Changes

Jump to: navigation, search

Upper bound on the divisorial gonality of a graph

1 byte added, 11:06, 4 November 2016
* There is also a more general version of the conjecture in <ref name="B08"/>:
'''Brill-Noether Conjecture for Graphs''' Fix integers <math>g, r, d \geq 0</math>, and set
<math>\varrho(g, r, d) = g − (r + 1)(g − d + r)</math>. Then:
(1) If <math>\varrho(g, r, d) \geq 0</math>, then every graph of genus <math>g</math> has a divisor <math>D</math> with <math>\rm{rank}(D) = r</math> and <math>\deg(D) \leq d</math>.
(2) If <math>\varrho(g, r, d) < 0</math>, then there exists a graph of genus <math>g</math> for which there is no divisor D with <math>\rm{rank}(D) = r</math> and <math>\deg(D) \leq d</math>.
Egresuser
179
edits