNode >> 1;
deba@1982
   758
      edge.id = edges[edge.id].next_out;
deba@1982
   759
      if (edge.id == -1) {
deba@1982
   760
        aNodeId = aNodes[aNodeId].next_node != -1 ? 
deba@1982
   761
          aNodes[aNodeId].next_node >> 1 : -1;
deba@1982
   762
        while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
deba@1982
   763
          aNodeId = aNodes[aNodeId].next_node != -1 ? 
deba@1982
   764
          aNodes[aNodeId].next_node >> 1 : -1;
deba@1982
   765
        }
deba@1982
   766
        if (aNodeId != -1) {
deba@1982
   767
          edge.id = aNodes[aNodeId].first_edge;
deba@1982
   768
        } else {
deba@1982
   769
          edge.id = -1;
deba@1982
   770
        }
deba@1982
   771
      }
deba@1982
   772
    }
deba@1982
   773
deba@1982
   774
    void firstOut(Edge& edge, const Node& node) const {
deba@1982
   775
      LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
deba@1982
   776
      edge.id = aNodes[node.id >> 1].first_edge;
deba@1982
   777
    }
deba@1982
   778
    void nextOut(Edge& edge) const {
deba@1982
   779
      edge.id = edges[edge.id].next_out;
deba@1982
   780
    }
deba@1982
   781
deba@1982
   782
    void firstIn(Edge& edge, const Node& node) const {
deba@1982
   783
      LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
deba@1982
   784
      edge.id = bNodes[node.id >> 1].first_edge;
deba@1982
   785
    }
deba@1982
   786
    void nextIn(Edge& edge) const {
deba@1982
   787
      edge.id = edges[edge.id].next_in;
deba@1982
   788
    }
deba@1982
   789
deba@1982
   790
    static int id(const Node& node) {
deba@1982
   791
      return node.id;
deba@1982
   792
    }
deba@1982
   793
    static Node nodeFromId(int id) {
deba@1982
   794
      return Node(id);
deba@1982
   795
    }
deba@1982
   796
    int maxNodeId() const {
deba@1982
   797
      return aNodes.size() > bNodes.size() ?
deba@1982
   798
	aNodes.size() * 2 - 2 : bNodes.size() * 2 - 1;
deba@1982
   799
    }
deba@1982
   800
  
deba@1982
   801
    static int id(const Edge& edge) {
deba@1982
   802
      return edge.id;
deba@1982
   803
    }
deba@1982
   804
    static Edge edgeFromId(int id) {
deba@1982
   805
      return Edge(id);
deba@1982
   806
    }
deba@1982
   807
    int maxEdgeId() const {
deba@1982
   808
      return edges.size();
deba@1982
   809
    }
deba@1982
   810
  
deba@1982
   811
    static int aNodeId(const Node& node) {
deba@1982
   812
      return node.id >> 1;
deba@1982
   813
    }
deba@1995
   814
    static Node fromANodeId(int id) {
deba@1982
   815
      return Node(id << 1);
deba@1982
   816
    }
deba@1982
   817
    int maxANodeId() const {
deba@1982
   818
      return aNodes.size();
deba@1982
   819
    }
deba@1982
   820
deba@1982
   821
    static int bNodeId(const Node& node) {
deba@1982
   822
      return node.id >> 1;
deba@1982
   823
    }
deba@1982
   824
    static Node fromBNodeId(int id) {
deba@1982
   825
      return Node((id << 1) + 1);
deba@1982
   826
    }
deba@1982
   827
    int maxBNodeId() const {
deba@1982
   828
      return bNodes.size();
deba@1982
   829
    }
deba@1982
   830
deba@1982
   831
    Node aNode(const Edge& edge) const {
deba@1982
   832
      return Node(edges[edge.id].aNode);
deba@1982
   833
    }
deba@1982
   834
    Node bNode(const Edge& edge) const {
deba@1982
   835
      return Node(edges[edge.id].bNode);
deba@1982
   836
    }
deba@1982
   837
deba@1982
   838
    static bool aNode(const Node& node) {
deba@1982
   839
      return (node.id & 1) == 0;
deba@1982
   840
    }
deba@1982
   841
deba@1982
   842
    static bool bNode(const Node& node) {
deba@1982
   843
      return (node.id & 1) == 1;
deba@1982
   844
    }
deba@1982
   845
deba@1982
   846
    Node addANode() {
deba@1982
   847
      int aNodeId;
deba@1982
   848
      if (first_free_anode == -1) {
deba@1982
   849
        aNodeId = aNodes.size();
deba@1982
   850
        aNodes.push_back(NodeT());
deba@1982
   851
      } else {
deba@1982
   852
        aNodeId = first_free_anode;
deba@1982
   853
        first_free_anode = aNodes[first_free_anode].next_node;
deba@1982
   854
      }
deba@1982
   855
      aNodes[aNodeId].next_node = 
deba@1982
   856
        first_anode != -1 ? (first_anode << 1) : -1;
deba@1982
   857
      first_anode = aNodeId;
deba@1982
   858
      aNodes[aNodeId].first_edge = -1;
deba@1982
   859
      return Node(aNodeId << 1);
deba@1982
   860
    }
deba@1982
   861
deba@1982
   862
    Node addBNode() {
deba@1982
   863
      int bNodeId;
deba@1984
   864
      if (first_free_bnode == -1) {
deba@1982
   865
        bNodeId = bNodes.size();
deba@1982
   866
        bNodes.push_back(NodeT());
deba@1982
   867
      } else {
deba@1982
   868
        bNodeId = first_free_bnode;
deba@1982
   869
        first_free_bnode = bNodes[first_free_bnode].next_node;
deba@1982
   870
      }
deba@1982
   871
      bNodes[bNodeId].next_node = 
deba@1982
   872
        first_bnode != -1 ? (first_bnode << 1) + 1 : -1;
deba@1982
   873
      first_bnode = bNodeId;
deba@1982
   874
      bNodes[bNodeId].first_edge = -1;
deba@1982
   875
      return Node((bNodeId << 1) + 1);
deba@1982
   876
    }
deba@1982
   877
deba@1982
   878
    Edge addEdge(const Node& source, const Node& target) {
deba@1982
   879
      LEMON_ASSERT(((source.id ^ target.id) & 1) == 1, NodeSetError());
deba@1982
   880
      int edgeId;
deba@1982
   881
      if (first_free_edge != -1) {
deba@1982
   882
        edgeId = first_free_edge;
deba@1982
   883
        first_free_edge = edges[edgeId].next_out;
deba@1982
   884
      } else {
deba@1982
   885
        edgeId = edges.size();
deba@1982
   886
        edges.push_back(EdgeT());
deba@1982
   887
      }
deba@1982
   888
      if ((source.id & 1) == 0) {
deba@1982
   889
	edges[edgeId].aNode = source.id;
deba@1982
   890
	edges[edgeId].bNode = target.id;
deba@1982
   891
      } else {
deba@1982
   892
	edges[edgeId].aNode = target.id;
deba@1982
   893
	edges[edgeId].bNode = source.id;
deba@1982
   894
      }
deba@1982
   895
      edges[edgeId].next_out = aNodes[edges[edgeId].aNode >> 1].first_edge;
deba@1982
   896
      edges[edgeId].prev_out = -1;
deba@1982
   897
      if (aNodes[edges[edgeId].aNode >> 1].first_edge != -1) {
deba@1982
   898
        edges[aNodes[edges[edgeId].aNode >> 1].first_edge].prev_out = edgeId;
deba@1982
   899
      }
deba@1982
   900
      aNodes[edges[edgeId].aNode >> 1].first_edge = edgeId;
deba@1982
   901
      edges[edgeId].next_in = bNodes[edges[edgeId].bNode >> 1].first_edge;
deba@1982
   902
      edges[edgeId].prev_in = -1;
deba@1982
   903
      if (bNodes[edges[edgeId].bNode >> 1].first_edge != -1) {
deba@1982
   904
        edges[bNodes[edges[edgeId].bNode >> 1].first_edge].prev_in = edgeId;
deba@1982
   905
      }
deba@1982
   906
      bNodes[edges[edgeId].bNode >> 1].first_edge = edgeId;
deba@1982
   907
      return Edge(edgeId);
deba@1982
   908
    }
deba@1982
   909
deba@1982
   910
    void erase(const Node& node) {
deba@1982
   911
      if (aNode(node)) {
deba@1982
   912
        int aNodeId = node.id >> 1;
deba@1982
   913
        aNodes[aNodeId].next_node = first_free_anode;
deba@1982
   914
        first_free_anode = aNodeId;
deba@1982
   915
      } else {
deba@1982
   916
        int bNodeId = node.id >> 1;
deba@1982
   917
        bNodes[bNodeId].next_node = first_free_bnode;
deba@1982
   918
        first_free_bnode = bNodeId;
deba@1982
   919
      }
deba@1982
   920
    }
deba@1982
   921
deba@1982
   922
    void erase(const Edge& edge) {
deba@1982
   923
      if (edges[edge.id].prev_out != -1) {
deba@1982
   924
        edges[edges[edge.id].prev_out].next_out = edges[edge.id].next_out;
deba@1982
   925
      } else {
deba@1982
   926
        aNodes[edges[edge.id].aNode].first_edge = edges[edge.id].next_out;
deba@1982
   927
      }
deba@1982
   928
      if (edges[edge.id].next_out != -1) {
deba@1982
   929
        edges[edges[edge.id].next_out].prev_out = edges[edge.id].prev_out;
deba@1982
   930
      }
deba@1982
   931
      if (edges[edge.id].prev_in != -1) {
deba@1982
   932
        edges[edges[edge.id].prev_in].next_in = edges[edge.id].next_in;
deba@1982
   933
      } else {
deba@1982
   934
        bNodes[edges[edge.id].bNode].first_edge = edges[edge.id].next_in;
deba@1982
   935
      }
deba@1982
   936
      if (edges[edge.id].next_in != -1) {
deba@1982
   937
        edges[edges[edge.id].next_in].prev_in = edges[edge.id].prev_in;
deba@1982
   938
      }
deba@1982
   939
      edges[edge.id].next_out = first_free_edge;
deba@1982
   940
      first_free_edge = edge.id;
deba@1982
   941
    }
deba@1982
   942
deba@1982
   943
    void clear() {
deba@1982
   944
      aNodes.clear();
deba@1982
   945
      bNodes.clear();
deba@1982
   946
      edges.clear();
deba@1982
   947
      first_anode = -1;
deba@1982
   948
      first_free_anode = -1;
deba@1982
   949
      first_bnode = -1;
deba@1982
   950
      first_free_bnode = -1;
deba@1982
   951
      first_free_edge = -1;
deba@1982
   952
    }
deba@1982
   953
deba@1982
   954
  };
deba@1982
   955
deba@1982
   956
deba@1982
   957
  typedef BpUGraphExtender< BpUGraphBaseExtender<
deba@1982
   958
    ListBpUGraphBase> > ExtendedListBpUGraphBase;
deba@1982
   959
deba@1982
   960
  /// \ingroup graphs
deba@1982
   961
  ///
deba@1982
   962
  /// \brief A smart bipartite undirected graph class.
deba@1982
   963
  ///
deba@1982
   964
  /// This is a bipartite undirected graph implementation.
deba@1991
   965
  /// It is conforms to the \ref concept::ErasableBpUGraph "ErasableBpUGraph" 
deba@1991
   966
  /// concept.
deba@1982
   967
  /// \sa concept::BpUGraph.
deba@1982
   968
  ///
deba@1982
   969
  class ListBpUGraph : public ExtendedListBpUGraphBase {};
deba@1982
   970
alpar@949
   971
  
alpar@948
   972
  /// @}  
alpar@948
   973
} //namespace lemon
klao@946
   974
  
alpar@400
   975
klao@946
   976
#endif