Mader's S-paths theorem

From Egres Open
Jump to: navigation, search

Let [math]G=(V,E)[/math] be an undirected graph, and let [math]{\mathcal S}[/math] be a collection of disjoint subsets of [math]V[/math]. A partition [math]V_0,V_1,\dots,V_k[/math] of [math]V[/math] is called [math]{\mathcal S}[/math]-feasible if every [math]{\mathcal S}[/math]-path contains a node in [math]V_0[/math] or an edge in [math]E[V_i][/math] for some [math]i[/math]. We use the notation

[math]V'_i=V_i \cap (S \cup N(V \setminus (V_0 \cup V_i))).[/math]

Theorem (Mader [1]). The maximum number of node-disjoint [math]{\mathcal S}[/math]-paths equals the minimum, taken over all [math]{\mathcal S}[/math]-feasible partitions [math]V_0,V_1,\dots,V_k[/math], of

[math]|V_0|+\sum_{i=1}^k \left\lfloor \frac{|V'_i|}{2}\right\rfloor .[/math]

Notes

A short proof of the theorem can be found in [2]. Lovász [3] showed that the problem can be reduced to matroid matching, which implies a polynomial algorithm. A randomized algorithm with running time [math]O(n^{\omega})[/math] (where [math]\omega[/math] is the smallest known exponent for matrix multiplication) is presented in [4]. There are also combinatorial polynomial-time algorithms that solve generalizations to group-labeled graphs [5] [6].

References

  1. W. Mader, Über die Maximalzahl kreuzungsfreier H-Wege, Arch. Math. 31 (1978), 387-402, DOI link
  2. A. Schrijver, A short proof of Mader's S-paths theorem, DOI link, author link
  3. L. Lovász, Matroid matching and some applications, DOI link
  4. H.Y. Cheung, L.C. Lau, K.M. Leung, Algebraic algorithms for linear matroid parity problems, DOI link, author link
  5. M. Chudnovsky, W.H. Cunningham, J. Geelen, An algorithm for packing non-zero A-paths in group-labelled graphs, DOI link, author link
  6. Gy. Pap, Packing non-returning A-paths algorithmically, DOI link, conference version