Hoffman's circulation theorem

From Egres Open
Jump to: navigation, search

Let [math]D=(V,A)[/math] be a digraph. a circulation in [math]D[/math] is a function [math]x: A \to {\mathbb R}[/math] for which [math]\varrho_x(v)=\delta_x(v)[/math] for every [math]v\in V[/math] (see Help:Notation). The following theorem was proved by Hoffman in 1956 and cited in [1].

Theorem (Hoffman [1]). [math]Let D=(V,A)[/math] be a digraph, with lower bound [math]l: A \to {\mathbb R}[/math] and upper bounds [math]u: A \to {\mathbb R}[/math] on the edges such that [math]l \leq u[/math]. There exists a circulation [math]x[/math] satisfying [math]l(a) \leq x(a) \leq u(a)[/math] for every [math]a \in A[/math] if and only if

[math]\varrho_f(Z) \leq \delta_g(Z) \text{ for every } Z \subseteq V.[/math]

If [math]u[/math] and [math]l[/math] are integer-valued, then [math]x[/math] can be integer-valued too.

References

  1. 1.0 1.1 A. J. Hoffman, Some recent applications of the theory of linear inequalities to extremal combinatorial analysis, Proc. Symp. in Applied Mathematics, Amer. Math. Soc. (1960), 113-127.