gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Support >= and <= constraints in NetworkSimplex (#219, #234) By default the same inequality constraints are supported as by Circulation (the GEQ form), but the LEQ form can also be selected using the problemType() function. The documentation of the min. cost flow module is reworked and extended with important notes and explanations about the different variants of the problem and about the dual solution and optimality conditions.
0 3 0
default
3 files changed with 377 insertions and 93 deletions:
↑ Collapse diff ↑
Ignore white space 384 line context
... ...
@@ -128,441 +128,509 @@
128 128
\endcode
129 129
This means that in a situation, when a <tt>const %ListDigraph&</tt>
130 130
reference to a graph is given, then it have to be instantiated with
131 131
<tt>Digraph=const %ListDigraph</tt>.
132 132
\code
133 133
int algorithm1(const ListDigraph& g) {
134 134
  ReverseDigraph<const ListDigraph> rg(g);
135 135
  return algorithm2(rg);
136 136
}
137 137
\endcode
138 138
*/
139 139

	
140 140
/**
141 141
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs
142 142
@ingroup graphs
143 143
\brief Graph types between real graphs and graph adaptors.
144 144

	
145 145
This group describes some graph types between real graphs and graph adaptors.
146 146
These classes wrap graphs to give new functionality as the adaptors do it.
147 147
On the other hand they are not light-weight structures as the adaptors.
148 148
*/
149 149

	
150 150
/**
151 151
@defgroup maps Maps
152 152
@ingroup datas
153 153
\brief Map structures implemented in LEMON.
154 154

	
155 155
This group describes the map structures implemented in LEMON.
156 156

	
157 157
LEMON provides several special purpose maps and map adaptors that e.g. combine
158 158
new maps from existing ones.
159 159

	
160 160
<b>See also:</b> \ref map_concepts "Map Concepts".
161 161
*/
162 162

	
163 163
/**
164 164
@defgroup graph_maps Graph Maps
165 165
@ingroup maps
166 166
\brief Special graph-related maps.
167 167

	
168 168
This group describes maps that are specifically designed to assign
169 169
values to the nodes and arcs/edges of graphs.
170 170

	
171 171
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
172 172
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
173 173
*/
174 174

	
175 175
/**
176 176
\defgroup map_adaptors Map Adaptors
177 177
\ingroup maps
178 178
\brief Tools to create new maps from existing ones
179 179

	
180 180
This group describes map adaptors that are used to create "implicit"
181 181
maps from other maps.
182 182

	
183 183
Most of them are \ref concepts::ReadMap "read-only maps".
184 184
They can make arithmetic and logical operations between one or two maps
185 185
(negation, shifting, addition, multiplication, logical 'and', 'or',
186 186
'not' etc.) or e.g. convert a map to another one of different Value type.
187 187

	
188 188
The typical usage of this classes is passing implicit maps to
189 189
algorithms.  If a function type algorithm is called then the function
190 190
type map adaptors can be used comfortable. For example let's see the
191 191
usage of map adaptors with the \c graphToEps() function.
192 192
\code
193 193
  Color nodeColor(int deg) {
194 194
    if (deg >= 2) {
195 195
      return Color(0.5, 0.0, 0.5);
196 196
    } else if (deg == 1) {
197 197
      return Color(1.0, 0.5, 1.0);
198 198
    } else {
199 199
      return Color(0.0, 0.0, 0.0);
200 200
    }
201 201
  }
202 202

	
203 203
  Digraph::NodeMap<int> degree_map(graph);
204 204

	
205 205
  graphToEps(graph, "graph.eps")
206 206
    .coords(coords).scaleToA4().undirected()
207 207
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
208 208
    .run();
209 209
\endcode
210 210
The \c functorToMap() function makes an \c int to \c Color map from the
211 211
\c nodeColor() function. The \c composeMap() compose the \c degree_map
212 212
and the previously created map. The composed map is a proper function to
213 213
get the color of each node.
214 214

	
215 215
The usage with class type algorithms is little bit harder. In this
216 216
case the function type map adaptors can not be used, because the
217 217
function map adaptors give back temporary objects.
218 218
\code
219 219
  Digraph graph;
220 220

	
221 221
  typedef Digraph::ArcMap<double> DoubleArcMap;
222 222
  DoubleArcMap length(graph);
223 223
  DoubleArcMap speed(graph);
224 224

	
225 225
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
226 226
  TimeMap time(length, speed);
227 227

	
228 228
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
229 229
  dijkstra.run(source, target);
230 230
\endcode
231 231
We have a length map and a maximum speed map on the arcs of a digraph.
232 232
The minimum time to pass the arc can be calculated as the division of
233 233
the two maps which can be done implicitly with the \c DivMap template
234 234
class. We use the implicit minimum time map as the length map of the
235 235
\c Dijkstra algorithm.
236 236
*/
237 237

	
238 238
/**
239 239
@defgroup matrices Matrices
240 240
@ingroup datas
241 241
\brief Two dimensional data storages implemented in LEMON.
242 242

	
243 243
This group describes two dimensional data storages implemented in LEMON.
244 244
*/
245 245

	
246 246
/**
247 247
@defgroup paths Path Structures
248 248
@ingroup datas
249 249
\brief %Path structures implemented in LEMON.
250 250

	
251 251
This group describes the path structures implemented in LEMON.
252 252

	
253 253
LEMON provides flexible data structures to work with paths.
254 254
All of them have similar interfaces and they can be copied easily with
255 255
assignment operators and copy constructors. This makes it easy and
256 256
efficient to have e.g. the Dijkstra algorithm to store its result in
257 257
any kind of path structure.
258 258

	
259 259
\sa lemon::concepts::Path
260 260
*/
261 261

	
262 262
/**
263 263
@defgroup auxdat Auxiliary Data Structures
264 264
@ingroup datas
265 265
\brief Auxiliary data structures implemented in LEMON.
266 266

	
267 267
This group describes some data structures implemented in LEMON in
268 268
order to make it easier to implement combinatorial algorithms.
269 269
*/
270 270

	
271 271
/**
272 272
@defgroup algs Algorithms
273 273
\brief This group describes the several algorithms
274 274
implemented in LEMON.
275 275

	
276 276
This group describes the several algorithms
277 277
implemented in LEMON.
278 278
*/
279 279

	
280 280
/**
281 281
@defgroup search Graph Search
282 282
@ingroup algs
283 283
\brief Common graph search algorithms.
284 284

	
285 285
This group describes the common graph search algorithms, namely
286 286
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS).
287 287
*/
288 288

	
289 289
/**
290 290
@defgroup shortest_path Shortest Path Algorithms
291 291
@ingroup algs
292 292
\brief Algorithms for finding shortest paths.
293 293

	
294 294
This group describes the algorithms for finding shortest paths in digraphs.
295 295

	
296 296
 - \ref Dijkstra algorithm for finding shortest paths from a source node
297 297
   when all arc lengths are non-negative.
298 298
 - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
299 299
   from a source node when arc lenghts can be either positive or negative,
300 300
   but the digraph should not contain directed cycles with negative total
301 301
   length.
302 302
 - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
303 303
   for solving the \e all-pairs \e shortest \e paths \e problem when arc
304 304
   lenghts can be either positive or negative, but the digraph should
305 305
   not contain directed cycles with negative total length.
306 306
 - \ref Suurballe A successive shortest path algorithm for finding
307 307
   arc-disjoint paths between two nodes having minimum total length.
308 308
*/
309 309

	
310 310
/**
311 311
@defgroup max_flow Maximum Flow Algorithms
312 312
@ingroup algs
313 313
\brief Algorithms for finding maximum flows.
314 314

	
315 315
This group describes the algorithms for finding maximum flows and
316 316
feasible circulations.
317 317

	
318 318
The \e maximum \e flow \e problem is to find a flow of maximum value between
319 319
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
320
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and
320
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
321 321
\f$s, t \in V\f$ source and target nodes.
322
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the
322
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
323 323
following optimization problem.
324 324

	
325
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f]
326
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a)
327
    \qquad \forall v\in V\setminus\{s,t\} \f]
328
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f]
325
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
326
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
327
    \quad \forall u\in V\setminus\{s,t\} \f]
328
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]
329 329

	
330 330
LEMON contains several algorithms for solving maximum flow problems:
331 331
- \ref EdmondsKarp Edmonds-Karp algorithm.
332 332
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm.
333 333
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees.
334 334
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees.
335 335

	
336 336
In most cases the \ref Preflow "Preflow" algorithm provides the
337 337
fastest method for computing a maximum flow. All implementations
338 338
provides functions to also query the minimum cut, which is the dual
339 339
problem of the maximum flow.
340 340
*/
341 341

	
342 342
/**
343 343
@defgroup min_cost_flow Minimum Cost Flow Algorithms
344 344
@ingroup algs
345 345

	
346 346
\brief Algorithms for finding minimum cost flows and circulations.
347 347

	
348
This group describes the algorithms for finding minimum cost flows and
348
This group contains the algorithms for finding minimum cost flows and
349 349
circulations.
350 350

	
351 351
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
352 352
minimum total cost from a set of supply nodes to a set of demand nodes
353
in a network with capacity constraints and arc costs.
353
in a network with capacity constraints (lower and upper bounds)
354
and arc costs.
354 355
Formally, let \f$G=(V,A)\f$ be a digraph,
355 356
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and
356
upper bounds for the flow values on the arcs,
357
upper bounds for the flow values on the arcs, for which
358
\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$.
357 359
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow
358
on the arcs, and
359
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values
360
of the nodes.
361
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of
362
the following optimization problem.
360
on the arcs, and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the
361
signed supply values of the nodes.
362
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
363
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
364
\f$-sup(u)\f$ demand.
365
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}^+_0\f$ solution
366
of the following optimization problem.
363 367

	
364
\f[ \min\sum_{a\in A} f(a) cost(a) \f]
365
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) =
366
    supply(v) \qquad \forall v\in V \f]
367
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f]
368
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
369
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
370
    sup(u) \quad \forall u\in V \f]
371
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
368 372

	
369
LEMON contains several algorithms for solving minimum cost flow problems:
370
 - \ref CycleCanceling Cycle-canceling algorithms.
371
 - \ref CapacityScaling Successive shortest path algorithm with optional
373
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
374
zero or negative in order to have a feasible solution (since the sum
375
of the expressions on the left-hand side of the inequalities is zero).
376
It means that the total demand must be greater or equal to the total
377
supply and all the supplies have to be carried out from the supply nodes,
378
but there could be demands that are not satisfied.
379
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
380
constraints have to be satisfied with equality, i.e. all demands
381
have to be satisfied and all supplies have to be used.
382

	
383
If you need the opposite inequalities in the supply/demand constraints
384
(i.e. the total demand is less than the total supply and all the demands
385
have to be satisfied while there could be supplies that are not used),
386
then you could easily transform the problem to the above form by reversing
387
the direction of the arcs and taking the negative of the supply values
388
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors).
389
However \ref NetworkSimplex algorithm also supports this form directly
390
for the sake of convenience.
391

	
392
A feasible solution for this problem can be found using \ref Circulation.
393

	
394
Note that the above formulation is actually more general than the usual
395
definition of the minimum cost flow problem, in which strict equalities
396
are required in the supply/demand contraints, i.e.
397

	
398
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
399
    sup(u) \quad \forall u\in V. \f]
400

	
401
However if the sum of the supply values is zero, then these two problems
402
are equivalent. So if you need the equality form, you have to ensure this
403
additional contraint for the algorithms.
404

	
405
The dual solution of the minimum cost flow problem is represented by node 
406
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$.
407
An \f$f: A\rightarrow\mathbf{Z}^+_0\f$ feasible solution of the problem
408
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$
409
node potentials the following \e complementary \e slackness optimality
410
conditions hold.
411

	
412
 - For all \f$uv\in A\f$ arcs:
413
   - if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$;
414
   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
415
   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
416
 - For all \f$u\in V\f$:
417
   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
418
     then \f$\pi(u)=0\f$.
419
 
420
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc
421
\f$uv\in A\f$ with respect to the node potentials \f$\pi\f$, i.e.
422
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f]
423

	
424
All algorithms provide dual solution (node potentials) as well
425
if an optimal flow is found.
426

	
427
LEMON contains several algorithms for solving minimum cost flow problems.
428
 - \ref NetworkSimplex Primal Network Simplex algorithm with various
429
   pivot strategies.
430
 - \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on
431
   cost scaling.
432
 - \ref CapacityScaling Successive Shortest %Path algorithm with optional
372 433
   capacity scaling.
373
 - \ref CostScaling Push-relabel and augment-relabel algorithms based on
374
   cost scaling.
375
 - \ref NetworkSimplex Primal network simplex algorithm with various
376
   pivot strategies.
434
 - \ref CancelAndTighten The Cancel and Tighten algorithm.
435
 - \ref CycleCanceling Cycle-Canceling algorithms.
436

	
437
Most of these implementations support the general inequality form of the
438
minimum cost flow problem, but CancelAndTighten and CycleCanceling
439
only support the equality form due to the primal method they use.
440

	
441
In general NetworkSimplex is the most efficient implementation,
442
but in special cases other algorithms could be faster.
443
For example, if the total supply and/or capacities are rather small,
444
CapacityScaling is usually the fastest algorithm (without effective scaling).
377 445
*/
378 446

	
379 447
/**
380 448
@defgroup min_cut Minimum Cut Algorithms
381 449
@ingroup algs
382 450

	
383 451
\brief Algorithms for finding minimum cut in graphs.
384 452

	
385 453
This group describes the algorithms for finding minimum cut in graphs.
386 454

	
387 455
The \e minimum \e cut \e problem is to find a non-empty and non-complete
388 456
\f$X\f$ subset of the nodes with minimum overall capacity on
389 457
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
390 458
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
391 459
cut is the \f$X\f$ solution of the next optimization problem:
392 460

	
393 461
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
394 462
    \sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
395 463

	
396 464
LEMON contains several algorithms related to minimum cut problems:
397 465

	
398 466
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
399 467
  in directed graphs.
400 468
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
401 469
  calculating minimum cut in undirected graphs.
402 470
- \ref GomoryHuTree "Gomory-Hu tree computation" for calculating
403 471
  all-pairs minimum cut in undirected graphs.
404 472

	
405 473
If you want to find minimum cut just between two distinict nodes,
406 474
see the \ref max_flow "maximum flow problem".
407 475
*/
408 476

	
409 477
/**
410 478
@defgroup graph_prop Connectivity and Other Graph Properties
411 479
@ingroup algs
412 480
\brief Algorithms for discovering the graph properties
413 481

	
414 482
This group describes the algorithms for discovering the graph properties
415 483
like connectivity, bipartiteness, euler property, simplicity etc.
416 484

	
417 485
\image html edge_biconnected_components.png
418 486
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
419 487
*/
420 488

	
421 489
/**
422 490
@defgroup planar Planarity Embedding and Drawing
423 491
@ingroup algs
424 492
\brief Algorithms for planarity checking, embedding and drawing
425 493

	
426 494
This group describes the algorithms for planarity checking,
427 495
embedding and drawing.
428 496

	
429 497
\image html planar.png
430 498
\image latex planar.eps "Plane graph" width=\textwidth
431 499
*/
432 500

	
433 501
/**
434 502
@defgroup matching Matching Algorithms
435 503
@ingroup algs
436 504
\brief Algorithms for finding matchings in graphs and bipartite graphs.
437 505

	
438 506
This group contains algorithm objects and functions to calculate
439 507
matchings in graphs and bipartite graphs. The general matching problem is
440 508
finding a subset of the arcs which does not shares common endpoints.
441 509

	
442 510
There are several different algorithms for calculate matchings in
443 511
graphs.  The matching problems in bipartite graphs are generally
444 512
easier than in general graphs. The goal of the matching optimization
445 513
can be finding maximum cardinality, maximum weight or minimum cost
446 514
matching. The search can be constrained to find perfect or
447 515
maximum cardinality matching.
448 516

	
449 517
The matching algorithms implemented in LEMON:
450 518
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
451 519
  for calculating maximum cardinality matching in bipartite graphs.
452 520
- \ref PrBipartiteMatching Push-relabel algorithm
453 521
  for calculating maximum cardinality matching in bipartite graphs.
454 522
- \ref MaxWeightedBipartiteMatching
455 523
  Successive shortest path algorithm for calculating maximum weighted
456 524
  matching and maximum weighted bipartite matching in bipartite graphs.
457 525
- \ref MinCostMaxBipartiteMatching
458 526
  Successive shortest path algorithm for calculating minimum cost maximum
459 527
  matching in bipartite graphs.
460 528
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
461 529
  maximum cardinality matching in general graphs.
462 530
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
463 531
  maximum weighted matching in general graphs.
464 532
- \ref MaxWeightedPerfectMatching
465 533
  Edmond's blossom shrinking algorithm for calculating maximum weighted
466 534
  perfect matching in general graphs.
467 535

	
468 536
\image html bipartite_matching.png
469 537
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
470 538
*/
471 539

	
472 540
/**
473 541
@defgroup spantree Minimum Spanning Tree Algorithms
474 542
@ingroup algs
475 543
\brief Algorithms for finding a minimum cost spanning tree in a graph.
476 544

	
477 545
This group describes the algorithms for finding a minimum cost spanning
478 546
tree in a graph.
479 547
*/
480 548

	
481 549
/**
482 550
@defgroup auxalg Auxiliary Algorithms
483 551
@ingroup algs
484 552
\brief Auxiliary algorithms implemented in LEMON.
485 553

	
486 554
This group describes some algorithms implemented in LEMON
487 555
in order to make it easier to implement complex algorithms.
488 556
*/
489 557

	
490 558
/**
491 559
@defgroup approx Approximation Algorithms
492 560
@ingroup algs
493 561
\brief Approximation algorithms.
494 562

	
495 563
This group describes the approximation and heuristic algorithms
496 564
implemented in LEMON.
497 565
*/
498 566

	
499 567
/**
500 568
@defgroup gen_opt_group General Optimization Tools
501 569
\brief This group describes some general optimization frameworks
502 570
implemented in LEMON.
503 571

	
504 572
This group describes some general optimization frameworks
505 573
implemented in LEMON.
506 574
*/
507 575

	
508 576
/**
509 577
@defgroup lp_group Lp and Mip Solvers
510 578
@ingroup gen_opt_group
511 579
\brief Lp and Mip solver interfaces for LEMON.
512 580

	
513 581
This group describes Lp and Mip solver interfaces for LEMON. The
514 582
various LP solvers could be used in the same manner with this
515 583
interface.
516 584
*/
517 585

	
518 586
/**
519 587
@defgroup lp_utils Tools for Lp and Mip Solvers
520 588
@ingroup lp_group
521 589
\brief Helper tools to the Lp and Mip solvers.
522 590

	
523 591
This group adds some helper tools to general optimization framework
524 592
implemented in LEMON.
525 593
*/
526 594

	
527 595
/**
528 596
@defgroup metah Metaheuristics
529 597
@ingroup gen_opt_group
530 598
\brief Metaheuristics for LEMON library.
531 599

	
532 600
This group describes some metaheuristic optimization tools.
533 601
*/
534 602

	
535 603
/**
536 604
@defgroup utils Tools and Utilities
537 605
\brief Tools and utilities for programming in LEMON
538 606

	
539 607
Tools and utilities for programming in LEMON.
540 608
*/
541 609

	
542 610
/**
543 611
@defgroup gutils Basic Graph Utilities
544 612
@ingroup utils
545 613
\brief Simple basic graph utilities.
546 614

	
547 615
This group describes some simple basic graph utilities.
548 616
*/
549 617

	
550 618
/**
551 619
@defgroup misc Miscellaneous Tools
552 620
@ingroup utils
553 621
\brief Tools for development, debugging and testing.
554 622

	
555 623
This group describes several useful tools for development,
556 624
debugging and testing.
557 625
*/
558 626

	
559 627
/**
560 628
@defgroup timecount Time Measuring and Counting
561 629
@ingroup misc
562 630
\brief Simple tools for measuring the performance of algorithms.
563 631

	
564 632
This group describes simple tools for measuring the performance
565 633
of algorithms.
566 634
*/
567 635

	
568 636
/**
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_NETWORK_SIMPLEX_H
20 20
#define LEMON_NETWORK_SIMPLEX_H
21 21

	
22 22
/// \ingroup min_cost_flow
23 23
///
24 24
/// \file
25 25
/// \brief Network Simplex algorithm for finding a minimum cost flow.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <algorithm>
30 30

	
31 31
#include <lemon/core.h>
32 32
#include <lemon/math.h>
33
#include <lemon/maps.h>
34
#include <lemon/circulation.h>
35
#include <lemon/adaptors.h>
33 36

	
34 37
namespace lemon {
35 38

	
36 39
  /// \addtogroup min_cost_flow
37 40
  /// @{
38 41

	
39 42
  /// \brief Implementation of the primal Network Simplex algorithm
40 43
  /// for finding a \ref min_cost_flow "minimum cost flow".
41 44
  ///
42 45
  /// \ref NetworkSimplex implements the primal Network Simplex algorithm
43 46
  /// for finding a \ref min_cost_flow "minimum cost flow".
44 47
  /// This algorithm is a specialized version of the linear programming
45 48
  /// simplex method directly for the minimum cost flow problem.
46 49
  /// It is one of the most efficient solution methods.
47 50
  ///
48 51
  /// In general this class is the fastest implementation available
49 52
  /// in LEMON for the minimum cost flow problem.
53
  /// Moreover it supports both direction of the supply/demand inequality
54
  /// constraints. For more information see \ref ProblemType.
50 55
  ///
51 56
  /// \tparam GR The digraph type the algorithm runs on.
52 57
  /// \tparam F The value type used for flow amounts, capacity bounds
53 58
  /// and supply values in the algorithm. By default it is \c int.
54 59
  /// \tparam C The value type used for costs and potentials in the
55 60
  /// algorithm. By default it is the same as \c F.
56 61
  ///
57 62
  /// \warning Both value types must be signed and all input data must
58 63
  /// be integer.
59 64
  ///
60 65
  /// \note %NetworkSimplex provides five different pivot rule
61
  /// implementations. For more information see \ref PivotRule.
66
  /// implementations, from which the most efficient one is used
67
  /// by default. For more information see \ref PivotRule.
62 68
  template <typename GR, typename F = int, typename C = F>
63 69
  class NetworkSimplex
64 70
  {
65 71
  public:
66 72

	
67 73
    /// The flow type of the algorithm
68 74
    typedef F Flow;
69 75
    /// The cost type of the algorithm
70 76
    typedef C Cost;
77
#ifdef DOXYGEN
78
    /// The type of the flow map
79
    typedef GR::ArcMap<Flow> FlowMap;
80
    /// The type of the potential map
81
    typedef GR::NodeMap<Cost> PotentialMap;
82
#else
71 83
    /// The type of the flow map
72 84
    typedef typename GR::template ArcMap<Flow> FlowMap;
73 85
    /// The type of the potential map
74 86
    typedef typename GR::template NodeMap<Cost> PotentialMap;
87
#endif
75 88

	
76 89
  public:
77 90

	
78 91
    /// \brief Enum type for selecting the pivot rule.
79 92
    ///
80 93
    /// Enum type for selecting the pivot rule for the \ref run()
81 94
    /// function.
82 95
    ///
83 96
    /// \ref NetworkSimplex provides five different pivot rule
84 97
    /// implementations that significantly affect the running time
85 98
    /// of the algorithm.
86 99
    /// By default \ref BLOCK_SEARCH "Block Search" is used, which
87 100
    /// proved to be the most efficient and the most robust on various
88 101
    /// test inputs according to our benchmark tests.
89 102
    /// However another pivot rule can be selected using the \ref run()
90 103
    /// function with the proper parameter.
91 104
    enum PivotRule {
92 105

	
93 106
      /// The First Eligible pivot rule.
94 107
      /// The next eligible arc is selected in a wraparound fashion
95 108
      /// in every iteration.
96 109
      FIRST_ELIGIBLE,
97 110

	
98 111
      /// The Best Eligible pivot rule.
99 112
      /// The best eligible arc is selected in every iteration.
100 113
      BEST_ELIGIBLE,
101 114

	
102 115
      /// The Block Search pivot rule.
103 116
      /// A specified number of arcs are examined in every iteration
104 117
      /// in a wraparound fashion and the best eligible arc is selected
105 118
      /// from this block.
106 119
      BLOCK_SEARCH,
107 120

	
108 121
      /// The Candidate List pivot rule.
109 122
      /// In a major iteration a candidate list is built from eligible arcs
110 123
      /// in a wraparound fashion and in the following minor iterations
111 124
      /// the best eligible arc is selected from this list.
112 125
      CANDIDATE_LIST,
113 126

	
114 127
      /// The Altering Candidate List pivot rule.
115 128
      /// It is a modified version of the Candidate List method.
116 129
      /// It keeps only the several best eligible arcs from the former
117 130
      /// candidate list and extends this list in every iteration.
118 131
      ALTERING_LIST
119 132
    };
133
    
134
    /// \brief Enum type for selecting the problem type.
135
    ///
136
    /// Enum type for selecting the problem type, i.e. the direction of
137
    /// the inequalities in the supply/demand constraints of the
138
    /// \ref min_cost_flow "minimum cost flow problem".
139
    ///
140
    /// The default problem type is \c GEQ, since this form is supported
141
    /// by other minimum cost flow algorithms and the \ref Circulation
142
    /// algorithm as well.
143
    /// The \c LEQ problem type can be selected using the \ref problemType()
144
    /// function.
145
    ///
146
    /// Note that the equality form is a special case of both problem type.
147
    enum ProblemType {
148

	
149
      /// This option means that there are "<em>greater or equal</em>"
150
      /// constraints in the defintion, i.e. the exact formulation of the
151
      /// problem is the following.
152
      /**
153
          \f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
154
          \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
155
              sup(u) \quad \forall u\in V \f]
156
          \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
157
      */
158
      /// It means that the total demand must be greater or equal to the 
159
      /// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
160
      /// negative) and all the supplies have to be carried out from 
161
      /// the supply nodes, but there could be demands that are not 
162
      /// satisfied.
163
      GEQ,
164
      /// It is just an alias for the \c GEQ option.
165
      CARRY_SUPPLIES = GEQ,
166

	
167
      /// This option means that there are "<em>less or equal</em>"
168
      /// constraints in the defintion, i.e. the exact formulation of the
169
      /// problem is the following.
170
      /**
171
          \f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
172
          \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
173
              sup(u) \quad \forall u\in V \f]
174
          \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
175
      */
176
      /// It means that the total demand must be less or equal to the 
177
      /// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
178
      /// positive) and all the demands have to be satisfied, but there
179
      /// could be supplies that are not carried out from the supply
180
      /// nodes.
181
      LEQ,
182
      /// It is just an alias for the \c LEQ option.
183
      SATISFY_DEMANDS = LEQ
184
    };
120 185

	
121 186
  private:
122 187

	
123 188
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
124 189

	
125 190
    typedef typename GR::template ArcMap<Flow> FlowArcMap;
126 191
    typedef typename GR::template ArcMap<Cost> CostArcMap;
127 192
    typedef typename GR::template NodeMap<Flow> FlowNodeMap;
128 193

	
129 194
    typedef std::vector<Arc> ArcVector;
130 195
    typedef std::vector<Node> NodeVector;
131 196
    typedef std::vector<int> IntVector;
132 197
    typedef std::vector<bool> BoolVector;
133 198
    typedef std::vector<Flow> FlowVector;
134 199
    typedef std::vector<Cost> CostVector;
135 200

	
136 201
    // State constants for arcs
137 202
    enum ArcStateEnum {
138 203
      STATE_UPPER = -1,
139 204
      STATE_TREE  =  0,
140 205
      STATE_LOWER =  1
141 206
    };
142 207

	
143 208
  private:
144 209

	
145 210
    // Data related to the underlying digraph
146 211
    const GR &_graph;
147 212
    int _node_num;
148 213
    int _arc_num;
149 214

	
150 215
    // Parameters of the problem
151 216
    FlowArcMap *_plower;
152 217
    FlowArcMap *_pupper;
153 218
    CostArcMap *_pcost;
154 219
    FlowNodeMap *_psupply;
155 220
    bool _pstsup;
156 221
    Node _psource, _ptarget;
157 222
    Flow _pstflow;
223
    ProblemType _ptype;
158 224

	
159 225
    // Result maps
160 226
    FlowMap *_flow_map;
161 227
    PotentialMap *_potential_map;
162 228
    bool _local_flow;
163 229
    bool _local_potential;
164 230

	
165 231
    // Data structures for storing the digraph
166 232
    IntNodeMap _node_id;
167 233
    ArcVector _arc_ref;
168 234
    IntVector _source;
169 235
    IntVector _target;
170 236

	
171 237
    // Node and arc data
172 238
    FlowVector _cap;
173 239
    CostVector _cost;
174 240
    FlowVector _supply;
175 241
    FlowVector _flow;
176 242
    CostVector _pi;
177 243

	
178 244
    // Data for storing the spanning tree structure
179 245
    IntVector _parent;
180 246
    IntVector _pred;
181 247
    IntVector _thread;
182 248
    IntVector _rev_thread;
183 249
    IntVector _succ_num;
184 250
    IntVector _last_succ;
185 251
    IntVector _dirty_revs;
186 252
    BoolVector _forward;
187 253
    IntVector _state;
188 254
    int _root;
189 255

	
190 256
    // Temporary data used in the current pivot iteration
191 257
    int in_arc, join, u_in, v_in, u_out, v_out;
192 258
    int first, second, right, last;
193 259
    int stem, par_stem, new_stem;
194 260
    Flow delta;
195 261

	
196 262
  private:
197 263

	
198 264
    // Implementation of the First Eligible pivot rule
199 265
    class FirstEligiblePivotRule
200 266
    {
201 267
    private:
202 268

	
203 269
      // References to the NetworkSimplex class
204 270
      const IntVector  &_source;
205 271
      const IntVector  &_target;
206 272
      const CostVector &_cost;
207 273
      const IntVector  &_state;
208 274
      const CostVector &_pi;
209 275
      int &_in_arc;
210 276
      int _arc_num;
211 277

	
212 278
      // Pivot rule data
213 279
      int _next_arc;
214 280

	
215 281
    public:
216 282

	
217 283
      // Constructor
218 284
      FirstEligiblePivotRule(NetworkSimplex &ns) :
219 285
        _source(ns._source), _target(ns._target),
220 286
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
221 287
        _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
222 288
      {}
223 289

	
224 290
      // Find next entering arc
225 291
      bool findEnteringArc() {
226 292
        Cost c;
227 293
        for (int e = _next_arc; e < _arc_num; ++e) {
228 294
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
229 295
          if (c < 0) {
230 296
            _in_arc = e;
231 297
            _next_arc = e + 1;
232 298
            return true;
233 299
          }
234 300
        }
235 301
        for (int e = 0; e < _next_arc; ++e) {
236 302
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
237 303
          if (c < 0) {
238 304
            _in_arc = e;
239 305
            _next_arc = e + 1;
240 306
            return true;
241 307
          }
242 308
        }
243 309
        return false;
244 310
      }
245 311

	
246 312
    }; //class FirstEligiblePivotRule
247 313

	
248 314

	
249 315
    // Implementation of the Best Eligible pivot rule
250 316
    class BestEligiblePivotRule
251 317
    {
252 318
    private:
253 319

	
254 320
      // References to the NetworkSimplex class
255 321
      const IntVector  &_source;
256 322
      const IntVector  &_target;
257 323
      const CostVector &_cost;
258 324
      const IntVector  &_state;
259 325
      const CostVector &_pi;
260 326
      int &_in_arc;
261 327
      int _arc_num;
262 328

	
263 329
    public:
264 330

	
265 331
      // Constructor
266 332
      BestEligiblePivotRule(NetworkSimplex &ns) :
267 333
        _source(ns._source), _target(ns._target),
268 334
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
269 335
        _in_arc(ns.in_arc), _arc_num(ns._arc_num)
270 336
      {}
271 337

	
272 338
      // Find next entering arc
273 339
      bool findEnteringArc() {
274 340
        Cost c, min = 0;
275 341
        for (int e = 0; e < _arc_num; ++e) {
276 342
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
277 343
          if (c < min) {
278 344
            min = c;
279 345
            _in_arc = e;
280 346
          }
281 347
        }
282 348
        return min < 0;
283 349
      }
284 350

	
285 351
    }; //class BestEligiblePivotRule
286 352

	
287 353

	
288 354
    // Implementation of the Block Search pivot rule
289 355
    class BlockSearchPivotRule
290 356
    {
291 357
    private:
292 358

	
293 359
      // References to the NetworkSimplex class
294 360
      const IntVector  &_source;
295 361
      const IntVector  &_target;
296 362
      const CostVector &_cost;
297 363
      const IntVector  &_state;
298 364
      const CostVector &_pi;
299 365
      int &_in_arc;
300 366
      int _arc_num;
301 367

	
302 368
      // Pivot rule data
303 369
      int _block_size;
304 370
      int _next_arc;
305 371

	
306 372
    public:
307 373

	
308 374
      // Constructor
309 375
      BlockSearchPivotRule(NetworkSimplex &ns) :
310 376
        _source(ns._source), _target(ns._target),
311 377
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
312 378
        _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
313 379
      {
314 380
        // The main parameters of the pivot rule
315 381
        const double BLOCK_SIZE_FACTOR = 2.0;
316 382
        const int MIN_BLOCK_SIZE = 10;
317 383

	
318 384
        _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)),
319 385
                                MIN_BLOCK_SIZE );
320 386
      }
321 387

	
322 388
      // Find next entering arc
323 389
      bool findEnteringArc() {
324 390
        Cost c, min = 0;
325 391
        int cnt = _block_size;
326 392
        int e, min_arc = _next_arc;
327 393
        for (e = _next_arc; e < _arc_num; ++e) {
328 394
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
329 395
          if (c < min) {
330 396
            min = c;
331 397
            min_arc = e;
332 398
          }
333 399
          if (--cnt == 0) {
334 400
            if (min < 0) break;
335 401
            cnt = _block_size;
336 402
          }
337 403
        }
338 404
        if (min == 0 || cnt > 0) {
339 405
          for (e = 0; e < _next_arc; ++e) {
340 406
            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
341 407
            if (c < min) {
342 408
              min = c;
343 409
              min_arc = e;
344 410
            }
345 411
            if (--cnt == 0) {
346 412
              if (min < 0) break;
347 413
              cnt = _block_size;
348 414
            }
349 415
          }
... ...
@@ -397,1019 +463,1120 @@
397 463
                                 MIN_MINOR_LIMIT );
398 464
        _curr_length = _minor_count = 0;
399 465
        _candidates.resize(_list_length);
400 466
      }
401 467

	
402 468
      /// Find next entering arc
403 469
      bool findEnteringArc() {
404 470
        Cost min, c;
405 471
        int e, min_arc = _next_arc;
406 472
        if (_curr_length > 0 && _minor_count < _minor_limit) {
407 473
          // Minor iteration: select the best eligible arc from the
408 474
          // current candidate list
409 475
          ++_minor_count;
410 476
          min = 0;
411 477
          for (int i = 0; i < _curr_length; ++i) {
412 478
            e = _candidates[i];
413 479
            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
414 480
            if (c < min) {
415 481
              min = c;
416 482
              min_arc = e;
417 483
            }
418 484
            if (c >= 0) {
419 485
              _candidates[i--] = _candidates[--_curr_length];
420 486
            }
421 487
          }
422 488
          if (min < 0) {
423 489
            _in_arc = min_arc;
424 490
            return true;
425 491
          }
426 492
        }
427 493

	
428 494
        // Major iteration: build a new candidate list
429 495
        min = 0;
430 496
        _curr_length = 0;
431 497
        for (e = _next_arc; e < _arc_num; ++e) {
432 498
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
433 499
          if (c < 0) {
434 500
            _candidates[_curr_length++] = e;
435 501
            if (c < min) {
436 502
              min = c;
437 503
              min_arc = e;
438 504
            }
439 505
            if (_curr_length == _list_length) break;
440 506
          }
441 507
        }
442 508
        if (_curr_length < _list_length) {
443 509
          for (e = 0; e < _next_arc; ++e) {
444 510
            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
445 511
            if (c < 0) {
446 512
              _candidates[_curr_length++] = e;
447 513
              if (c < min) {
448 514
                min = c;
449 515
                min_arc = e;
450 516
              }
451 517
              if (_curr_length == _list_length) break;
452 518
            }
453 519
          }
454 520
        }
455 521
        if (_curr_length == 0) return false;
456 522
        _minor_count = 1;
457 523
        _in_arc = min_arc;
458 524
        _next_arc = e;
459 525
        return true;
460 526
      }
461 527

	
462 528
    }; //class CandidateListPivotRule
463 529

	
464 530

	
465 531
    // Implementation of the Altering Candidate List pivot rule
466 532
    class AlteringListPivotRule
467 533
    {
468 534
    private:
469 535

	
470 536
      // References to the NetworkSimplex class
471 537
      const IntVector  &_source;
472 538
      const IntVector  &_target;
473 539
      const CostVector &_cost;
474 540
      const IntVector  &_state;
475 541
      const CostVector &_pi;
476 542
      int &_in_arc;
477 543
      int _arc_num;
478 544

	
479 545
      // Pivot rule data
480 546
      int _block_size, _head_length, _curr_length;
481 547
      int _next_arc;
482 548
      IntVector _candidates;
483 549
      CostVector _cand_cost;
484 550

	
485 551
      // Functor class to compare arcs during sort of the candidate list
486 552
      class SortFunc
487 553
      {
488 554
      private:
489 555
        const CostVector &_map;
490 556
      public:
491 557
        SortFunc(const CostVector &map) : _map(map) {}
492 558
        bool operator()(int left, int right) {
493 559
          return _map[left] > _map[right];
494 560
        }
495 561
      };
496 562

	
497 563
      SortFunc _sort_func;
498 564

	
499 565
    public:
500 566

	
501 567
      // Constructor
502 568
      AlteringListPivotRule(NetworkSimplex &ns) :
503 569
        _source(ns._source), _target(ns._target),
504 570
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
505 571
        _in_arc(ns.in_arc), _arc_num(ns._arc_num),
506 572
        _next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost)
507 573
      {
508 574
        // The main parameters of the pivot rule
509 575
        const double BLOCK_SIZE_FACTOR = 1.5;
510 576
        const int MIN_BLOCK_SIZE = 10;
511 577
        const double HEAD_LENGTH_FACTOR = 0.1;
512 578
        const int MIN_HEAD_LENGTH = 3;
513 579

	
514 580
        _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)),
515 581
                                MIN_BLOCK_SIZE );
516 582
        _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
517 583
                                 MIN_HEAD_LENGTH );
518 584
        _candidates.resize(_head_length + _block_size);
519 585
        _curr_length = 0;
520 586
      }
521 587

	
522 588
      // Find next entering arc
523 589
      bool findEnteringArc() {
524 590
        // Check the current candidate list
525 591
        int e;
526 592
        for (int i = 0; i < _curr_length; ++i) {
527 593
          e = _candidates[i];
528 594
          _cand_cost[e] = _state[e] *
529 595
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
530 596
          if (_cand_cost[e] >= 0) {
531 597
            _candidates[i--] = _candidates[--_curr_length];
532 598
          }
533 599
        }
534 600

	
535 601
        // Extend the list
536 602
        int cnt = _block_size;
537 603
        int last_arc = 0;
538 604
        int limit = _head_length;
539 605

	
540 606
        for (int e = _next_arc; e < _arc_num; ++e) {
541 607
          _cand_cost[e] = _state[e] *
542 608
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
543 609
          if (_cand_cost[e] < 0) {
544 610
            _candidates[_curr_length++] = e;
545 611
            last_arc = e;
546 612
          }
547 613
          if (--cnt == 0) {
548 614
            if (_curr_length > limit) break;
549 615
            limit = 0;
550 616
            cnt = _block_size;
551 617
          }
552 618
        }
553 619
        if (_curr_length <= limit) {
554 620
          for (int e = 0; e < _next_arc; ++e) {
555 621
            _cand_cost[e] = _state[e] *
556 622
              (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
557 623
            if (_cand_cost[e] < 0) {
558 624
              _candidates[_curr_length++] = e;
559 625
              last_arc = e;
560 626
            }
561 627
            if (--cnt == 0) {
562 628
              if (_curr_length > limit) break;
563 629
              limit = 0;
564 630
              cnt = _block_size;
565 631
            }
566 632
          }
567 633
        }
568 634
        if (_curr_length == 0) return false;
569 635
        _next_arc = last_arc + 1;
570 636

	
571 637
        // Make heap of the candidate list (approximating a partial sort)
572 638
        make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
573 639
                   _sort_func );
574 640

	
575 641
        // Pop the first element of the heap
576 642
        _in_arc = _candidates[0];
577 643
        pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
578 644
                  _sort_func );
579 645
        _curr_length = std::min(_head_length, _curr_length - 1);
580 646
        return true;
581 647
      }
582 648

	
583 649
    }; //class AlteringListPivotRule
584 650

	
585 651
  public:
586 652

	
587 653
    /// \brief Constructor.
588 654
    ///
589
    /// Constructor.
655
    /// The constructor of the class.
590 656
    ///
591 657
    /// \param graph The digraph the algorithm runs on.
592 658
    NetworkSimplex(const GR& graph) :
593 659
      _graph(graph),
594 660
      _plower(NULL), _pupper(NULL), _pcost(NULL),
595
      _psupply(NULL), _pstsup(false),
661
      _psupply(NULL), _pstsup(false), _ptype(GEQ),
596 662
      _flow_map(NULL), _potential_map(NULL),
597 663
      _local_flow(false), _local_potential(false),
598 664
      _node_id(graph)
599 665
    {
600 666
      LEMON_ASSERT(std::numeric_limits<Flow>::is_integer &&
601 667
                   std::numeric_limits<Flow>::is_signed,
602 668
        "The flow type of NetworkSimplex must be signed integer");
603 669
      LEMON_ASSERT(std::numeric_limits<Cost>::is_integer &&
604 670
                   std::numeric_limits<Cost>::is_signed,
605 671
        "The cost type of NetworkSimplex must be signed integer");
606 672
    }
607 673

	
608 674
    /// Destructor.
609 675
    ~NetworkSimplex() {
610 676
      if (_local_flow) delete _flow_map;
611 677
      if (_local_potential) delete _potential_map;
612 678
    }
613 679

	
680
    /// \name Parameters
681
    /// The parameters of the algorithm can be specified using these
682
    /// functions.
683

	
684
    /// @{
685

	
614 686
    /// \brief Set the lower bounds on the arcs.
615 687
    ///
616 688
    /// This function sets the lower bounds on the arcs.
617 689
    /// If neither this function nor \ref boundMaps() is used before
618 690
    /// calling \ref run(), the lower bounds will be set to zero
619 691
    /// on all arcs.
620 692
    ///
621 693
    /// \param map An arc map storing the lower bounds.
622 694
    /// Its \c Value type must be convertible to the \c Flow type
623 695
    /// of the algorithm.
624 696
    ///
625 697
    /// \return <tt>(*this)</tt>
626 698
    template <typename LOWER>
627 699
    NetworkSimplex& lowerMap(const LOWER& map) {
628 700
      delete _plower;
629 701
      _plower = new FlowArcMap(_graph);
630 702
      for (ArcIt a(_graph); a != INVALID; ++a) {
631 703
        (*_plower)[a] = map[a];
632 704
      }
633 705
      return *this;
634 706
    }
635 707

	
636 708
    /// \brief Set the upper bounds (capacities) on the arcs.
637 709
    ///
638 710
    /// This function sets the upper bounds (capacities) on the arcs.
639 711
    /// If none of the functions \ref upperMap(), \ref capacityMap()
640 712
    /// and \ref boundMaps() is used before calling \ref run(),
641 713
    /// the upper bounds (capacities) will be set to
642 714
    /// \c std::numeric_limits<Flow>::max() on all arcs.
643 715
    ///
644 716
    /// \param map An arc map storing the upper bounds.
645 717
    /// Its \c Value type must be convertible to the \c Flow type
646 718
    /// of the algorithm.
647 719
    ///
648 720
    /// \return <tt>(*this)</tt>
649 721
    template<typename UPPER>
650 722
    NetworkSimplex& upperMap(const UPPER& map) {
651 723
      delete _pupper;
652 724
      _pupper = new FlowArcMap(_graph);
653 725
      for (ArcIt a(_graph); a != INVALID; ++a) {
654 726
        (*_pupper)[a] = map[a];
655 727
      }
656 728
      return *this;
657 729
    }
658 730

	
659 731
    /// \brief Set the upper bounds (capacities) on the arcs.
660 732
    ///
661 733
    /// This function sets the upper bounds (capacities) on the arcs.
662 734
    /// It is just an alias for \ref upperMap().
663 735
    ///
664 736
    /// \return <tt>(*this)</tt>
665 737
    template<typename CAP>
666 738
    NetworkSimplex& capacityMap(const CAP& map) {
667 739
      return upperMap(map);
668 740
    }
669 741

	
670 742
    /// \brief Set the lower and upper bounds on the arcs.
671 743
    ///
672 744
    /// This function sets the lower and upper bounds on the arcs.
673 745
    /// If neither this function nor \ref lowerMap() is used before
674 746
    /// calling \ref run(), the lower bounds will be set to zero
675 747
    /// on all arcs.
676 748
    /// If none of the functions \ref upperMap(), \ref capacityMap()
677 749
    /// and \ref boundMaps() is used before calling \ref run(),
678 750
    /// the upper bounds (capacities) will be set to
679 751
    /// \c std::numeric_limits<Flow>::max() on all arcs.
680 752
    ///
681 753
    /// \param lower An arc map storing the lower bounds.
682 754
    /// \param upper An arc map storing the upper bounds.
683 755
    ///
684 756
    /// The \c Value type of the maps must be convertible to the
685 757
    /// \c Flow type of the algorithm.
686 758
    ///
687 759
    /// \note This function is just a shortcut of calling \ref lowerMap()
688 760
    /// and \ref upperMap() separately.
689 761
    ///
690 762
    /// \return <tt>(*this)</tt>
691 763
    template <typename LOWER, typename UPPER>
692 764
    NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) {
693 765
      return lowerMap(lower).upperMap(upper);
694 766
    }
695 767

	
696 768
    /// \brief Set the costs of the arcs.
697 769
    ///
698 770
    /// This function sets the costs of the arcs.
699 771
    /// If it is not used before calling \ref run(), the costs
700 772
    /// will be set to \c 1 on all arcs.
701 773
    ///
702 774
    /// \param map An arc map storing the costs.
703 775
    /// Its \c Value type must be convertible to the \c Cost type
704 776
    /// of the algorithm.
705 777
    ///
706 778
    /// \return <tt>(*this)</tt>
707 779
    template<typename COST>
708 780
    NetworkSimplex& costMap(const COST& map) {
709 781
      delete _pcost;
710 782
      _pcost = new CostArcMap(_graph);
711 783
      for (ArcIt a(_graph); a != INVALID; ++a) {
712 784
        (*_pcost)[a] = map[a];
713 785
      }
714 786
      return *this;
715 787
    }
716 788

	
717 789
    /// \brief Set the supply values of the nodes.
718 790
    ///
719 791
    /// This function sets the supply values of the nodes.
720 792
    /// If neither this function nor \ref stSupply() is used before
721 793
    /// calling \ref run(), the supply of each node will be set to zero.
722 794
    /// (It makes sense only if non-zero lower bounds are given.)
723 795
    ///
724 796
    /// \param map A node map storing the supply values.
725 797
    /// Its \c Value type must be convertible to the \c Flow type
726 798
    /// of the algorithm.
727 799
    ///
728 800
    /// \return <tt>(*this)</tt>
729 801
    template<typename SUP>
730 802
    NetworkSimplex& supplyMap(const SUP& map) {
731 803
      delete _psupply;
732 804
      _pstsup = false;
733 805
      _psupply = new FlowNodeMap(_graph);
734 806
      for (NodeIt n(_graph); n != INVALID; ++n) {
735 807
        (*_psupply)[n] = map[n];
736 808
      }
737 809
      return *this;
738 810
    }
739 811

	
740 812
    /// \brief Set single source and target nodes and a supply value.
741 813
    ///
742 814
    /// This function sets a single source node and a single target node
743 815
    /// and the required flow value.
744 816
    /// If neither this function nor \ref supplyMap() is used before
745 817
    /// calling \ref run(), the supply of each node will be set to zero.
746 818
    /// (It makes sense only if non-zero lower bounds are given.)
747 819
    ///
748 820
    /// \param s The source node.
749 821
    /// \param t The target node.
750 822
    /// \param k The required amount of flow from node \c s to node \c t
751 823
    /// (i.e. the supply of \c s and the demand of \c t).
752 824
    ///
753 825
    /// \return <tt>(*this)</tt>
754 826
    NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) {
755 827
      delete _psupply;
756 828
      _psupply = NULL;
757 829
      _pstsup = true;
758 830
      _psource = s;
759 831
      _ptarget = t;
760 832
      _pstflow = k;
761 833
      return *this;
762 834
    }
835
    
836
    /// \brief Set the problem type.
837
    ///
838
    /// This function sets the problem type for the algorithm.
839
    /// If it is not used before calling \ref run(), the \ref GEQ problem
840
    /// type will be used.
841
    ///
842
    /// For more information see \ref ProblemType.
843
    ///
844
    /// \return <tt>(*this)</tt>
845
    NetworkSimplex& problemType(ProblemType problem_type) {
846
      _ptype = problem_type;
847
      return *this;
848
    }
763 849

	
764 850
    /// \brief Set the flow map.
765 851
    ///
766 852
    /// This function sets the flow map.
767 853
    /// If it is not used before calling \ref run(), an instance will
768 854
    /// be allocated automatically. The destructor deallocates this
769 855
    /// automatically allocated map, of course.
770 856
    ///
771 857
    /// \return <tt>(*this)</tt>
772 858
    NetworkSimplex& flowMap(FlowMap& map) {
773 859
      if (_local_flow) {
774 860
        delete _flow_map;
775 861
        _local_flow = false;
776 862
      }
777 863
      _flow_map = &map;
778 864
      return *this;
779 865
    }
780 866

	
781 867
    /// \brief Set the potential map.
782 868
    ///
783 869
    /// This function sets the potential map, which is used for storing
784 870
    /// the dual solution.
785 871
    /// If it is not used before calling \ref run(), an instance will
786 872
    /// be allocated automatically. The destructor deallocates this
787 873
    /// automatically allocated map, of course.
788 874
    ///
789 875
    /// \return <tt>(*this)</tt>
790 876
    NetworkSimplex& potentialMap(PotentialMap& map) {
791 877
      if (_local_potential) {
792 878
        delete _potential_map;
793 879
        _local_potential = false;
794 880
      }
795 881
      _potential_map = &map;
796 882
      return *this;
797 883
    }
884
    
885
    /// @}
798 886

	
799 887
    /// \name Execution Control
800 888
    /// The algorithm can be executed using \ref run().
801 889

	
802 890
    /// @{
803 891

	
804 892
    /// \brief Run the algorithm.
805 893
    ///
806 894
    /// This function runs the algorithm.
807
    /// The paramters can be specified using \ref lowerMap(),
895
    /// The paramters can be specified using functions \ref lowerMap(),
808 896
    /// \ref upperMap(), \ref capacityMap(), \ref boundMaps(),
809
    /// \ref costMap(), \ref supplyMap() and \ref stSupply()
810
    /// functions. For example,
897
    /// \ref costMap(), \ref supplyMap(), \ref stSupply(), 
898
    /// \ref problemType(), \ref flowMap() and \ref potentialMap().
899
    /// For example,
811 900
    /// \code
812 901
    ///   NetworkSimplex<ListDigraph> ns(graph);
813 902
    ///   ns.boundMaps(lower, upper).costMap(cost)
814 903
    ///     .supplyMap(sup).run();
815 904
    /// \endcode
816 905
    ///
817 906
    /// This function can be called more than once. All the parameters
818 907
    /// that have been given are kept for the next call, unless
819 908
    /// \ref reset() is called, thus only the modified parameters
820 909
    /// have to be set again. See \ref reset() for examples.
821 910
    ///
822 911
    /// \param pivot_rule The pivot rule that will be used during the
823 912
    /// algorithm. For more information see \ref PivotRule.
824 913
    ///
825 914
    /// \return \c true if a feasible flow can be found.
826 915
    bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
827 916
      return init() && start(pivot_rule);
828 917
    }
829 918

	
830 919
    /// \brief Reset all the parameters that have been given before.
831 920
    ///
832 921
    /// This function resets all the paramaters that have been given
833
    /// using \ref lowerMap(), \ref upperMap(), \ref capacityMap(),
834
    /// \ref boundMaps(), \ref costMap(), \ref supplyMap() and
835
    /// \ref stSupply() functions before.
922
    /// before using functions \ref lowerMap(), \ref upperMap(),
923
    /// \ref capacityMap(), \ref boundMaps(), \ref costMap(),
924
    /// \ref supplyMap(), \ref stSupply(), \ref problemType(), 
925
    /// \ref flowMap() and \ref potentialMap().
836 926
    ///
837 927
    /// It is useful for multiple run() calls. If this function is not
838 928
    /// used, all the parameters given before are kept for the next
839 929
    /// \ref run() call.
840 930
    ///
841 931
    /// For example,
842 932
    /// \code
843 933
    ///   NetworkSimplex<ListDigraph> ns(graph);
844 934
    ///
845 935
    ///   // First run
846 936
    ///   ns.lowerMap(lower).capacityMap(cap).costMap(cost)
847 937
    ///     .supplyMap(sup).run();
848 938
    ///
849 939
    ///   // Run again with modified cost map (reset() is not called,
850 940
    ///   // so only the cost map have to be set again)
851 941
    ///   cost[e] += 100;
852 942
    ///   ns.costMap(cost).run();
853 943
    ///
854 944
    ///   // Run again from scratch using reset()
855 945
    ///   // (the lower bounds will be set to zero on all arcs)
856 946
    ///   ns.reset();
857 947
    ///   ns.capacityMap(cap).costMap(cost)
858 948
    ///     .supplyMap(sup).run();
859 949
    /// \endcode
860 950
    ///
861 951
    /// \return <tt>(*this)</tt>
862 952
    NetworkSimplex& reset() {
863 953
      delete _plower;
864 954
      delete _pupper;
865 955
      delete _pcost;
866 956
      delete _psupply;
867 957
      _plower = NULL;
868 958
      _pupper = NULL;
869 959
      _pcost = NULL;
870 960
      _psupply = NULL;
871 961
      _pstsup = false;
962
      _ptype = GEQ;
963
      if (_local_flow) delete _flow_map;
964
      if (_local_potential) delete _potential_map;
965
      _flow_map = NULL;
966
      _potential_map = NULL;
967
      _local_flow = false;
968
      _local_potential = false;
969

	
872 970
      return *this;
873 971
    }
874 972

	
875 973
    /// @}
876 974

	
877 975
    /// \name Query Functions
878 976
    /// The results of the algorithm can be obtained using these
879 977
    /// functions.\n
880 978
    /// The \ref run() function must be called before using them.
881 979

	
882 980
    /// @{
883 981

	
884 982
    /// \brief Return the total cost of the found flow.
885 983
    ///
886 984
    /// This function returns the total cost of the found flow.
887 985
    /// The complexity of the function is O(e).
888 986
    ///
889 987
    /// \note The return type of the function can be specified as a
890 988
    /// template parameter. For example,
891 989
    /// \code
892 990
    ///   ns.totalCost<double>();
893 991
    /// \endcode
894 992
    /// It is useful if the total cost cannot be stored in the \c Cost
895 993
    /// type of the algorithm, which is the default return type of the
896 994
    /// function.
897 995
    ///
898 996
    /// \pre \ref run() must be called before using this function.
899 997
    template <typename Num>
900 998
    Num totalCost() const {
901 999
      Num c = 0;
902 1000
      if (_pcost) {
903 1001
        for (ArcIt e(_graph); e != INVALID; ++e)
904 1002
          c += (*_flow_map)[e] * (*_pcost)[e];
905 1003
      } else {
906 1004
        for (ArcIt e(_graph); e != INVALID; ++e)
907 1005
          c += (*_flow_map)[e];
908 1006
      }
909 1007
      return c;
910 1008
    }
911 1009

	
912 1010
#ifndef DOXYGEN
913 1011
    Cost totalCost() const {
914 1012
      return totalCost<Cost>();
915 1013
    }
916 1014
#endif
917 1015

	
918 1016
    /// \brief Return the flow on the given arc.
919 1017
    ///
920 1018
    /// This function returns the flow on the given arc.
921 1019
    ///
922 1020
    /// \pre \ref run() must be called before using this function.
923 1021
    Flow flow(const Arc& a) const {
924 1022
      return (*_flow_map)[a];
925 1023
    }
926 1024

	
927 1025
    /// \brief Return a const reference to the flow map.
928 1026
    ///
929 1027
    /// This function returns a const reference to an arc map storing
930 1028
    /// the found flow.
931 1029
    ///
932 1030
    /// \pre \ref run() must be called before using this function.
933 1031
    const FlowMap& flowMap() const {
934 1032
      return *_flow_map;
935 1033
    }
936 1034

	
937 1035
    /// \brief Return the potential (dual value) of the given node.
938 1036
    ///
939 1037
    /// This function returns the potential (dual value) of the
940 1038
    /// given node.
941 1039
    ///
942 1040
    /// \pre \ref run() must be called before using this function.
943 1041
    Cost potential(const Node& n) const {
944 1042
      return (*_potential_map)[n];
945 1043
    }
946 1044

	
947 1045
    /// \brief Return a const reference to the potential map
948 1046
    /// (the dual solution).
949 1047
    ///
950 1048
    /// This function returns a const reference to a node map storing
951 1049
    /// the found potentials, which form the dual solution of the
952 1050
    /// \ref min_cost_flow "minimum cost flow" problem.
953 1051
    ///
954 1052
    /// \pre \ref run() must be called before using this function.
955 1053
    const PotentialMap& potentialMap() const {
956 1054
      return *_potential_map;
957 1055
    }
958 1056

	
959 1057
    /// @}
960 1058

	
961 1059
  private:
962 1060

	
963 1061
    // Initialize internal data structures
964 1062
    bool init() {
965 1063
      // Initialize result maps
966 1064
      if (!_flow_map) {
967 1065
        _flow_map = new FlowMap(_graph);
968 1066
        _local_flow = true;
969 1067
      }
970 1068
      if (!_potential_map) {
971 1069
        _potential_map = new PotentialMap(_graph);
972 1070
        _local_potential = true;
973 1071
      }
974 1072

	
975 1073
      // Initialize vectors
976 1074
      _node_num = countNodes(_graph);
977 1075
      _arc_num = countArcs(_graph);
978 1076
      int all_node_num = _node_num + 1;
979 1077
      int all_arc_num = _arc_num + _node_num;
980 1078
      if (_node_num == 0) return false;
981 1079

	
982 1080
      _arc_ref.resize(_arc_num);
983 1081
      _source.resize(all_arc_num);
984 1082
      _target.resize(all_arc_num);
985 1083

	
986 1084
      _cap.resize(all_arc_num);
987 1085
      _cost.resize(all_arc_num);
988 1086
      _supply.resize(all_node_num);
989 1087
      _flow.resize(all_arc_num);
990 1088
      _pi.resize(all_node_num);
991 1089

	
992 1090
      _parent.resize(all_node_num);
993 1091
      _pred.resize(all_node_num);
994 1092
      _forward.resize(all_node_num);
995 1093
      _thread.resize(all_node_num);
996 1094
      _rev_thread.resize(all_node_num);
997 1095
      _succ_num.resize(all_node_num);
998 1096
      _last_succ.resize(all_node_num);
999 1097
      _state.resize(all_arc_num);
1000 1098

	
1001 1099
      // Initialize node related data
1002 1100
      bool valid_supply = true;
1101
      Flow sum_supply = 0;
1003 1102
      if (!_pstsup && !_psupply) {
1004 1103
        _pstsup = true;
1005 1104
        _psource = _ptarget = NodeIt(_graph);
1006 1105
        _pstflow = 0;
1007 1106
      }
1008 1107
      if (_psupply) {
1009
        Flow sum = 0;
1010 1108
        int i = 0;
1011 1109
        for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
1012 1110
          _node_id[n] = i;
1013 1111
          _supply[i] = (*_psupply)[n];
1014
          sum += _supply[i];
1112
          sum_supply += _supply[i];
1015 1113
        }
1016
        valid_supply = (sum == 0);
1114
        valid_supply = (_ptype == GEQ && sum_supply <= 0) ||
1115
                       (_ptype == LEQ && sum_supply >= 0);
1017 1116
      } else {
1018 1117
        int i = 0;
1019 1118
        for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
1020 1119
          _node_id[n] = i;
1021 1120
          _supply[i] = 0;
1022 1121
        }
1023 1122
        _supply[_node_id[_psource]] =  _pstflow;
1024
        _supply[_node_id[_ptarget]]   = -_pstflow;
1123
        _supply[_node_id[_ptarget]] = -_pstflow;
1025 1124
      }
1026 1125
      if (!valid_supply) return false;
1027 1126

	
1127
      // Infinite capacity value
1128
      Flow inf_cap =
1129
        std::numeric_limits<Flow>::has_infinity ?
1130
        std::numeric_limits<Flow>::infinity() :
1131
        std::numeric_limits<Flow>::max();
1132

	
1133
      // Initialize artifical cost
1134
      Cost art_cost;
1135
      if (std::numeric_limits<Cost>::is_exact) {
1136
        art_cost = std::numeric_limits<Cost>::max() / 4 + 1;
1137
      } else {
1138
        art_cost = std::numeric_limits<Cost>::min();
1139
        for (int i = 0; i != _arc_num; ++i) {
1140
          if (_cost[i] > art_cost) art_cost = _cost[i];
1141
        }
1142
        art_cost = (art_cost + 1) * _node_num;
1143
      }
1144

	
1145
      // Run Circulation to check if a feasible solution exists
1146
      typedef ConstMap<Arc, Flow> ConstArcMap;
1147
      FlowNodeMap *csup = NULL;
1148
      bool local_csup = false;
1149
      if (_psupply) {
1150
        csup = _psupply;
1151
      } else {
1152
        csup = new FlowNodeMap(_graph, 0);
1153
        (*csup)[_psource] =  _pstflow;
1154
        (*csup)[_ptarget] = -_pstflow;
1155
        local_csup = true;
1156
      }
1157
      bool circ_result = false;
1158
      if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) {
1159
        // GEQ problem type
1160
        if (_plower) {
1161
          if (_pupper) {
1162
            Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap>
1163
              circ(_graph, *_plower, *_pupper, *csup);
1164
            circ_result = circ.run();
1165
          } else {
1166
            Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap>
1167
              circ(_graph, *_plower, ConstArcMap(inf_cap), *csup);
1168
            circ_result = circ.run();
1169
          }
1170
        } else {
1171
          if (_pupper) {
1172
            Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap>
1173
              circ(_graph, ConstArcMap(0), *_pupper, *csup);
1174
            circ_result = circ.run();
1175
          } else {
1176
            Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap>
1177
              circ(_graph, ConstArcMap(0), ConstArcMap(inf_cap), *csup);
1178
            circ_result = circ.run();
1179
          }
1180
        }
1181
      } else {
1182
        // LEQ problem type
1183
        typedef ReverseDigraph<const GR> RevGraph;
1184
        typedef NegMap<FlowNodeMap> NegNodeMap;
1185
        RevGraph rgraph(_graph);
1186
        NegNodeMap neg_csup(*csup);
1187
        if (_plower) {
1188
          if (_pupper) {
1189
            Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap>
1190
              circ(rgraph, *_plower, *_pupper, neg_csup);
1191
            circ_result = circ.run();
1192
          } else {
1193
            Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap>
1194
              circ(rgraph, *_plower, ConstArcMap(inf_cap), neg_csup);
1195
            circ_result = circ.run();
1196
          }
1197
        } else {
1198
          if (_pupper) {
1199
            Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap>
1200
              circ(rgraph, ConstArcMap(0), *_pupper, neg_csup);
1201
            circ_result = circ.run();
1202
          } else {
1203
            Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap>
1204
              circ(rgraph, ConstArcMap(0), ConstArcMap(inf_cap), neg_csup);
1205
            circ_result = circ.run();
1206
          }
1207
        }
1208
      }
1209
      if (local_csup) delete csup;
1210
      if (!circ_result) return false;
1211

	
1028 1212
      // Set data for the artificial root node
1029 1213
      _root = _node_num;
1030 1214
      _parent[_root] = -1;
1031 1215
      _pred[_root] = -1;
1032 1216
      _thread[_root] = 0;
1033 1217
      _rev_thread[0] = _root;
1034 1218
      _succ_num[_root] = all_node_num;
1035 1219
      _last_succ[_root] = _root - 1;
1036
      _supply[_root] = 0;
1037
      _pi[_root] = 0;
1220
      _supply[_root] = -sum_supply;
1221
      if (sum_supply < 0) {
1222
        _pi[_root] = -art_cost;
1223
      } else {
1224
        _pi[_root] = art_cost;
1225
      }
1038 1226

	
1039 1227
      // Store the arcs in a mixed order
1040 1228
      int k = std::max(int(sqrt(_arc_num)), 10);
1041 1229
      int i = 0;
1042 1230
      for (ArcIt e(_graph); e != INVALID; ++e) {
1043 1231
        _arc_ref[i] = e;
1044 1232
        if ((i += k) >= _arc_num) i = (i % k) + 1;
1045 1233
      }
1046 1234

	
1047 1235
      // Initialize arc maps
1048
      Flow inf_cap =
1049
        std::numeric_limits<Flow>::has_infinity ?
1050
        std::numeric_limits<Flow>::infinity() :
1051
        std::numeric_limits<Flow>::max();
1052 1236
      if (_pupper && _pcost) {
1053 1237
        for (int i = 0; i != _arc_num; ++i) {
1054 1238
          Arc e = _arc_ref[i];
1055 1239
          _source[i] = _node_id[_graph.source(e)];
1056 1240
          _target[i] = _node_id[_graph.target(e)];
1057 1241
          _cap[i] = (*_pupper)[e];
1058 1242
          _cost[i] = (*_pcost)[e];
1059 1243
          _flow[i] = 0;
1060 1244
          _state[i] = STATE_LOWER;
1061 1245
        }
1062 1246
      } else {
1063 1247
        for (int i = 0; i != _arc_num; ++i) {
1064 1248
          Arc e = _arc_ref[i];
1065 1249
          _source[i] = _node_id[_graph.source(e)];
1066 1250
          _target[i] = _node_id[_graph.target(e)];
1067 1251
          _flow[i] = 0;
1068 1252
          _state[i] = STATE_LOWER;
1069 1253
        }
1070 1254
        if (_pupper) {
1071 1255
          for (int i = 0; i != _arc_num; ++i)
1072 1256
            _cap[i] = (*_pupper)[_arc_ref[i]];
1073 1257
        } else {
1074 1258
          for (int i = 0; i != _arc_num; ++i)
1075 1259
            _cap[i] = inf_cap;
1076 1260
        }
1077 1261
        if (_pcost) {
1078 1262
          for (int i = 0; i != _arc_num; ++i)
1079 1263
            _cost[i] = (*_pcost)[_arc_ref[i]];
1080 1264
        } else {
1081 1265
          for (int i = 0; i != _arc_num; ++i)
1082 1266
            _cost[i] = 1;
1083 1267
        }
1084 1268
      }
1085 1269
      
1086
      // Initialize artifical cost
1087
      Cost art_cost;
1088
      if (std::numeric_limits<Cost>::is_exact) {
1089
        art_cost = std::numeric_limits<Cost>::max() / 4 + 1;
1090
      } else {
1091
        art_cost = std::numeric_limits<Cost>::min();
1092
        for (int i = 0; i != _arc_num; ++i) {
1093
          if (_cost[i] > art_cost) art_cost = _cost[i];
1094
        }
1095
        art_cost = (art_cost + 1) * _node_num;
1096
      }
1097

	
1098 1270
      // Remove non-zero lower bounds
1099 1271
      if (_plower) {
1100 1272
        for (int i = 0; i != _arc_num; ++i) {
1101 1273
          Flow c = (*_plower)[_arc_ref[i]];
1102 1274
          if (c != 0) {
1103 1275
            _cap[i] -= c;
1104 1276
            _supply[_source[i]] -= c;
1105 1277
            _supply[_target[i]] += c;
1106 1278
          }
1107 1279
        }
1108 1280
      }
1109 1281

	
1110 1282
      // Add artificial arcs and initialize the spanning tree data structure
1111 1283
      for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1112 1284
        _thread[u] = u + 1;
1113 1285
        _rev_thread[u + 1] = u;
1114 1286
        _succ_num[u] = 1;
1115 1287
        _last_succ[u] = u;
1116 1288
        _parent[u] = _root;
1117 1289
        _pred[u] = e;
1118 1290
        _cost[e] = art_cost;
1119 1291
        _cap[e] = inf_cap;
1120 1292
        _state[e] = STATE_TREE;
1121
        if (_supply[u] >= 0) {
1293
        if (_supply[u] > 0 || (_supply[u] == 0 && sum_supply <= 0)) {
1122 1294
          _flow[e] = _supply[u];
1123 1295
          _forward[u] = true;
1124
          _pi[u] = -art_cost;
1296
          _pi[u] = -art_cost + _pi[_root];
1125 1297
        } else {
1126 1298
          _flow[e] = -_supply[u];
1127 1299
          _forward[u] = false;
1128
          _pi[u] = art_cost;
1300
          _pi[u] = art_cost + _pi[_root];
1129 1301
        }
1130 1302
      }
1131 1303

	
1132 1304
      return true;
1133 1305
    }
1134 1306

	
1135 1307
    // Find the join node
1136 1308
    void findJoinNode() {
1137 1309
      int u = _source[in_arc];
1138 1310
      int v = _target[in_arc];
1139 1311
      while (u != v) {
1140 1312
        if (_succ_num[u] < _succ_num[v]) {
1141 1313
          u = _parent[u];
1142 1314
        } else {
1143 1315
          v = _parent[v];
1144 1316
        }
1145 1317
      }
1146 1318
      join = u;
1147 1319
    }
1148 1320

	
1149 1321
    // Find the leaving arc of the cycle and returns true if the
1150 1322
    // leaving arc is not the same as the entering arc
1151 1323
    bool findLeavingArc() {
1152 1324
      // Initialize first and second nodes according to the direction
1153 1325
      // of the cycle
1154 1326
      if (_state[in_arc] == STATE_LOWER) {
1155 1327
        first  = _source[in_arc];
1156 1328
        second = _target[in_arc];
1157 1329
      } else {
1158 1330
        first  = _target[in_arc];
1159 1331
        second = _source[in_arc];
1160 1332
      }
1161 1333
      delta = _cap[in_arc];
1162 1334
      int result = 0;
1163 1335
      Flow d;
1164 1336
      int e;
1165 1337

	
1166 1338
      // Search the cycle along the path form the first node to the root
1167 1339
      for (int u = first; u != join; u = _parent[u]) {
1168 1340
        e = _pred[u];
1169 1341
        d = _forward[u] ? _flow[e] : _cap[e] - _flow[e];
1170 1342
        if (d < delta) {
1171 1343
          delta = d;
1172 1344
          u_out = u;
1173 1345
          result = 1;
1174 1346
        }
1175 1347
      }
1176 1348
      // Search the cycle along the path form the second node to the root
1177 1349
      for (int u = second; u != join; u = _parent[u]) {
1178 1350
        e = _pred[u];
1179 1351
        d = _forward[u] ? _cap[e] - _flow[e] : _flow[e];
1180 1352
        if (d <= delta) {
1181 1353
          delta = d;
1182 1354
          u_out = u;
1183 1355
          result = 2;
1184 1356
        }
1185 1357
      }
1186 1358

	
1187 1359
      if (result == 1) {
1188 1360
        u_in = first;
1189 1361
        v_in = second;
1190 1362
      } else {
1191 1363
        u_in = second;
1192 1364
        v_in = first;
1193 1365
      }
1194 1366
      return result != 0;
1195 1367
    }
1196 1368

	
1197 1369
    // Change _flow and _state vectors
1198 1370
    void changeFlow(bool change) {
1199 1371
      // Augment along the cycle
1200 1372
      if (delta > 0) {
1201 1373
        Flow val = _state[in_arc] * delta;
1202 1374
        _flow[in_arc] += val;
1203 1375
        for (int u = _source[in_arc]; u != join; u = _parent[u]) {
1204 1376
          _flow[_pred[u]] += _forward[u] ? -val : val;
1205 1377
        }
1206 1378
        for (int u = _target[in_arc]; u != join; u = _parent[u]) {
1207 1379
          _flow[_pred[u]] += _forward[u] ? val : -val;
1208 1380
        }
1209 1381
      }
1210 1382
      // Update the state of the entering and leaving arcs
1211 1383
      if (change) {
1212 1384
        _state[in_arc] = STATE_TREE;
1213 1385
        _state[_pred[u_out]] =
1214 1386
          (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
1215 1387
      } else {
1216 1388
        _state[in_arc] = -_state[in_arc];
1217 1389
      }
1218 1390
    }
1219 1391

	
1220 1392
    // Update the tree structure
1221 1393
    void updateTreeStructure() {
1222 1394
      int u, w;
1223 1395
      int old_rev_thread = _rev_thread[u_out];
1224 1396
      int old_succ_num = _succ_num[u_out];
1225 1397
      int old_last_succ = _last_succ[u_out];
1226 1398
      v_out = _parent[u_out];
1227 1399

	
1228 1400
      u = _last_succ[u_in];  // the last successor of u_in
1229 1401
      right = _thread[u];    // the node after it
1230 1402

	
1231 1403
      // Handle the case when old_rev_thread equals to v_in
1232 1404
      // (it also means that join and v_out coincide)
1233 1405
      if (old_rev_thread == v_in) {
1234 1406
        last = _thread[_last_succ[u_out]];
1235 1407
      } else {
1236 1408
        last = _thread[v_in];
1237 1409
      }
1238 1410

	
1239 1411
      // Update _thread and _parent along the stem nodes (i.e. the nodes
1240 1412
      // between u_in and u_out, whose parent have to be changed)
1241 1413
      _thread[v_in] = stem = u_in;
1242 1414
      _dirty_revs.clear();
1243 1415
      _dirty_revs.push_back(v_in);
1244 1416
      par_stem = v_in;
1245 1417
      while (stem != u_out) {
1246 1418
        // Insert the next stem node into the thread list
1247 1419
        new_stem = _parent[stem];
1248 1420
        _thread[u] = new_stem;
1249 1421
        _dirty_revs.push_back(u);
1250 1422

	
1251 1423
        // Remove the subtree of stem from the thread list
1252 1424
        w = _rev_thread[stem];
1253 1425
        _thread[w] = right;
1254 1426
        _rev_thread[right] = w;
1255 1427

	
1256 1428
        // Change the parent node and shift stem nodes
1257 1429
        _parent[stem] = par_stem;
1258 1430
        par_stem = stem;
1259 1431
        stem = new_stem;
1260 1432

	
1261 1433
        // Update u and right
1262 1434
        u = _last_succ[stem] == _last_succ[par_stem] ?
1263 1435
          _rev_thread[par_stem] : _last_succ[stem];
1264 1436
        right = _thread[u];
1265 1437
      }
1266 1438
      _parent[u_out] = par_stem;
1267 1439
      _thread[u] = last;
1268 1440
      _rev_thread[last] = u;
1269 1441
      _last_succ[u_out] = u;
1270 1442

	
1271 1443
      // Remove the subtree of u_out from the thread list except for
1272 1444
      // the case when old_rev_thread equals to v_in
1273 1445
      // (it also means that join and v_out coincide)
1274 1446
      if (old_rev_thread != v_in) {
1275 1447
        _thread[old_rev_thread] = right;
1276 1448
        _rev_thread[right] = old_rev_thread;
1277 1449
      }
1278 1450

	
1279 1451
      // Update _rev_thread using the new _thread values
1280 1452
      for (int i = 0; i < int(_dirty_revs.size()); ++i) {
1281 1453
        u = _dirty_revs[i];
1282 1454
        _rev_thread[_thread[u]] = u;
1283 1455
      }
1284 1456

	
1285 1457
      // Update _pred, _forward, _last_succ and _succ_num for the
1286 1458
      // stem nodes from u_out to u_in
1287 1459
      int tmp_sc = 0, tmp_ls = _last_succ[u_out];
1288 1460
      u = u_out;
1289 1461
      while (u != u_in) {
1290 1462
        w = _parent[u];
1291 1463
        _pred[u] = _pred[w];
1292 1464
        _forward[u] = !_forward[w];
1293 1465
        tmp_sc += _succ_num[u] - _succ_num[w];
1294 1466
        _succ_num[u] = tmp_sc;
1295 1467
        _last_succ[w] = tmp_ls;
1296 1468
        u = w;
1297 1469
      }
1298 1470
      _pred[u_in] = in_arc;
1299 1471
      _forward[u_in] = (u_in == _source[in_arc]);
1300 1472
      _succ_num[u_in] = old_succ_num;
1301 1473

	
1302 1474
      // Set limits for updating _last_succ form v_in and v_out
1303 1475
      // towards the root
1304 1476
      int up_limit_in = -1;
1305 1477
      int up_limit_out = -1;
1306 1478
      if (_last_succ[join] == v_in) {
1307 1479
        up_limit_out = join;
1308 1480
      } else {
1309 1481
        up_limit_in = join;
1310 1482
      }
1311 1483

	
1312 1484
      // Update _last_succ from v_in towards the root
1313 1485
      for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
1314 1486
           u = _parent[u]) {
1315 1487
        _last_succ[u] = _last_succ[u_out];
1316 1488
      }
1317 1489
      // Update _last_succ from v_out towards the root
1318 1490
      if (join != old_rev_thread && v_in != old_rev_thread) {
1319 1491
        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1320 1492
             u = _parent[u]) {
1321 1493
          _last_succ[u] = old_rev_thread;
1322 1494
        }
1323 1495
      } else {
1324 1496
        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1325 1497
             u = _parent[u]) {
1326 1498
          _last_succ[u] = _last_succ[u_out];
1327 1499
        }
1328 1500
      }
1329 1501

	
1330 1502
      // Update _succ_num from v_in to join
1331 1503
      for (u = v_in; u != join; u = _parent[u]) {
1332 1504
        _succ_num[u] += old_succ_num;
1333 1505
      }
1334 1506
      // Update _succ_num from v_out to join
1335 1507
      for (u = v_out; u != join; u = _parent[u]) {
1336 1508
        _succ_num[u] -= old_succ_num;
1337 1509
      }
1338 1510
    }
1339 1511

	
1340 1512
    // Update potentials
1341 1513
    void updatePotential() {
1342 1514
      Cost sigma = _forward[u_in] ?
1343 1515
        _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
1344 1516
        _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
1345 1517
      // Update potentials in the subtree, which has been moved
1346 1518
      int end = _thread[_last_succ[u_in]];
1347 1519
      for (int u = u_in; u != end; u = _thread[u]) {
1348 1520
        _pi[u] += sigma;
1349 1521
      }
1350 1522
    }
1351 1523

	
1352 1524
    // Execute the algorithm
1353 1525
    bool start(PivotRule pivot_rule) {
1354 1526
      // Select the pivot rule implementation
1355 1527
      switch (pivot_rule) {
1356 1528
        case FIRST_ELIGIBLE:
1357 1529
          return start<FirstEligiblePivotRule>();
1358 1530
        case BEST_ELIGIBLE:
1359 1531
          return start<BestEligiblePivotRule>();
1360 1532
        case BLOCK_SEARCH:
1361 1533
          return start<BlockSearchPivotRule>();
1362 1534
        case CANDIDATE_LIST:
1363 1535
          return start<CandidateListPivotRule>();
1364 1536
        case ALTERING_LIST:
1365 1537
          return start<AlteringListPivotRule>();
1366 1538
      }
1367 1539
      return false;
1368 1540
    }
1369 1541

	
1370 1542
    template <typename PivotRuleImpl>
1371 1543
    bool start() {
1372 1544
      PivotRuleImpl pivot(*this);
1373 1545

	
1374 1546
      // Execute the Network Simplex algorithm
1375 1547
      while (pivot.findEnteringArc()) {
1376 1548
        findJoinNode();
1377 1549
        bool change = findLeavingArc();
1378 1550
        changeFlow(change);
1379 1551
        if (change) {
1380 1552
          updateTreeStructure();
1381 1553
          updatePotential();
1382 1554
        }
1383 1555
      }
1384 1556

	
1385
      // Check if the flow amount equals zero on all the artificial arcs
1386
      for (int e = _arc_num; e != _arc_num + _node_num; ++e) {
1387
        if (_flow[e] > 0) return false;
1388
      }
1389

	
1390 1557
      // Copy flow values to _flow_map
1391 1558
      if (_plower) {
1392 1559
        for (int i = 0; i != _arc_num; ++i) {
1393 1560
          Arc e = _arc_ref[i];
1394 1561
          _flow_map->set(e, (*_plower)[e] + _flow[i]);
1395 1562
        }
1396 1563
      } else {
1397 1564
        for (int i = 0; i != _arc_num; ++i) {
1398 1565
          _flow_map->set(_arc_ref[i], _flow[i]);
1399 1566
        }
1400 1567
      }
1401 1568
      // Copy potential values to _potential_map
1402 1569
      for (NodeIt n(_graph); n != INVALID; ++n) {
1403 1570
        _potential_map->set(n, _pi[_node_id[n]]);
1404 1571
      }
1405 1572

	
1406 1573
      return true;
1407 1574
    }
1408 1575

	
1409 1576
  }; //class NetworkSimplex
1410 1577

	
1411 1578
  ///@}
1412 1579

	
1413 1580
} //namespace lemon
1414 1581

	
1415 1582
#endif //LEMON_NETWORK_SIMPLEX_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <iostream>
20 20
#include <fstream>
21 21

	
22 22
#include <lemon/list_graph.h>
23 23
#include <lemon/lgf_reader.h>
24 24

	
25 25
#include <lemon/network_simplex.h>
26 26

	
27 27
#include <lemon/concepts/digraph.h>
28 28
#include <lemon/concept_check.h>
29 29

	
30 30
#include "test_tools.h"
31 31

	
32 32
using namespace lemon;
33 33

	
34 34
char test_lgf[] =
35 35
  "@nodes\n"
36
  "label  sup1 sup2 sup3\n"
37
  "    1    20   27    0\n"
38
  "    2    -4    0    0\n"
39
  "    3     0    0    0\n"
40
  "    4     0    0    0\n"
41
  "    5     9    0    0\n"
42
  "    6    -6    0    0\n"
43
  "    7     0    0    0\n"
44
  "    8     0    0    0\n"
45
  "    9     3    0    0\n"
46
  "   10    -2    0    0\n"
47
  "   11     0    0    0\n"
48
  "   12   -20  -27    0\n"
36
  "label  sup1 sup2 sup3 sup4 sup5\n"
37
  "    1    20   27    0   20   30\n"
38
  "    2    -4    0    0   -8   -3\n"
39
  "    3     0    0    0    0    0\n"
40
  "    4     0    0    0    0    0\n"
41
  "    5     9    0    0    6   11\n"
42
  "    6    -6    0    0   -5   -6\n"
43
  "    7     0    0    0    0    0\n"
44
  "    8     0    0    0    0    3\n"
45
  "    9     3    0    0    0    0\n"
46
  "   10    -2    0    0   -7   -2\n"
47
  "   11     0    0    0  -10    0\n"
48
  "   12   -20  -27    0  -30  -20\n"
49 49
  "\n"
50 50
  "@arcs\n"
51 51
  "       cost  cap low1 low2\n"
52 52
  " 1  2    70   11    0    8\n"
53 53
  " 1  3   150    3    0    1\n"
54 54
  " 1  4    80   15    0    2\n"
55 55
  " 2  8    80   12    0    0\n"
56 56
  " 3  5   140    5    0    3\n"
57 57
  " 4  6    60   10    0    1\n"
58 58
  " 4  7    80    2    0    0\n"
59 59
  " 4  8   110    3    0    0\n"
60 60
  " 5  7    60   14    0    0\n"
61 61
  " 5 11   120   12    0    0\n"
62 62
  " 6  3     0    3    0    0\n"
63 63
  " 6  9   140    4    0    0\n"
64 64
  " 6 10    90    8    0    0\n"
65 65
  " 7  1    30    5    0    0\n"
66 66
  " 8 12    60   16    0    4\n"
67 67
  " 9 12    50    6    0    0\n"
68 68
  "10 12    70   13    0    5\n"
69 69
  "10  2   100    7    0    0\n"
70 70
  "10  7    60   10    0    0\n"
71 71
  "11 10    20   14    0    6\n"
72 72
  "12 11    30   10    0    0\n"
73 73
  "\n"
74 74
  "@attributes\n"
75 75
  "source 1\n"
76 76
  "target 12\n";
77 77

	
78 78

	
79
enum ProblemType {
80
  EQ,
81
  GEQ,
82
  LEQ
83
};
84

	
79 85
// Check the interface of an MCF algorithm
80 86
template <typename GR, typename Flow, typename Cost>
81 87
class McfClassConcept
82 88
{
83 89
public:
84 90

	
85 91
  template <typename MCF>
86 92
  struct Constraints {
87 93
    void constraints() {
88 94
      checkConcept<concepts::Digraph, GR>();
89 95

	
90 96
      MCF mcf(g);
91 97

	
92 98
      b = mcf.reset()
93 99
             .lowerMap(lower)
94 100
             .upperMap(upper)
95 101
             .capacityMap(upper)
96 102
             .boundMaps(lower, upper)
97 103
             .costMap(cost)
98 104
             .supplyMap(sup)
99 105
             .stSupply(n, n, k)
106
             .flowMap(flow)
107
             .potentialMap(pot)
100 108
             .run();
109
      
110
      const MCF& const_mcf = mcf;
101 111

	
102
      const typename MCF::FlowMap &fm = mcf.flowMap();
103
      const typename MCF::PotentialMap &pm = mcf.potentialMap();
112
      const typename MCF::FlowMap &fm = const_mcf.flowMap();
113
      const typename MCF::PotentialMap &pm = const_mcf.potentialMap();
104 114

	
105
      v = mcf.totalCost();
106
      double x = mcf.template totalCost<double>();
107
      v = mcf.flow(a);
108
      v = mcf.potential(n);
109
      mcf.flowMap(flow);
110
      mcf.potentialMap(pot);
115
      v = const_mcf.totalCost();
116
      double x = const_mcf.template totalCost<double>();
117
      v = const_mcf.flow(a);
118
      v = const_mcf.potential(n);
111 119

	
112 120
      ignore_unused_variable_warning(fm);
113 121
      ignore_unused_variable_warning(pm);
114 122
      ignore_unused_variable_warning(x);
115 123
    }
116 124

	
117 125
    typedef typename GR::Node Node;
118 126
    typedef typename GR::Arc Arc;
119 127
    typedef concepts::ReadMap<Node, Flow> NM;
120 128
    typedef concepts::ReadMap<Arc, Flow> FAM;
121 129
    typedef concepts::ReadMap<Arc, Cost> CAM;
122 130

	
123 131
    const GR &g;
124 132
    const FAM &lower;
125 133
    const FAM &upper;
126 134
    const CAM &cost;
127 135
    const NM &sup;
128 136
    const Node &n;
129 137
    const Arc &a;
130 138
    const Flow &k;
131 139
    Flow v;
132 140
    bool b;
133 141

	
134 142
    typename MCF::FlowMap &flow;
135 143
    typename MCF::PotentialMap &pot;
136 144
  };
137 145

	
138 146
};
139 147

	
140 148

	
141 149
// Check the feasibility of the given flow (primal soluiton)
142 150
template < typename GR, typename LM, typename UM,
143 151
           typename SM, typename FM >
144 152
bool checkFlow( const GR& gr, const LM& lower, const UM& upper,
145
                const SM& supply, const FM& flow )
153
                const SM& supply, const FM& flow,
154
                ProblemType type = EQ )
146 155
{
147 156
  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
148 157

	
149 158
  for (ArcIt e(gr); e != INVALID; ++e) {
150 159
    if (flow[e] < lower[e] || flow[e] > upper[e]) return false;
151 160
  }
152 161

	
153 162
  for (NodeIt n(gr); n != INVALID; ++n) {
154 163
    typename SM::Value sum = 0;
155 164
    for (OutArcIt e(gr, n); e != INVALID; ++e)
156 165
      sum += flow[e];
157 166
    for (InArcIt e(gr, n); e != INVALID; ++e)
158 167
      sum -= flow[e];
159
    if (sum != supply[n]) return false;
168
    bool b = (type ==  EQ && sum == supply[n]) ||
169
             (type == GEQ && sum >= supply[n]) ||
170
             (type == LEQ && sum <= supply[n]);
171
    if (!b) return false;
160 172
  }
161 173

	
162 174
  return true;
163 175
}
164 176

	
165 177
// Check the feasibility of the given potentials (dual soluiton)
166 178
// using the "Complementary Slackness" optimality condition
167 179
template < typename GR, typename LM, typename UM,
168
           typename CM, typename FM, typename PM >
180
           typename CM, typename SM, typename FM, typename PM >
169 181
bool checkPotential( const GR& gr, const LM& lower, const UM& upper,
170
                     const CM& cost, const FM& flow, const PM& pi )
182
                     const CM& cost, const SM& supply, const FM& flow, 
183
                     const PM& pi )
171 184
{
172 185
  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
173 186

	
174 187
  bool opt = true;
175 188
  for (ArcIt e(gr); opt && e != INVALID; ++e) {
176 189
    typename CM::Value red_cost =
177 190
      cost[e] + pi[gr.source(e)] - pi[gr.target(e)];
178 191
    opt = red_cost == 0 ||
179 192
          (red_cost > 0 && flow[e] == lower[e]) ||
180 193
          (red_cost < 0 && flow[e] == upper[e]);
181 194
  }
195
  
196
  for (NodeIt n(gr); opt && n != INVALID; ++n) {
197
    typename SM::Value sum = 0;
198
    for (OutArcIt e(gr, n); e != INVALID; ++e)
199
      sum += flow[e];
200
    for (InArcIt e(gr, n); e != INVALID; ++e)
201
      sum -= flow[e];
202
    opt = (sum == supply[n]) || (pi[n] == 0);
203
  }
204
  
182 205
  return opt;
183 206
}
184 207

	
185 208
// Run a minimum cost flow algorithm and check the results
186 209
template < typename MCF, typename GR,
187 210
           typename LM, typename UM,
188 211
           typename CM, typename SM >
189 212
void checkMcf( const MCF& mcf, bool mcf_result,
190 213
               const GR& gr, const LM& lower, const UM& upper,
191 214
               const CM& cost, const SM& supply,
192 215
               bool result, typename CM::Value total,
193
               const std::string &test_id = "" )
216
               const std::string &test_id = "",
217
               ProblemType type = EQ )
194 218
{
195 219
  check(mcf_result == result, "Wrong result " + test_id);
196 220
  if (result) {
197
    check(checkFlow(gr, lower, upper, supply, mcf.flowMap()),
221
    check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type),
198 222
          "The flow is not feasible " + test_id);
199 223
    check(mcf.totalCost() == total, "The flow is not optimal " + test_id);
200
    check(checkPotential(gr, lower, upper, cost, mcf.flowMap(),
224
    check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(),
201 225
                         mcf.potentialMap()),
202 226
          "Wrong potentials " + test_id);
203 227
  }
204 228
}
205 229

	
206 230
int main()
207 231
{
208 232
  // Check the interfaces
209 233
  {
210 234
    typedef int Flow;
211 235
    typedef int Cost;
212 236
    // TODO: This typedef should be enabled if the standard maps are
213 237
    // reference maps in the graph concepts (See #190).
214 238
/**/
215 239
    //typedef concepts::Digraph GR;
216 240
    typedef ListDigraph GR;
217 241
/**/
218 242
    checkConcept< McfClassConcept<GR, Flow, Cost>,
219 243
                  NetworkSimplex<GR, Flow, Cost> >();
220 244
  }
221 245

	
222 246
  // Run various MCF tests
223 247
  typedef ListDigraph Digraph;
224 248
  DIGRAPH_TYPEDEFS(ListDigraph);
225 249

	
226 250
  // Read the test digraph
227 251
  Digraph gr;
228 252
  Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr);
229
  Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr);
253
  Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr);
230 254
  ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max());
231 255
  Node v, w;
232 256

	
233 257
  std::istringstream input(test_lgf);
234 258
  DigraphReader<Digraph>(gr, input)
235 259
    .arcMap("cost", c)
236 260
    .arcMap("cap", u)
237 261
    .arcMap("low1", l1)
238 262
    .arcMap("low2", l2)
239 263
    .nodeMap("sup1", s1)
240 264
    .nodeMap("sup2", s2)
241 265
    .nodeMap("sup3", s3)
266
    .nodeMap("sup4", s4)
267
    .nodeMap("sup5", s5)
242 268
    .node("source", v)
243 269
    .node("target", w)
244 270
    .run();
245 271

	
246 272
  // A. Test NetworkSimplex with the default pivot rule
247 273
  {
248 274
    NetworkSimplex<Digraph> mcf(gr);
249 275

	
276
    // Check the equality form
250 277
    mcf.upperMap(u).costMap(c);
251 278
    checkMcf(mcf, mcf.supplyMap(s1).run(),
252 279
             gr, l1, u, c, s1, true,  5240, "#A1");
253 280
    checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
254 281
             gr, l1, u, c, s2, true,  7620, "#A2");
255 282
    mcf.lowerMap(l2);
256 283
    checkMcf(mcf, mcf.supplyMap(s1).run(),
257 284
             gr, l2, u, c, s1, true,  5970, "#A3");
258 285
    checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
259 286
             gr, l2, u, c, s2, true,  8010, "#A4");
260 287
    mcf.reset();
261 288
    checkMcf(mcf, mcf.supplyMap(s1).run(),
262 289
             gr, l1, cu, cc, s1, true,  74, "#A5");
263 290
    checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(),
264 291
             gr, l2, cu, cc, s2, true,  94, "#A6");
265 292
    mcf.reset();
266 293
    checkMcf(mcf, mcf.run(),
267 294
             gr, l1, cu, cc, s3, true,   0, "#A7");
268 295
    checkMcf(mcf, mcf.boundMaps(l2, u).run(),
269 296
             gr, l2, u, cc, s3, false,   0, "#A8");
297

	
298
    // Check the GEQ form
299
    mcf.reset().upperMap(u).costMap(c).supplyMap(s4);
300
    checkMcf(mcf, mcf.run(),
301
             gr, l1, u, c, s4, true,  3530, "#A9", GEQ);
302
    mcf.problemType(mcf.GEQ);
303
    checkMcf(mcf, mcf.lowerMap(l2).run(),
304
             gr, l2, u, c, s4, true,  4540, "#A10", GEQ);
305
    mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5);
306
    checkMcf(mcf, mcf.run(),
307
             gr, l2, u, c, s5, false,    0, "#A11", GEQ);
308

	
309
    // Check the LEQ form
310
    mcf.reset().problemType(mcf.LEQ);
311
    mcf.upperMap(u).costMap(c).supplyMap(s5);
312
    checkMcf(mcf, mcf.run(),
313
             gr, l1, u, c, s5, true,  5080, "#A12", LEQ);
314
    checkMcf(mcf, mcf.lowerMap(l2).run(),
315
             gr, l2, u, c, s5, true,  5930, "#A13", LEQ);
316
    mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4);
317
    checkMcf(mcf, mcf.run(),
318
             gr, l2, u, c, s4, false,    0, "#A14", LEQ);
270 319
  }
271 320

	
272 321
  // B. Test NetworkSimplex with each pivot rule
273 322
  {
274 323
    NetworkSimplex<Digraph> mcf(gr);
275 324
    mcf.supplyMap(s1).costMap(c).capacityMap(u).lowerMap(l2);
276 325

	
277 326
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE),
278 327
             gr, l2, u, c, s1, true,  5970, "#B1");
279 328
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE),
280 329
             gr, l2, u, c, s1, true,  5970, "#B2");
281 330
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH),
282 331
             gr, l2, u, c, s1, true,  5970, "#B3");
283 332
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST),
284 333
             gr, l2, u, c, s1, true,  5970, "#B4");
285 334
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST),
286 335
             gr, l2, u, c, s1, true,  5970, "#B5");
287 336
  }
288 337

	
289 338
  return 0;
290 339
}
0 comments (0 inline)