src/lemon/list_graph.h
author marci
Wed, 17 Nov 2004 19:37:54 +0000
changeset 1002 ea3ecb3c9846
parent 980 0f1044b7a3af
child 1010 072bddac076e
permissions -rw-r--r--
MergeNodeGraphWrapper with factory
alpar@948
     1
/* -*- C++ -*-
alpar@948
     2
 * src/lemon/list_graph.h - Part of LEMON, a generic C++ optimization library
alpar@948
     3
 *
alpar@948
     4
 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@948
     5
 * (Egervary Combinatorial Optimization Research Group, EGRES).
alpar@948
     6
 *
alpar@948
     7
 * Permission to use, modify and distribute this software is granted
alpar@948
     8
 * provided that this copyright notice appears in all copies. For
alpar@948
     9
 * precise terms see the accompanying LICENSE file.
alpar@948
    10
 *
alpar@948
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@948
    12
 * express or implied, and with no claim as to its suitability for any
alpar@948
    13
 * purpose.
alpar@948
    14
 *
alpar@948
    15
 */
alpar@395
    16
alpar@921
    17
#ifndef LEMON_LIST_GRAPH_H
alpar@921
    18
#define LEMON_LIST_GRAPH_H
alpar@395
    19
alpar@948
    20
///\ingroup graphs
alpar@948
    21
///\file
alpar@948
    22
///\brief ListGraph, SymListGraph, NodeSet and EdgeSet classes.
alpar@948
    23
klao@946
    24
#include <lemon/erasable_graph_extender.h>
klao@946
    25
#include <lemon/clearable_graph_extender.h>
klao@946
    26
#include <lemon/extendable_graph_extender.h>
alpar@395
    27
klao@946
    28
#include <lemon/iterable_graph_extender.h>
alpar@395
    29
klao@946
    30
#include <lemon/alteration_observer_registry.h>
deba@782
    31
klao@946
    32
#include <lemon/default_map.h>
deba@782
    33
deba@782
    34
alpar@921
    35
namespace lemon {
alpar@395
    36
klao@946
    37
  class ListGraphBase {
alpar@406
    38
alpar@949
    39
  protected:
klao@946
    40
    struct NodeT {
alpar@397
    41
      int first_in,first_out;
alpar@397
    42
      int prev, next;
alpar@395
    43
    };
klao@946
    44
 
klao@946
    45
    struct EdgeT {
alpar@986
    46
      int target, source;
alpar@397
    47
      int prev_in, prev_out;
alpar@397
    48
      int next_in, next_out;
alpar@395
    49
    };
alpar@395
    50
alpar@395
    51
    std::vector<NodeT> nodes;
klao@946
    52
alpar@397
    53
    int first_node;
klao@946
    54
alpar@397
    55
    int first_free_node;
klao@946
    56
alpar@395
    57
    std::vector<EdgeT> edges;
klao@946
    58
alpar@397
    59
    int first_free_edge;
alpar@395
    60
    
deba@782
    61
  public:
alpar@395
    62
    
klao@946
    63
    typedef ListGraphBase Graph;
alpar@397
    64
    
klao@946
    65
    class Node {
marci@975
    66
      friend class ListGraphBase;
klao@946
    67
    protected:
alpar@395
    68
klao@946
    69
      int id;
klao@946
    70
      Node(int pid) { id = pid;}
alpar@395
    71
klao@946
    72
    public:
klao@946
    73
      Node() {}
klao@946
    74
      Node (Invalid) { id = -1; }
klao@946
    75
      bool operator==(const Node& node) const {return id == node.id;}
klao@946
    76
      bool operator!=(const Node& node) const {return id != node.id;}
klao@946
    77
      bool operator<(const Node& node) const {return id < node.id;}
klao@946
    78
    };
deba@782
    79
klao@946
    80
    class Edge {
marci@975
    81
      friend class ListGraphBase;
klao@946
    82
    protected:
deba@782
    83
klao@946
    84
      int id;
klao@946
    85
      Edge(int pid) { id = pid;}
alpar@395
    86
klao@946
    87
    public:
klao@946
    88
      Edge() {}
klao@946
    89
      Edge (Invalid) { id = -1; }
klao@946
    90
      bool operator==(const Edge& edge) const {return id == edge.id;}
klao@946
    91
      bool operator!=(const Edge& edge) const {return id != edge.id;}
klao@946
    92
      bool operator<(const Edge& edge) const {return id < edge.id;}
klao@946
    93
    };
klao@946
    94
klao@946
    95
klao@946
    96
klao@946
    97
    ListGraphBase()
deba@782
    98
      : nodes(), first_node(-1),
deba@782
    99
	first_free_node(-1), edges(), first_free_edge(-1) {}
deba@782
   100
alpar@395
   101
    
alpar@813
   102
    /// Maximum node ID.
alpar@813
   103
    
alpar@813
   104
    /// Maximum node ID.
alpar@813
   105
    ///\sa id(Node)
deba@980
   106
    int maxId(Node = INVALID) const { return nodes.size()-1; } 
klao@946
   107
alpar@813
   108
    /// Maximum edge ID.
alpar@813
   109
    
alpar@813
   110
    /// Maximum edge ID.
alpar@813
   111
    ///\sa id(Edge)
deba@980
   112
    int maxId(Edge = INVALID) const { return edges.size()-1; }
alpar@395
   113
alpar@986
   114
    Node source(Edge e) const { return edges[e.id].source; }
alpar@986
   115
    Node target(Edge e) const { return edges[e.id].target; }
alpar@395
   116
alpar@395
   117
klao@946
   118
    void first(Node& node) const { 
klao@946
   119
      node.id = first_node;
klao@946
   120
    }
klao@946
   121
klao@946
   122
    void next(Node& node) const {
klao@946
   123
      node.id = nodes[node.id].next;
klao@946
   124
    }
klao@946
   125
klao@946
   126
klao@946
   127
    void first(Edge& e) const { 
klao@946
   128
      int n;
klao@946
   129
      for(n = first_node; 
klao@946
   130
	  n!=-1 && nodes[n].first_in == -1; 
klao@946
   131
	  n = nodes[n].next);
klao@946
   132
      e.id = (n == -1) ? -1 : nodes[n].first_in;
klao@946
   133
    }
klao@946
   134
klao@946
   135
    void next(Edge& edge) const {
klao@946
   136
      if (edges[edge.id].next_in != -1) {
klao@946
   137
	edge.id = edges[edge.id].next_in;
klao@946
   138
      } else {
klao@946
   139
	int n;
alpar@986
   140
	for(n = nodes[edges[edge.id].target].next;
klao@946
   141
	  n!=-1 && nodes[n].first_in == -1; 
klao@946
   142
	  n = nodes[n].next);
klao@946
   143
	edge.id = (n == -1) ? -1 : nodes[n].first_in;
klao@946
   144
      }      
klao@946
   145
    }
klao@946
   146
klao@946
   147
    void firstOut(Edge &e, const Node& v) const {
klao@946
   148
      e.id = nodes[v.id].first_out;
klao@946
   149
    }
klao@946
   150
    void nextOut(Edge &e) const {
klao@946
   151
      e.id=edges[e.id].next_out;
klao@946
   152
    }
klao@946
   153
klao@946
   154
    void firstIn(Edge &e, const Node& v) const {
klao@946
   155
      e.id = nodes[v.id].first_in;
klao@946
   156
    }
klao@946
   157
    void nextIn(Edge &e) const {
klao@946
   158
      e.id=edges[e.id].next_in;
klao@946
   159
    }
klao@946
   160
alpar@813
   161
    
klao@946
   162
    static int id(Node v) { return v.id; }
klao@946
   163
    static int id(Edge e) { return e.id; }
alpar@395
   164
alpar@397
   165
    /// Adds a new node to the graph.
alpar@397
   166
alpar@813
   167
    /// \warning It adds the new node to the front of the list.
alpar@397
   168
    /// (i.e. the lastly added node becomes the first.)
klao@946
   169
    Node addNode() {     
alpar@397
   170
      int n;
alpar@397
   171
      
klao@946
   172
      if(first_free_node==-1) {
klao@946
   173
	n = nodes.size();
klao@946
   174
	nodes.push_back(NodeT());
klao@946
   175
      } else {
alpar@397
   176
	n = first_free_node;
alpar@397
   177
	first_free_node = nodes[n].next;
alpar@397
   178
      }
alpar@397
   179
      
alpar@397
   180
      nodes[n].next = first_node;
alpar@397
   181
      if(first_node != -1) nodes[first_node].prev = n;
alpar@397
   182
      first_node = n;
alpar@397
   183
      nodes[n].prev = -1;
alpar@397
   184
      
alpar@397
   185
      nodes[n].first_in = nodes[n].first_out = -1;
alpar@397
   186
      
klao@946
   187
      return Node(n);
alpar@395
   188
    }
alpar@395
   189
    
alpar@395
   190
    Edge addEdge(Node u, Node v) {
klao@946
   191
      int n;      
klao@946
   192
klao@946
   193
      if (first_free_edge == -1) {
klao@946
   194
	n = edges.size();
klao@946
   195
	edges.push_back(EdgeT());
klao@946
   196
      } else {
alpar@397
   197
	n = first_free_edge;
alpar@397
   198
	first_free_edge = edges[n].next_in;
alpar@397
   199
      }
alpar@397
   200
      
alpar@986
   201
      edges[n].source = u.id; 
alpar@986
   202
      edges[n].target = v.id;
alpar@395
   203
klao@946
   204
      edges[n].next_out = nodes[u.id].first_out;
klao@946
   205
      if(nodes[u.id].first_out != -1) {
klao@946
   206
	edges[nodes[u.id].first_out].prev_out = n;
klao@946
   207
      }
klao@946
   208
      
klao@946
   209
      edges[n].next_in = nodes[v.id].first_in;
klao@946
   210
      if(nodes[v.id].first_in != -1) {
klao@946
   211
	edges[nodes[v.id].first_in].prev_in = n;
klao@946
   212
      }
klao@946
   213
      
alpar@397
   214
      edges[n].prev_in = edges[n].prev_out = -1;
alpar@397
   215
	
klao@946
   216
      nodes[u.id].first_out = nodes[v.id].first_in = n;
alpar@397
   217
klao@946
   218
      return Edge(n);
alpar@395
   219
    }
alpar@774
   220
    
klao@946
   221
    void erase(const Node& node) {
klao@946
   222
      int n = node.id;
klao@946
   223
      
klao@946
   224
      if(nodes[n].next != -1) {
klao@946
   225
	nodes[nodes[n].next].prev = nodes[n].prev;
klao@946
   226
      }
klao@946
   227
      
klao@946
   228
      if(nodes[n].prev != -1) {
klao@946
   229
	nodes[nodes[n].prev].next = nodes[n].next;
klao@946
   230
      } else {
klao@946
   231
	first_node = nodes[n].next;
klao@946
   232
      }
klao@946
   233
      
klao@946
   234
      nodes[n].next = first_free_node;
klao@946
   235
      first_free_node = n;
alpar@395
   236
alpar@774
   237
    }
alpar@774
   238
    
klao@946
   239
    void erase(const Edge& edge) {
klao@946
   240
      int n = edge.id;
alpar@397
   241
      
klao@946
   242
      if(edges[n].next_in!=-1) {
alpar@397
   243
	edges[edges[n].next_in].prev_in = edges[n].prev_in;
klao@946
   244
      }
klao@946
   245
klao@946
   246
      if(edges[n].prev_in!=-1) {
alpar@397
   247
	edges[edges[n].prev_in].next_in = edges[n].next_in;
klao@946
   248
      } else {
alpar@986
   249
	nodes[edges[n].target].first_in = edges[n].next_in;
klao@946
   250
      }
klao@946
   251
alpar@397
   252
      
klao@946
   253
      if(edges[n].next_out!=-1) {
alpar@397
   254
	edges[edges[n].next_out].prev_out = edges[n].prev_out;
klao@946
   255
      } 
klao@946
   256
klao@946
   257
      if(edges[n].prev_out!=-1) {
alpar@397
   258
	edges[edges[n].prev_out].next_out = edges[n].next_out;
klao@946
   259
      } else {
alpar@986
   260
	nodes[edges[n].source].first_out = edges[n].next_out;
klao@946
   261
      }
alpar@397
   262
      
alpar@397
   263
      edges[n].next_in = first_free_edge;
alpar@695
   264
      first_free_edge = n;      
alpar@397
   265
alpar@397
   266
    }
alpar@397
   267
alpar@397
   268
    void clear() {
deba@782
   269
      edges.clear();
deba@782
   270
      nodes.clear();
klao@946
   271
      first_node = first_free_node = first_free_edge = -1;
deba@937
   272
    }
deba@937
   273
alpar@949
   274
  protected:
alpar@986
   275
    void _moveTarget(Edge e, Node n) 
alpar@949
   276
    {
alpar@949
   277
      if(edges[e.id].next_in != -1)
alpar@949
   278
	edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
alpar@949
   279
      if(edges[e.id].prev_in != -1)
alpar@949
   280
	edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
alpar@986
   281
      else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
alpar@986
   282
      edges[e.id].target = n.id;
alpar@949
   283
      edges[e.id].prev_in = -1;
alpar@949
   284
      edges[e.id].next_in = nodes[n.id].first_in;
alpar@949
   285
      nodes[n.id].first_in = e.id;
alpar@949
   286
    }
alpar@986
   287
    void _moveSource(Edge e, Node n) 
alpar@949
   288
    {
alpar@949
   289
      if(edges[e.id].next_out != -1)
alpar@949
   290
	edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
alpar@949
   291
      if(edges[e.id].prev_out != -1)
alpar@949
   292
	edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
alpar@986
   293
      else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
alpar@986
   294
      edges[e.id].source = n.id;
alpar@949
   295
      edges[e.id].prev_out = -1;
alpar@949
   296
      edges[e.id].next_out = nodes[n.id].first_out;
alpar@949
   297
      nodes[n.id].first_out = e.id;
alpar@949
   298
    }
alpar@949
   299
alpar@919
   300
  };
deba@909
   301
klao@946
   302
  typedef AlterableGraphExtender<ListGraphBase> AlterableListGraphBase;
klao@946
   303
  typedef IterableGraphExtender<AlterableListGraphBase> IterableListGraphBase;
deba@980
   304
  typedef DefaultMappableGraphExtender<IterableListGraphBase> MappableListGraphBase;
klao@946
   305
  typedef ExtendableGraphExtender<MappableListGraphBase> ExtendableListGraphBase;
klao@946
   306
  typedef ClearableGraphExtender<ExtendableListGraphBase> ClearableListGraphBase;
klao@946
   307
  typedef ErasableGraphExtender<ClearableListGraphBase> ErasableListGraphBase;
alpar@400
   308
alpar@948
   309
/// \addtogroup graphs
alpar@948
   310
/// @{
alpar@400
   311
alpar@948
   312
  ///A list graph class.
alpar@400
   313
alpar@948
   314
  ///This is a simple and fast erasable graph implementation.
alpar@948
   315
  ///
alpar@948
   316
  ///It conforms to the
klao@959
   317
  ///\ref concept::ErasableGraph "ErasableGraph" concept.
klao@959
   318
  ///\sa concept::ErasableGraph.
deba@782
   319
alpar@948
   320
  class ListGraph : public ErasableListGraphBase 
alpar@948
   321
  {
alpar@948
   322
  public:
alpar@986
   323
    /// Moves the target of \c e to \c n
alpar@948
   324
alpar@986
   325
    /// Moves the target of \c e to \c n
alpar@948
   326
    ///
alpar@986
   327
    void moveTarget(Edge e, Node n) { _moveTarget(e,n); }
alpar@986
   328
    /// Moves the source of \c e to \c n
alpar@948
   329
alpar@986
   330
    /// Moves the source of \c e to \c n
alpar@948
   331
    ///
alpar@986
   332
    void moveSource(Edge e, Node n) { _moveSource(e,n); }
alpar@949
   333
alpar@949
   334
    ///Using this it possible to avoid the superfluous memory allocation.
alpar@949
   335
    ///\todo more docs...
alpar@949
   336
    void reserveEdge(int n) { edges.reserve(n); };
alpar@949
   337
    
alpar@949
   338
  };
alpar@949
   339
  
alpar@948
   340
  /// @}  
alpar@948
   341
} //namespace lemon
klao@946
   342
  
alpar@400
   343
klao@946
   344
#endif