Supermodular colouring theorem
Theorem (Schrijver [1]). Let [math]p_1[/math] and [math]p_2[/math] be integer intersecting supermodular set functions on ground set S such that [math]\max\{p_1(X),p_2(X)\}\leq \min\{|X|,k\}[/math] for every [math]X \subseteq S[/math]. Then S can be partitioned into k sets [math]S_1,\dots,S_k[/math] such that [math]|\{i: S_i \cap X \neq \emptyset\}| \geq \max\{p_1(X), p_2(X)\}[/math] for every [math]X \subseteq S[/math].
Bernáth and Király [2] proved the following extension of the theorem.
Theorem. Let [math]p_1[/math] and [math]p_2[/math] be integer skew-supermodular set functions on ground set S, both with maximal value k. Let furthermore [math]y \in {\mathbb Z}^S[/math] be a vector with [math]0 \leq y \leq k[/math] and [math]y(X) \geq \max\{p_1(X), p_2(X)\}[/math] for every [math]X \subseteq S[/math]. Then there is a nearly uniform hypergraph H=(S,E) containing k hyperedges such that [math]|\{e \in E: e \cap X \neq \emptyset\}| \geq \max\{p_1(X), p_2(X)\}[/math] for every [math]X \subseteq S[/math] and [math]d_H(s) \leq y(s)[/math] for every [math]s \in S[/math].
Another generalization was found by Frank, Király, Pap, and Pritchard [3]:
Theorem. Let [math]p_1[/math] and [math]p_2[/math] be integer set functions on ground set S such that
- [math]\max\{p_1(X),p_2(X)\}\leq \min\{|X|,k\}[/math] for every [math]X \subseteq S[/math], and
- for [math]i \in\{1,2\}[/math] and for any intersecting [math]X,Y[/math] there exist [math]U \subseteq X \cup Y[/math] and [math]I \subseteq X \cap Y[/math] such that [math]p_i(U)+p_i(I) \geq p_i(X)+p_i(Y)[/math].
Then S can be partitioned into k sets [math]S_1,\dots,S_k[/math] such that [math]|\{i: S_i \cap X \neq \emptyset\}| \geq \max\{p_1(X), p_2(X)\}[/math] for every [math]X \subseteq S[/math].
References
- ↑ A. Schrijver, Supermodular colourings, in: Matroid theory (Szeged, 1982), Colloq. Math. Soc. János Bolyai, vol. 40, North-Holland, Amsterdam, 1985, pp. 327-343.
- ↑ A. Bernáth, T. Király, Covering skew-supermodular functions by hypergraphs of minimum total size, Operations Research Letters 37 (2009), 345-350. DOI link. EGRES Technical Report.
- ↑ A. Frank, T. Király, J. Pap, D. Pritchard, Characterizing and recognizing generalized polymatroids, DOI link, EGRES Technical Report.