lemon/list_graph.h
author deba
Fri, 30 Jun 2006 12:15:45 +0000
changeset 2116 b6a68c15a6a3
parent 2115 4cd528a30ec1
child 2117 96efb4fa0736
permissions -rw-r--r--
Revert splitted files
alpar@948
     1
/* -*- C++ -*-
alpar@948
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@948
     8
 *
alpar@948
     9
 * Permission to use, modify and distribute this software is granted
alpar@948
    10
 * provided that this copyright notice appears in all copies. For
alpar@948
    11
 * precise terms see the accompanying LICENSE file.
alpar@948
    12
 *
alpar@948
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@948
    14
 * express or implied, and with no claim as to its suitability for any
alpar@948
    15
 * purpose.
alpar@948
    16
 *
alpar@948
    17
 */
alpar@395
    18
alpar@921
    19
#ifndef LEMON_LIST_GRAPH_H
alpar@921
    20
#define LEMON_LIST_GRAPH_H
alpar@395
    21
alpar@948
    22
///\ingroup graphs
alpar@948
    23
///\file
deba@2116
    24
///\brief ListGraph, ListUGraph classes.
alpar@948
    25
deba@2116
    26
#include <lemon/bits/base_extender.h>
deba@1791
    27
#include <lemon/bits/graph_extender.h>
deba@782
    28
deba@2116
    29
#include <lemon/error.h>
deba@2116
    30
deba@1979
    31
#include <vector>
alpar@1011
    32
#include <list>
deba@782
    33
alpar@921
    34
namespace lemon {
alpar@395
    35
klao@946
    36
  class ListGraphBase {
alpar@406
    37
alpar@949
    38
  protected:
klao@946
    39
    struct NodeT {
deba@1470
    40
      int first_in, first_out;
alpar@397
    41
      int prev, next;
alpar@395
    42
    };
klao@946
    43
 
klao@946
    44
    struct EdgeT {
alpar@986
    45
      int target, source;
alpar@397
    46
      int prev_in, prev_out;
alpar@397
    47
      int next_in, next_out;
alpar@395
    48
    };
alpar@395
    49
alpar@395
    50
    std::vector<NodeT> nodes;
klao@946
    51
alpar@397
    52
    int first_node;
klao@946
    53
alpar@397
    54
    int first_free_node;
klao@946
    55
alpar@395
    56
    std::vector<EdgeT> edges;
klao@946
    57
alpar@397
    58
    int first_free_edge;
alpar@395
    59
    
deba@782
    60
  public:
alpar@395
    61
    
klao@946
    62
    typedef ListGraphBase Graph;
alpar@397
    63
    
klao@946
    64
    class Node {
marci@975
    65
      friend class ListGraphBase;
klao@946
    66
    protected:
alpar@395
    67
klao@946
    68
      int id;
deba@2031
    69
      explicit Node(int pid) { id = pid;}
alpar@395
    70
klao@946
    71
    public:
klao@946
    72
      Node() {}
klao@946
    73
      Node (Invalid) { id = -1; }
klao@946
    74
      bool operator==(const Node& node) const {return id == node.id;}
klao@946
    75
      bool operator!=(const Node& node) const {return id != node.id;}
klao@946
    76
      bool operator<(const Node& node) const {return id < node.id;}
klao@946
    77
    };
deba@782
    78
klao@946
    79
    class Edge {
marci@975
    80
      friend class ListGraphBase;
klao@946
    81
    protected:
deba@782
    82
klao@946
    83
      int id;
deba@2031
    84
      explicit Edge(int pid) { id = pid;}
alpar@395
    85
klao@946
    86
    public:
klao@946
    87
      Edge() {}
klao@946
    88
      Edge (Invalid) { id = -1; }
klao@946
    89
      bool operator==(const Edge& edge) const {return id == edge.id;}
klao@946
    90
      bool operator!=(const Edge& edge) const {return id != edge.id;}
klao@946
    91
      bool operator<(const Edge& edge) const {return id < edge.id;}
klao@946
    92
    };
klao@946
    93
klao@946
    94
klao@946
    95
klao@946
    96
    ListGraphBase()
deba@782
    97
      : nodes(), first_node(-1),
deba@782
    98
	first_free_node(-1), edges(), first_free_edge(-1) {}
deba@782
    99
alpar@395
   100
    
alpar@813
   101
    /// Maximum node ID.
alpar@813
   102
    
alpar@813
   103
    /// Maximum node ID.
alpar@813
   104
    ///\sa id(Node)
deba@1791
   105
    int maxNodeId() const { return nodes.size()-1; } 
klao@946
   106
alpar@813
   107
    /// Maximum edge ID.
alpar@813
   108
    
alpar@813
   109
    /// Maximum edge ID.
alpar@813
   110
    ///\sa id(Edge)
deba@1791
   111
    int maxEdgeId() const { return edges.size()-1; }
alpar@395
   112
deba@2031
   113
    Node source(Edge e) const { return Node(edges[e.id].source); }
deba@2031
   114
    Node target(Edge e) const { return Node(edges[e.id].target); }
alpar@395
   115
alpar@395
   116
klao@946
   117
    void first(Node& node) const { 
klao@946
   118
      node.id = first_node;
klao@946
   119
    }
klao@946
   120
klao@946
   121
    void next(Node& node) const {
klao@946
   122
      node.id = nodes[node.id].next;
klao@946
   123
    }
klao@946
   124
klao@946
   125
klao@946
   126
    void first(Edge& e) const { 
klao@946
   127
      int n;
klao@946
   128
      for(n = first_node; 
klao@946
   129
	  n!=-1 && nodes[n].first_in == -1; 
klao@946
   130
	  n = nodes[n].next);
klao@946
   131
      e.id = (n == -1) ? -1 : nodes[n].first_in;
klao@946
   132
    }
klao@946
   133
klao@946
   134
    void next(Edge& edge) const {
klao@946
   135
      if (edges[edge.id].next_in != -1) {
klao@946
   136
	edge.id = edges[edge.id].next_in;
klao@946
   137
      } else {
klao@946
   138
	int n;
alpar@986
   139
	for(n = nodes[edges[edge.id].target].next;
klao@946
   140
	  n!=-1 && nodes[n].first_in == -1; 
klao@946
   141
	  n = nodes[n].next);
klao@946
   142
	edge.id = (n == -1) ? -1 : nodes[n].first_in;
klao@946
   143
      }      
klao@946
   144
    }
klao@946
   145
klao@946
   146
    void firstOut(Edge &e, const Node& v) const {
klao@946
   147
      e.id = nodes[v.id].first_out;
klao@946
   148
    }
klao@946
   149
    void nextOut(Edge &e) const {
klao@946
   150
      e.id=edges[e.id].next_out;
klao@946
   151
    }
klao@946
   152
klao@946
   153
    void firstIn(Edge &e, const Node& v) const {
klao@946
   154
      e.id = nodes[v.id].first_in;
klao@946
   155
    }
klao@946
   156
    void nextIn(Edge &e) const {
klao@946
   157
      e.id=edges[e.id].next_in;
klao@946
   158
    }
klao@946
   159
alpar@813
   160
    
klao@946
   161
    static int id(Node v) { return v.id; }
klao@946
   162
    static int id(Edge e) { return e.id; }
alpar@395
   163
deba@1791
   164
    static Node nodeFromId(int id) { return Node(id);}
deba@1791
   165
    static Edge edgeFromId(int id) { return Edge(id);}
deba@1106
   166
alpar@397
   167
    /// Adds a new node to the graph.
alpar@397
   168
alpar@813
   169
    /// \warning It adds the new node to the front of the list.
alpar@397
   170
    /// (i.e. the lastly added node becomes the first.)
klao@946
   171
    Node addNode() {     
alpar@397
   172
      int n;
alpar@397
   173
      
klao@946
   174
      if(first_free_node==-1) {
klao@946
   175
	n = nodes.size();
klao@946
   176
	nodes.push_back(NodeT());
klao@946
   177
      } else {
alpar@397
   178
	n = first_free_node;
alpar@397
   179
	first_free_node = nodes[n].next;
alpar@397
   180
      }
alpar@397
   181
      
alpar@397
   182
      nodes[n].next = first_node;
alpar@397
   183
      if(first_node != -1) nodes[first_node].prev = n;
alpar@397
   184
      first_node = n;
alpar@397
   185
      nodes[n].prev = -1;
alpar@397
   186
      
alpar@397
   187
      nodes[n].first_in = nodes[n].first_out = -1;
alpar@397
   188
      
klao@946
   189
      return Node(n);
alpar@395
   190
    }
alpar@395
   191
    
alpar@395
   192
    Edge addEdge(Node u, Node v) {
klao@946
   193
      int n;      
klao@946
   194
klao@946
   195
      if (first_free_edge == -1) {
klao@946
   196
	n = edges.size();
klao@946
   197
	edges.push_back(EdgeT());
klao@946
   198
      } else {
alpar@397
   199
	n = first_free_edge;
alpar@397
   200
	first_free_edge = edges[n].next_in;
alpar@397
   201
      }
alpar@397
   202
      
alpar@986
   203
      edges[n].source = u.id; 
alpar@986
   204
      edges[n].target = v.id;
alpar@395
   205
klao@946
   206
      edges[n].next_out = nodes[u.id].first_out;
klao@946
   207
      if(nodes[u.id].first_out != -1) {
klao@946
   208
	edges[nodes[u.id].first_out].prev_out = n;
klao@946
   209
      }
klao@946
   210
      
klao@946
   211
      edges[n].next_in = nodes[v.id].first_in;
klao@946
   212
      if(nodes[v.id].first_in != -1) {
klao@946
   213
	edges[nodes[v.id].first_in].prev_in = n;
klao@946
   214
      }
klao@946
   215
      
alpar@397
   216
      edges[n].prev_in = edges[n].prev_out = -1;
alpar@397
   217
	
klao@946
   218
      nodes[u.id].first_out = nodes[v.id].first_in = n;
alpar@397
   219
klao@946
   220
      return Edge(n);
alpar@395
   221
    }
alpar@774
   222
    
klao@946
   223
    void erase(const Node& node) {
klao@946
   224
      int n = node.id;
klao@946
   225
      
klao@946
   226
      if(nodes[n].next != -1) {
klao@946
   227
	nodes[nodes[n].next].prev = nodes[n].prev;
klao@946
   228
      }
klao@946
   229
      
klao@946
   230
      if(nodes[n].prev != -1) {
klao@946
   231
	nodes[nodes[n].prev].next = nodes[n].next;
klao@946
   232
      } else {
klao@946
   233
	first_node = nodes[n].next;
klao@946
   234
      }
klao@946
   235
      
klao@946
   236
      nodes[n].next = first_free_node;
klao@946
   237
      first_free_node = n;
alpar@395
   238
alpar@774
   239
    }
alpar@774
   240
    
klao@946
   241
    void erase(const Edge& edge) {
klao@946
   242
      int n = edge.id;
alpar@397
   243
      
klao@946
   244
      if(edges[n].next_in!=-1) {
alpar@397
   245
	edges[edges[n].next_in].prev_in = edges[n].prev_in;
klao@946
   246
      }
klao@946
   247
klao@946
   248
      if(edges[n].prev_in!=-1) {
alpar@397
   249
	edges[edges[n].prev_in].next_in = edges[n].next_in;
klao@946
   250
      } else {
alpar@986
   251
	nodes[edges[n].target].first_in = edges[n].next_in;
klao@946
   252
      }
klao@946
   253
alpar@397
   254
      
klao@946
   255
      if(edges[n].next_out!=-1) {
alpar@397
   256
	edges[edges[n].next_out].prev_out = edges[n].prev_out;
klao@946
   257
      } 
klao@946
   258
klao@946
   259
      if(edges[n].prev_out!=-1) {
alpar@397
   260
	edges[edges[n].prev_out].next_out = edges[n].next_out;
klao@946
   261
      } else {
alpar@986
   262
	nodes[edges[n].source].first_out = edges[n].next_out;
klao@946
   263
      }
alpar@397
   264
      
alpar@397
   265
      edges[n].next_in = first_free_edge;
alpar@695
   266
      first_free_edge = n;      
alpar@397
   267
alpar@397
   268
    }
alpar@397
   269
alpar@397
   270
    void clear() {
deba@782
   271
      edges.clear();
deba@782
   272
      nodes.clear();
klao@946
   273
      first_node = first_free_node = first_free_edge = -1;
deba@937
   274
    }
deba@937
   275
alpar@949
   276
  protected:
deba@2111
   277
    void changeTarget(Edge e, Node n) 
alpar@949
   278
    {
alpar@949
   279
      if(edges[e.id].next_in != -1)
alpar@949
   280
	edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
alpar@949
   281
      if(edges[e.id].prev_in != -1)
alpar@949
   282
	edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
alpar@986
   283
      else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
deba@1702
   284
      if (nodes[n.id].first_in != -1) {
deba@1702
   285
	edges[nodes[n.id].first_in].prev_in = e.id;
deba@1702
   286
      }
alpar@986
   287
      edges[e.id].target = n.id;
alpar@949
   288
      edges[e.id].prev_in = -1;
alpar@949
   289
      edges[e.id].next_in = nodes[n.id].first_in;
alpar@949
   290
      nodes[n.id].first_in = e.id;
alpar@949
   291
    }
deba@2111
   292
    void changeSource(Edge e, Node n) 
alpar@949
   293
    {
alpar@949
   294
      if(edges[e.id].next_out != -1)
alpar@949
   295
	edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
alpar@949
   296
      if(edges[e.id].prev_out != -1)
alpar@949
   297
	edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
alpar@986
   298
      else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
deba@1702
   299
      if (nodes[n.id].first_out != -1) {
deba@1702
   300
	edges[nodes[n.id].first_out].prev_out = e.id;
deba@1702
   301
      }
alpar@986
   302
      edges[e.id].source = n.id;
alpar@949
   303
      edges[e.id].prev_out = -1;
alpar@949
   304
      edges[e.id].next_out = nodes[n.id].first_out;
alpar@949
   305
      nodes[n.id].first_out = e.id;
alpar@949
   306
    }
alpar@949
   307
alpar@919
   308
  };
deba@909
   309
deba@1979
   310
  typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
alpar@400
   311
deba@2116
   312
  /// \addtogroup graphs
deba@2116
   313
  /// @{
alpar@400
   314
alpar@948
   315
  ///A list graph class.
alpar@400
   316
alpar@948
   317
  ///This is a simple and fast erasable graph implementation.
alpar@948
   318
  ///
deba@2111
   319
  ///It conforms to the \ref concept::Graph "Graph" concept and it
deba@2111
   320
  ///also provides several additional useful extra functionalities.
deba@2111
   321
  ///The most of the member functions and nested classes are
deba@2111
   322
  ///documented only in the concept class.
deba@2111
   323
  ///\sa concept::Graph.
deba@782
   324
deba@1999
   325
  class ListGraph : public ExtendedListGraphBase {
alpar@948
   326
  public:
deba@1999
   327
deba@1999
   328
    typedef ExtendedListGraphBase Parent;
deba@1999
   329
deba@2111
   330
    ///Add a new node to the graph.
deba@2111
   331
    
deba@2111
   332
    /// \return the new node.
deba@2111
   333
    ///
deba@2111
   334
    Node addNode() { return Parent::addNode(); }
deba@2111
   335
deba@2111
   336
    ///Add a new edge to the graph.
deba@2111
   337
    
deba@2111
   338
    ///Add a new edge to the graph with source node \c s
deba@2111
   339
    ///and target node \c t.
deba@2111
   340
    ///\return the new edge.
deba@2111
   341
    Edge addEdge(const Node& s, const Node& t) { 
deba@2111
   342
      return Parent::addEdge(s, t); 
deba@2111
   343
    }
deba@2111
   344
alpar@1546
   345
    /// Changes the target of \c e to \c n
alpar@948
   346
alpar@1546
   347
    /// Changes the target of \c e to \c n
alpar@948
   348
    ///
deba@2114
   349
    ///\note The <tt>Edge</tt>s and <tt>OutEdgeIt</tt>s referencing
deba@2114
   350
    ///the changed edge remain valid. However <tt>InEdgeIt</tt>s are
deba@2114
   351
    ///invalidated.
deba@1718
   352
    void changeTarget(Edge e, Node n) { 
deba@2111
   353
      Parent::changeTarget(e,n); 
deba@1718
   354
    }
alpar@1546
   355
    /// Changes the source of \c e to \c n
alpar@948
   356
alpar@1546
   357
    /// Changes the source of \c e to \c n
alpar@948
   358
    ///
deba@2114
   359
    ///\note The <tt>Edge</tt>s and <tt>InEdgeIt</tt>s referencing
deba@2114
   360
    ///the changed edge remain valid. However <tt>OutEdgeIt</tt>s are
deba@2114
   361
    ///invalidated.
deba@1718
   362
    void changeSource(Edge e, Node n) { 
deba@2111
   363
      Parent::changeSource(e,n);
deba@1718
   364
    }
alpar@949
   365
alpar@1010
   366
    /// Invert the direction of an edge.
alpar@1010
   367
deba@2114
   368
    ///\note The <tt>Edge</tt>s referencing the changed edge remain
deba@2114
   369
    ///valid. However <tt>OutEdgeIt</tt>s and <tt>InEdgeIt</tt>s are
deba@2114
   370
    ///invalidated.
alpar@1010
   371
    void reverseEdge(Edge e) {
alpar@1010
   372
      Node t=target(e);
deba@2111
   373
      changeTarget(e,source(e));
deba@2111
   374
      changeSource(e,t);
alpar@1010
   375
    }
alpar@1010
   376
deba@2111
   377
    /// \brief Using this it is possible to avoid the superfluous memory
deba@2111
   378
    /// allocation.
alpar@1010
   379
deba@2107
   380
    ///Using this it is possible to avoid the superfluous memory
deba@2107
   381
    ///allocation: if you know that the graph you want to build will
deba@2107
   382
    ///contain at least 10 million nodes then it is worth to reserve
deba@2107
   383
    ///space for this amount before starting to build the graph.
deba@2107
   384
    void reserveNode(int n) { nodes.reserve(n); };
deba@2107
   385
deba@2111
   386
    /// \brief Using this it is possible to avoid the superfluous memory
deba@2111
   387
    /// allocation.
deba@2107
   388
deba@2107
   389
    ///Using this it is possible to avoid the superfluous memory
deba@2107
   390
    ///allocation: see the \ref reserveNode function.
alpar@949
   391
    void reserveEdge(int n) { edges.reserve(n); };
alpar@1010
   392
deba@2107
   393
alpar@1010
   394
    ///Contract two nodes.
alpar@1010
   395
alpar@1010
   396
    ///This function contracts two nodes.
alpar@1010
   397
    ///
alpar@1010
   398
    ///Node \p b will be removed but instead of deleting
athos@2102
   399
    ///incident edges, they will be joined to \p a.
alpar@1010
   400
    ///The last parameter \p r controls whether to remove loops. \c true
alpar@1010
   401
    ///means that loops will be removed.
alpar@1010
   402
    ///
alpar@1010
   403
    ///\note The <tt>Edge</tt>s
alpar@1281
   404
    ///referencing a moved edge remain
athos@2102
   405
    ///valid. However <tt>InEdge</tt>s and <tt>OutEdge</tt>s
alpar@1010
   406
    ///may be invalidated.
deba@1718
   407
    void contract(Node a, Node b, bool r = true) 
alpar@1010
   408
    {
alpar@1010
   409
      for(OutEdgeIt e(*this,b);e!=INVALID;) {
alpar@1010
   410
	OutEdgeIt f=e;
alpar@1010
   411
	++f;
alpar@1010
   412
	if(r && target(e)==a) erase(e);
alpar@1546
   413
	else changeSource(e,a);
alpar@1010
   414
	e=f;
alpar@1010
   415
      }
alpar@1010
   416
      for(InEdgeIt e(*this,b);e!=INVALID;) {
alpar@1010
   417
	InEdgeIt f=e;
alpar@1010
   418
	++f;
alpar@1010
   419
	if(r && source(e)==a) erase(e);
alpar@1546
   420
	else changeTarget(e,a);
alpar@1010
   421
	e=f;
alpar@1010
   422
      }
alpar@1010
   423
      erase(b);
alpar@1010
   424
    }
alpar@1011
   425
alpar@1281
   426
    ///Split a node.
alpar@1011
   427
alpar@1284
   428
    ///This function splits a node. First a new node is added to the graph,
alpar@1284
   429
    ///then the source of each outgoing edge of \c n is moved to this new node.
alpar@1281
   430
    ///If \c connect is \c true (this is the default value), then a new edge
alpar@1281
   431
    ///from \c n to the newly created node is also added.
alpar@1281
   432
    ///\return The newly created node.
alpar@1281
   433
    ///
alpar@1281
   434
    ///\note The <tt>Edge</tt>s
alpar@1281
   435
    ///referencing a moved edge remain
athos@2102
   436
    ///valid. However <tt>InEdge</tt>s and <tt>OutEdge</tt>s
alpar@1281
   437
    ///may be invalidated.
alpar@1770
   438
    ///\warning This functionality cannot be used together with the Snapshot
alpar@1284
   439
    ///feature.
alpar@1281
   440
    ///\todo It could be implemented in a bit faster way.
deba@2114
   441
    Node split(Node n, bool connect = true) {
alpar@1281
   442
      Node b = addNode();
alpar@1281
   443
      for(OutEdgeIt e(*this,n);e!=INVALID;) {
alpar@1281
   444
 	OutEdgeIt f=e;
alpar@1281
   445
	++f;
alpar@1546
   446
	changeSource(e,b);
alpar@1281
   447
	e=f;
alpar@1281
   448
      }
deba@2114
   449
      if (connect) addEdge(n,b);
alpar@1281
   450
      return b;
alpar@1281
   451
    }
alpar@1281
   452
      
alpar@1812
   453
    ///Split an edge.
alpar@1812
   454
athos@2102
   455
    ///This function splits an edge. First a new node \c b is added to
athos@2102
   456
    ///the graph, then the original edge is re-targeted to \c
athos@2102
   457
    ///b. Finally an edge from \c b to the original target is added.
athos@2102
   458
    ///\return The newly created node.  
athos@2102
   459
    ///\warning This functionality
athos@2102
   460
    ///cannot be used together with the Snapshot feature.
deba@2114
   461
    Node split(Edge e) {
alpar@1812
   462
      Node b = addNode();
alpar@1812
   463
      addEdge(b,target(e));
alpar@1812
   464
      changeTarget(e,b);
alpar@1812
   465
      return b;
alpar@1812
   466
    }
alpar@1812
   467
      
deba@2114
   468
    /// \brief Class to make a snapshot of the graph and restore
deba@2114
   469
    /// to it later.
alpar@1011
   470
    ///
deba@2114
   471
    /// Class to make a snapshot of the graph and to restore it
deba@2114
   472
    /// later.
alpar@1011
   473
    ///
deba@2114
   474
    /// The newly added nodes and edges can be removed using the
deba@2114
   475
    /// restore() function.
deba@2114
   476
    ///
deba@2114
   477
    /// \warning Edge and node deletions cannot be restored.
deba@2114
   478
    class Snapshot {
deba@1774
   479
    public:
deba@1774
   480
      
deba@1774
   481
      class UnsupportedOperation : public LogicError {
deba@1774
   482
      public:
deba@1774
   483
	virtual const char* exceptionName() const {
deba@1774
   484
	  return "lemon::ListGraph::Snapshot::UnsupportedOperation";
deba@1774
   485
	}
deba@1774
   486
      };
deba@1774
   487
            
deba@1774
   488
deba@1999
   489
    protected:
deba@2114
   490
deba@2114
   491
      typedef Parent::NodeNotifier NodeNotifier;
deba@2114
   492
deba@2114
   493
      class NodeObserverProxy : public NodeNotifier::ObserverBase {
deba@2114
   494
      public:
deba@2114
   495
deba@2114
   496
        NodeObserverProxy(Snapshot& _snapshot)
deba@2114
   497
          : snapshot(_snapshot) {}
deba@2114
   498
deba@2114
   499
        using NodeNotifier::ObserverBase::attach;
deba@2114
   500
        using NodeNotifier::ObserverBase::detach;
deba@2114
   501
        using NodeNotifier::ObserverBase::attached;
deba@2114
   502
        
deba@2114
   503
      protected:
deba@2114
   504
        
deba@2114
   505
        virtual void add(const Node& node) {
deba@2114
   506
          snapshot.addNode(node);
deba@2114
   507
        }
deba@2114
   508
        virtual void add(const std::vector<Node>& nodes) {
deba@2114
   509
          for (int i = nodes.size() - 1; i >= 0; ++i) {
deba@2114
   510
            snapshot.addNode(nodes[i]);
deba@2114
   511
          }
deba@2114
   512
        }
deba@2114
   513
        virtual void erase(const Node& node) {
deba@2114
   514
          snapshot.eraseNode(node);
deba@2114
   515
        }
deba@2114
   516
        virtual void erase(const std::vector<Node>& nodes) {
deba@2114
   517
          for (int i = 0; i < (int)nodes.size(); ++i) {
deba@2114
   518
            if (!snapshot.eraseNode(nodes[i])) break;
deba@2114
   519
          }
deba@2114
   520
        }
deba@2114
   521
        virtual void build() {
deba@2114
   522
          NodeNotifier* notifier = getNotifier();
deba@2114
   523
          Node node;
deba@2114
   524
          std::vector<Node> nodes;
deba@2114
   525
          for (notifier->first(node); node != INVALID; notifier->next(node)) {
deba@2114
   526
            nodes.push_back(node);
deba@2114
   527
          }
deba@2114
   528
          for (int i = nodes.size() - 1; i >= 0; --i) {
deba@2114
   529
            snapshot.addNode(nodes[i]);
deba@2114
   530
          }
deba@2114
   531
        }
deba@2114
   532
        virtual void clear() {
deba@2114
   533
          NodeNotifier* notifier = getNotifier();
deba@2114
   534
          Node node;
deba@2114
   535
          for (notifier->first(node); node != INVALID; notifier->next(node)) {
deba@2114
   536
            if (!snapshot.eraseNode(node)) break;
deba@2114
   537
          }
deba@2114
   538
        }
deba@2114
   539
deba@2114
   540
        Snapshot& snapshot;
deba@2114
   541
      };
deba@2114
   542
deba@2114
   543
      class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
deba@2114
   544
      public:
deba@2114
   545
deba@2114
   546
        EdgeObserverProxy(Snapshot& _snapshot)
deba@2114
   547
          : snapshot(_snapshot) {}
deba@2114
   548
deba@2114
   549
        using EdgeNotifier::ObserverBase::attach;
deba@2114
   550
        using EdgeNotifier::ObserverBase::detach;
deba@2114
   551
        using EdgeNotifier::ObserverBase::attached;
deba@2114
   552
        
deba@2114
   553
      protected:
deba@2114
   554
deba@2114
   555
        virtual void add(const Edge& edge) {
deba@2114
   556
          snapshot.addEdge(edge);
deba@2114
   557
        }
deba@2114
   558
        virtual void add(const std::vector<Edge>& edges) {
deba@2114
   559
          for (int i = edges.size() - 1; i >= 0; ++i) {
deba@2114
   560
            snapshot.addEdge(edges[i]);
deba@2114
   561
          }
deba@2114
   562
        }
deba@2114
   563
        virtual void erase(const Edge& edge) {
deba@2114
   564
          snapshot.eraseEdge(edge);
deba@2114
   565
        }
deba@2114
   566
        virtual void erase(const std::vector<Edge>& edges) {
deba@2114
   567
          for (int i = 0; i < (int)edges.size(); ++i) {
deba@2114
   568
            if (!snapshot.eraseEdge(edges[i])) break;
deba@2114
   569
          }
deba@2114
   570
        }
deba@2114
   571
        virtual void build() {
deba@2114
   572
          EdgeNotifier* notifier = getNotifier();
deba@2114
   573
          Edge edge;
deba@2114
   574
          std::vector<Edge> edges;
deba@2114
   575
          for (notifier->first(edge); edge != INVALID; notifier->next(edge)) {
deba@2114
   576
            edges.push_back(edge);
deba@2114
   577
          }
deba@2114
   578
          for (int i = edges.size() - 1; i >= 0; --i) {
deba@2114
   579
            snapshot.addEdge(edges[i]);
deba@2114
   580
          }
deba@2114
   581
        }
deba@2114
   582
        virtual void clear() {
deba@2114
   583
          EdgeNotifier* notifier = getNotifier();
deba@2114
   584
          Edge edge;
deba@2114
   585
          for (notifier->first(edge); edge != INVALID; notifier->next(edge)) {
deba@2114
   586
            if (!snapshot.eraseEdge(edge)) break;
deba@2114
   587
          }
deba@2114
   588
        }
deba@2114
   589
deba@2114
   590
        Snapshot& snapshot;
deba@2114
   591
      };
alpar@1011
   592
      
deba@2114
   593
      ListGraph *graph;
deba@2114
   594
deba@2114
   595
      NodeObserverProxy node_observer_proxy;
deba@2114
   596
      EdgeObserverProxy edge_observer_proxy;
deba@2114
   597
alpar@1011
   598
      std::list<Node> added_nodes;
alpar@1011
   599
      std::list<Edge> added_edges;
deba@2114
   600
deba@2114
   601
deba@2114
   602
      void addNode(const Node& node) {
deba@2114
   603
        added_nodes.push_front(node);        
alpar@1011
   604
      }
deba@2114
   605
      bool eraseNode(const Node& node) {
deba@2114
   606
        std::list<Node>::iterator it = 
deba@2114
   607
          std::find(added_nodes.begin(), added_nodes.end(), node);
deba@2114
   608
        if (it == added_nodes.end()) {
deba@2114
   609
          clear();
deba@2114
   610
          return false;
deba@2114
   611
        } else {
deba@2114
   612
          added_nodes.erase(it);
deba@2114
   613
          return true;
deba@2114
   614
        }
alpar@1011
   615
      }
alpar@1011
   616
deba@2114
   617
      void addEdge(const Edge& edge) {
deba@2114
   618
        added_edges.push_front(edge);        
deba@2114
   619
      }
deba@2114
   620
      bool eraseEdge(const Edge& edge) {
deba@2114
   621
        std::list<Edge>::iterator it = 
deba@2114
   622
          std::find(added_edges.begin(), added_edges.end(), edge);
deba@2114
   623
        if (it == added_edges.end()) {
deba@2114
   624
          clear();
deba@2114
   625
          return false;
deba@2114
   626
        } else {
deba@2114
   627
          added_edges.erase(it);
deba@2114
   628
          return true;
deba@2114
   629
        }        
deba@2114
   630
      }
alpar@1457
   631
deba@2114
   632
      void attach(ListGraph &_graph) {
deba@2114
   633
	graph = &_graph;
deba@2114
   634
	node_observer_proxy.attach(graph->getNotifier(Node()));
deba@2114
   635
        edge_observer_proxy.attach(graph->getNotifier(Edge()));
alpar@1011
   636
      }
alpar@1011
   637
            
deba@2114
   638
      void detach() {
deba@2114
   639
	node_observer_proxy.detach();
deba@2114
   640
	edge_observer_proxy.detach();
deba@2114
   641
      }
deba@2114
   642
deba@2114
   643
      void clear() {
deba@2114
   644
        detach();
deba@2114
   645
        added_nodes.clear();
deba@2114
   646
        added_edges.clear();        
alpar@1011
   647
      }
deba@1774
   648
alpar@1011
   649
    public:
deba@2114
   650
deba@2114
   651
      /// \brief Default constructur.
deba@2114
   652
      ///
deba@2114
   653
      /// Default constructor.
deba@2114
   654
      /// To actually make a snapshot you must call save().
deba@2114
   655
      Snapshot() 
deba@2114
   656
        : graph(0), node_observer_proxy(*this), 
deba@2114
   657
          edge_observer_proxy(*this) {}
alpar@1011
   658
      
deba@2114
   659
      /// \brief Constructor that immediately makes a snapshot.
deba@2114
   660
      ///      
deba@2114
   661
      /// This constructor immediately makes a snapshot of the graph.
deba@2114
   662
      /// \param _graph The graph we make a snapshot of.
deba@2114
   663
      Snapshot(ListGraph &_graph) 
deba@2114
   664
        : node_observer_proxy(*this), 
deba@2114
   665
          edge_observer_proxy(*this) {
deba@2114
   666
	attach(_graph);
alpar@1011
   667
      }
alpar@1011
   668
      
deba@2114
   669
      /// \brief Make a snapshot.
alpar@1011
   670
      ///
deba@2114
   671
      /// Make a snapshot of the graph.
deba@2114
   672
      ///
deba@2114
   673
      /// This function can be called more than once. In case of a repeated
deba@2114
   674
      /// call, the previous snapshot gets lost.
deba@2114
   675
      /// \param _graph The graph we make the snapshot of.
deba@2114
   676
      void save(ListGraph &_graph) {
deba@2114
   677
        clear();
deba@2114
   678
        attach(_graph);
alpar@1011
   679
      }
alpar@1011
   680
      
deba@2114
   681
      /// \brief Undo the changes until the last snapshot.
deba@2114
   682
      // 
deba@2114
   683
      /// Undo the changes until last snapshot created by save().
deba@2114
   684
      ///
deba@2114
   685
      /// \todo This function might be called undo().
alpar@1011
   686
      void restore() {
deba@2114
   687
	detach();
alpar@1011
   688
	while(!added_edges.empty()) {
deba@2114
   689
	  graph->erase(added_edges.front());
alpar@1011
   690
	  added_edges.pop_front();
alpar@1011
   691
	}
alpar@1011
   692
 	while(!added_nodes.empty()) {
deba@2114
   693
	  graph->erase(added_nodes.front());
alpar@1011
   694
	  added_nodes.pop_front();
alpar@1011
   695
	}
alpar@1011
   696
      }
deba@2114
   697
deba@2114
   698
      /// \brief Gives back true when the snapshot is valid.
deba@2114
   699
      ///
deba@2114
   700
      /// Gives back true when the snapshot is valid.
deba@2114
   701
      bool valid() const {
deba@2114
   702
        return node_observer_proxy.attached();
deba@2114
   703
      }
alpar@1011
   704
    };
alpar@1011
   705
    
alpar@949
   706
  };
klao@1034
   707
deba@2116
   708
  ///@}
deba@2116
   709
deba@2116
   710
  /**************** Undirected List Graph ****************/
deba@2116
   711
deba@2116
   712
  typedef UGraphExtender<UndirGraphExtender<ListGraphBase> > 
deba@2116
   713
  ExtendedListUGraphBase;
deba@2116
   714
deba@2116
   715
  /// \addtogroup graphs
deba@2116
   716
  /// @{
deba@2116
   717
deba@2116
   718
  ///An undirected list graph class.
deba@2116
   719
deba@2116
   720
  ///This is a simple and fast erasable undirected graph implementation.
deba@2116
   721
  ///
deba@2116
   722
  ///It conforms to the
deba@2116
   723
  ///\ref concept::UGraph "UGraph" concept.
deba@2116
   724
  ///
deba@2116
   725
  ///\sa concept::UGraph.
deba@2116
   726
  ///
deba@2116
   727
  ///\todo Snapshot, reverseEdge(), changeTarget(), changeSource(), contract()
deba@2116
   728
  ///haven't been implemented yet.
deba@2116
   729
  ///
deba@2116
   730
  class ListUGraph : public ExtendedListUGraphBase {
deba@2116
   731
  public:
deba@2116
   732
    typedef ExtendedListUGraphBase Parent;
deba@2116
   733
    /// \brief Add a new node to the graph.
deba@2116
   734
    ///
deba@2116
   735
    /// \return the new node.
deba@2116
   736
    ///
deba@2116
   737
    Node addNode() { return Parent::addNode(); }
deba@2116
   738
deba@2116
   739
    /// \brief Add a new edge to the graph.
deba@2116
   740
    ///
deba@2116
   741
    /// Add a new edge to the graph with source node \c s
deba@2116
   742
    /// and target node \c t.
deba@2116
   743
    /// \return the new undirected edge.
deba@2116
   744
    UEdge addEdge(const Node& s, const Node& t) { 
deba@2116
   745
      return Parent::addEdge(s, t); 
deba@2116
   746
    }
deba@2116
   747
    /// \brief Changes the target of \c e to \c n
deba@2116
   748
    ///
deba@2116
   749
    /// Changes the target of \c e to \c n
deba@2116
   750
    ///
deba@2116
   751
    /// \note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
deba@2116
   752
    /// referencing the changed edge remain
deba@2116
   753
    /// valid. However <tt>InEdge</tt>'s are invalidated.
deba@2116
   754
    void changeTarget(UEdge e, Node n) { 
deba@2116
   755
      Parent::changeTarget(e,n); 
deba@2116
   756
    }
deba@2116
   757
    /// Changes the source of \c e to \c n
deba@2116
   758
    ///
deba@2116
   759
    /// Changes the source of \c e to \c n
deba@2116
   760
    ///
deba@2116
   761
    ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
deba@2116
   762
    ///referencing the changed edge remain
deba@2116
   763
    ///valid. However <tt>OutEdge</tt>'s are invalidated.
deba@2116
   764
    void changeSource(UEdge e, Node n) { 
deba@2116
   765
      Parent::changeSource(e,n); 
deba@2116
   766
    }
deba@2116
   767
    /// \brief Contract two nodes.
deba@2116
   768
    ///
deba@2116
   769
    /// This function contracts two nodes.
deba@2116
   770
    ///
deba@2116
   771
    /// Node \p b will be removed but instead of deleting
deba@2116
   772
    /// its neighboring edges, they will be joined to \p a.
deba@2116
   773
    /// The last parameter \p r controls whether to remove loops. \c true
deba@2116
   774
    /// means that loops will be removed.
deba@2116
   775
    ///
deba@2116
   776
    /// \note The <tt>Edge</tt>s
deba@2116
   777
    /// referencing a moved edge remain
deba@2116
   778
    /// valid.
deba@2116
   779
    void contract(Node a, Node b, bool r = true) {
deba@2116
   780
      for(IncEdgeIt e(*this, b); e!=INVALID;) {
deba@2116
   781
	IncEdgeIt f = e; ++f;
deba@2116
   782
	if (r && runningNode(e) == a) {
deba@2116
   783
	  erase(e);
deba@2116
   784
	} else if (source(e) == b) {
deba@2116
   785
	  changeSource(e, a);
deba@2116
   786
	} else {
deba@2116
   787
	  changeTarget(e, a);
deba@2116
   788
	}
deba@2116
   789
	e = f;
deba@2116
   790
      }
deba@2116
   791
      erase(b);
deba@2116
   792
    }
deba@2116
   793
  };
deba@2116
   794
deba@2116
   795
deba@2116
   796
  class ListBpUGraphBase {
deba@2116
   797
  public:
deba@2116
   798
deba@2116
   799
    class NodeSetError : public LogicError {
deba@2116
   800
      virtual const char* exceptionName() const { 
deba@2116
   801
	return "lemon::ListBpUGraph::NodeSetError";
deba@2116
   802
      }
deba@2116
   803
    };
deba@2116
   804
deba@2116
   805
  protected:
deba@2116
   806
deba@2116
   807
    struct NodeT {
deba@2116
   808
      int first_edge, prev, next;
deba@2116
   809
    };
deba@2116
   810
deba@2116
   811
    struct UEdgeT {
deba@2116
   812
      int aNode, prev_out, next_out;
deba@2116
   813
      int bNode, prev_in, next_in;
deba@2116
   814
    };
deba@2116
   815
deba@2116
   816
    std::vector<NodeT> aNodes;
deba@2116
   817
    std::vector<NodeT> bNodes;
deba@2116
   818
deba@2116
   819
    std::vector<UEdgeT> edges;
deba@2116
   820
deba@2116
   821
    int first_anode;
deba@2116
   822
    int first_free_anode;
deba@2116
   823
deba@2116
   824
    int first_bnode;
deba@2116
   825
    int first_free_bnode;
deba@2116
   826
deba@2116
   827
    int first_free_edge;
deba@2116
   828
deba@2116
   829
  public:
deba@2116
   830
  
deba@2116
   831
    class Node {
deba@2116
   832
      friend class ListBpUGraphBase;
deba@2116
   833
    protected:
deba@2116
   834
      int id;
deba@2116
   835
deba@2116
   836
      explicit Node(int _id) : id(_id) {}
deba@2116
   837
    public:
deba@2116
   838
      Node() {}
deba@2116
   839
      Node(Invalid) { id = -1; }
deba@2116
   840
      bool operator==(const Node i) const {return id==i.id;}
deba@2116
   841
      bool operator!=(const Node i) const {return id!=i.id;}
deba@2116
   842
      bool operator<(const Node i) const {return id<i.id;}
deba@2116
   843
    };
deba@2116
   844
deba@2116
   845
    class UEdge {
deba@2116
   846
      friend class ListBpUGraphBase;
deba@2116
   847
    protected:
deba@2116
   848
      int id;
deba@2116
   849
deba@2116
   850
      explicit UEdge(int _id) { id = _id;}
deba@2116
   851
    public:
deba@2116
   852
      UEdge() {}
deba@2116
   853
      UEdge (Invalid) { id = -1; }
deba@2116
   854
      bool operator==(const UEdge i) const {return id==i.id;}
deba@2116
   855
      bool operator!=(const UEdge i) const {return id!=i.id;}
deba@2116
   856
      bool operator<(const UEdge i) const {return id<i.id;}
deba@2116
   857
    };
deba@2116
   858
deba@2116
   859
    ListBpUGraphBase()
deba@2116
   860
      : first_anode(-1), first_free_anode(-1),
deba@2116
   861
        first_bnode(-1), first_free_bnode(-1),
deba@2116
   862
        first_free_edge(-1) {}
deba@2116
   863
deba@2116
   864
    void firstANode(Node& node) const {
deba@2116
   865
      node.id = first_anode != -1 ? (first_anode << 1) : -1;
deba@2116
   866
    }
deba@2116
   867
    void nextANode(Node& node) const {
deba@2116
   868
      node.id = aNodes[node.id >> 1].next;
deba@2116
   869
    }
deba@2116
   870
deba@2116
   871
    void firstBNode(Node& node) const {
deba@2116
   872
      node.id = first_bnode != -1 ? (first_bnode << 1) + 1 : -1;
deba@2116
   873
    }
deba@2116
   874
    void nextBNode(Node& node) const {
deba@2116
   875
      node.id = bNodes[node.id >> 1].next;
deba@2116
   876
    }
deba@2116
   877
deba@2116
   878
    void first(Node& node) const {
deba@2116
   879
      if (first_anode != -1) {
deba@2116
   880
        node.id = (first_anode << 1);
deba@2116
   881
      } else if (first_bnode != -1) {
deba@2116
   882
        node.id = (first_bnode << 1) + 1;
deba@2116
   883
      } else {
deba@2116
   884
        node.id = -1;
deba@2116
   885
      }
deba@2116
   886
    }
deba@2116
   887
    void next(Node& node) const {
deba@2116
   888
      if (aNode(node)) {
deba@2116
   889
        node.id = aNodes[node.id >> 1].next;
deba@2116
   890
        if (node.id == -1) {
deba@2116
   891
          if (first_bnode != -1) {
deba@2116
   892
            node.id = (first_bnode << 1) + 1;
deba@2116
   893
          }
deba@2116
   894
        }
deba@2116
   895
      } else {
deba@2116
   896
        node.id = bNodes[node.id >> 1].next;
deba@2116
   897
      }
deba@2116
   898
    }
deba@2116
   899
  
deba@2116
   900
    void first(UEdge& edge) const {
deba@2116
   901
      int aNodeId = first_anode;
deba@2116
   902
      while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
deba@2116
   903
        aNodeId = aNodes[aNodeId].next != -1 ? 
deba@2116
   904
          aNodes[aNodeId].next >> 1 : -1;
deba@2116
   905
      }
deba@2116
   906
      if (aNodeId != -1) {
deba@2116
   907
        edge.id = aNodes[aNodeId].first_edge;
deba@2116
   908
      } else {
deba@2116
   909
        edge.id = -1;
deba@2116
   910
      }
deba@2116
   911
    }
deba@2116
   912
    void next(UEdge& edge) const {
deba@2116
   913
      int aNodeId = edges[edge.id].aNode >> 1;
deba@2116
   914
      edge.id = edges[edge.id].next_out;
deba@2116
   915
      if (edge.id == -1) {
deba@2116
   916
        aNodeId = aNodes[aNodeId].next != -1 ? 
deba@2116
   917
          aNodes[aNodeId].next >> 1 : -1;
deba@2116
   918
        while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
deba@2116
   919
          aNodeId = aNodes[aNodeId].next != -1 ? 
deba@2116
   920
          aNodes[aNodeId].next >> 1 : -1;
deba@2116
   921
        }
deba@2116
   922
        if (aNodeId != -1) {
deba@2116
   923
          edge.id = aNodes[aNodeId].first_edge;
deba@2116
   924
        } else {
deba@2116
   925
          edge.id = -1;
deba@2116
   926
        }
deba@2116
   927
      }
deba@2116
   928
    }
deba@2116
   929
deba@2116
   930
    void firstFromANode(UEdge& edge, const Node& node) const {
deba@2116
   931
      LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
deba@2116
   932
      edge.id = aNodes[node.id >> 1].first_edge;
deba@2116
   933
    }
deba@2116
   934
    void nextFromANode(UEdge& edge) const {
deba@2116
   935
      edge.id = edges[edge.id].next_out;
deba@2116
   936
    }
deba@2116
   937
deba@2116
   938
    void firstFromBNode(UEdge& edge, const Node& node) const {
deba@2116
   939
      LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
deba@2116
   940
      edge.id = bNodes[node.id >> 1].first_edge;
deba@2116
   941
    }
deba@2116
   942
    void nextFromBNode(UEdge& edge) const {
deba@2116
   943
      edge.id = edges[edge.id].next_in;
deba@2116
   944
    }
deba@2116
   945
deba@2116
   946
    static int id(const Node& node) {
deba@2116
   947
      return node.id;
deba@2116
   948
    }
deba@2116
   949
    static Node nodeFromId(int id) {
deba@2116
   950
      return Node(id);
deba@2116
   951
    }
deba@2116
   952
    int maxNodeId() const {
deba@2116
   953
      return aNodes.size() > bNodes.size() ?
deba@2116
   954
	aNodes.size() * 2 - 2 : bNodes.size() * 2 - 1;
deba@2116
   955
    }
deba@2116
   956
  
deba@2116
   957
    static int id(const UEdge& edge) {
deba@2116
   958
      return edge.id;
deba@2116
   959
    }
deba@2116
   960
    static UEdge uEdgeFromId(int id) {
deba@2116
   961
      return UEdge(id);
deba@2116
   962
    }
deba@2116
   963
    int maxUEdgeId() const {
deba@2116
   964
      return edges.size();
deba@2116
   965
    }
deba@2116
   966
  
deba@2116
   967
    static int aNodeId(const Node& node) {
deba@2116
   968
      return node.id >> 1;
deba@2116
   969
    }
deba@2116
   970
    static Node fromANodeId(int id) {
deba@2116
   971
      return Node(id << 1);
deba@2116
   972
    }
deba@2116
   973
    int maxANodeId() const {
deba@2116
   974
      return aNodes.size();
deba@2116
   975
    }
deba@2116
   976
deba@2116
   977
    static int bNodeId(const Node& node) {
deba@2116
   978
      return node.id >> 1;
deba@2116
   979
    }
deba@2116
   980
    static Node fromBNodeId(int id) {
deba@2116
   981
      return Node((id << 1) + 1);
deba@2116
   982
    }
deba@2116
   983
    int maxBNodeId() const {
deba@2116
   984
      return bNodes.size();
deba@2116
   985
    }
deba@2116
   986
deba@2116
   987
    Node aNode(const UEdge& edge) const {
deba@2116
   988
      return Node(edges[edge.id].aNode);
deba@2116
   989
    }
deba@2116
   990
    Node bNode(const UEdge& edge) const {
deba@2116
   991
      return Node(edges[edge.id].bNode);
deba@2116
   992
    }
deba@2116
   993
deba@2116
   994
    static bool aNode(const Node& node) {
deba@2116
   995
      return (node.id & 1) == 0;
deba@2116
   996
    }
deba@2116
   997
deba@2116
   998
    static bool bNode(const Node& node) {
deba@2116
   999
      return (node.id & 1) == 1;
deba@2116
  1000
    }
deba@2116
  1001
deba@2116
  1002
    Node addANode() {
deba@2116
  1003
      int aNodeId;
deba@2116
  1004
      if (first_free_anode == -1) {
deba@2116
  1005
        aNodeId = aNodes.size();
deba@2116
  1006
        aNodes.push_back(NodeT());
deba@2116
  1007
      } else {
deba@2116
  1008
        aNodeId = first_free_anode;
deba@2116
  1009
        first_free_anode = aNodes[first_free_anode].next;
deba@2116
  1010
      }
deba@2116
  1011
      if (first_anode != -1) {
deba@2116
  1012
        aNodes[aNodeId].next = first_anode << 1;
deba@2116
  1013
        aNodes[first_anode].prev = aNodeId << 1;
deba@2116
  1014
      } else {
deba@2116
  1015
        aNodes[aNodeId].next = -1;
deba@2116
  1016
      }
deba@2116
  1017
      aNodes[aNodeId].prev = -1;
deba@2116
  1018
      first_anode = aNodeId;
deba@2116
  1019
      aNodes[aNodeId].first_edge = -1;
deba@2116
  1020
      return Node(aNodeId << 1);
deba@2116
  1021
    }
deba@2116
  1022
deba@2116
  1023
    Node addBNode() {
deba@2116
  1024
      int bNodeId;
deba@2116
  1025
      if (first_free_bnode == -1) {
deba@2116
  1026
        bNodeId = bNodes.size();
deba@2116
  1027
        bNodes.push_back(NodeT());
deba@2116
  1028
      } else {
deba@2116
  1029
        bNodeId = first_free_bnode;
deba@2116
  1030
        first_free_bnode = bNodes[first_free_bnode].next;
deba@2116
  1031
      }
deba@2116
  1032
      if (first_bnode != -1) {
deba@2116
  1033
        bNodes[bNodeId].next = (first_bnode << 1) + 1;
deba@2116
  1034
        bNodes[first_bnode].prev = (bNodeId << 1) + 1;
deba@2116
  1035
      } else {
deba@2116
  1036
        bNodes[bNodeId].next = -1;
deba@2116
  1037
      }
deba@2116
  1038
      first_bnode = bNodeId;
deba@2116
  1039
      bNodes[bNodeId].first_edge = -1;
deba@2116
  1040
      return Node((bNodeId << 1) + 1);
deba@2116
  1041
    }
deba@2116
  1042
deba@2116
  1043
    UEdge addEdge(const Node& source, const Node& target) {
deba@2116
  1044
      LEMON_ASSERT(((source.id ^ target.id) & 1) == 1, NodeSetError());
deba@2116
  1045
      int edgeId;
deba@2116
  1046
      if (first_free_edge != -1) {
deba@2116
  1047
        edgeId = first_free_edge;
deba@2116
  1048
        first_free_edge = edges[edgeId].next_out;
deba@2116
  1049
      } else {
deba@2116
  1050
        edgeId = edges.size();
deba@2116
  1051
        edges.push_back(UEdgeT());
deba@2116
  1052
      }
deba@2116
  1053
      if ((source.id & 1) == 0) {
deba@2116
  1054
	edges[edgeId].aNode = source.id;
deba@2116
  1055
	edges[edgeId].bNode = target.id;
deba@2116
  1056
      } else {
deba@2116
  1057
	edges[edgeId].aNode = target.id;
deba@2116
  1058
	edges[edgeId].bNode = source.id;
deba@2116
  1059
      }
deba@2116
  1060
      edges[edgeId].next_out = aNodes[edges[edgeId].aNode >> 1].first_edge;
deba@2116
  1061
      edges[edgeId].prev_out = -1;
deba@2116
  1062
      if (aNodes[edges[edgeId].aNode >> 1].first_edge != -1) {
deba@2116
  1063
        edges[aNodes[edges[edgeId].aNode >> 1].first_edge].prev_out = edgeId;
deba@2116
  1064
      }
deba@2116
  1065
      aNodes[edges[edgeId].aNode >> 1].first_edge = edgeId;
deba@2116
  1066
      edges[edgeId].next_in = bNodes[edges[edgeId].bNode >> 1].first_edge;
deba@2116
  1067
      edges[edgeId].prev_in = -1;
deba@2116
  1068
      if (bNodes[edges[edgeId].bNode >> 1].first_edge != -1) {
deba@2116
  1069
        edges[bNodes[edges[edgeId].bNode >> 1].first_edge].prev_in = edgeId;
deba@2116
  1070
      }
deba@2116
  1071
      bNodes[edges[edgeId].bNode >> 1].first_edge = edgeId;
deba@2116
  1072
      return UEdge(edgeId);
deba@2116
  1073
    }
deba@2116
  1074
deba@2116
  1075
    void erase(const Node& node) {
deba@2116
  1076
      if (aNode(node)) {
deba@2116
  1077
        int aNodeId = node.id >> 1;
deba@2116
  1078
        if (aNodes[aNodeId].prev != -1) {
deba@2116
  1079
          aNodes[aNodes[aNodeId].prev >> 1].next = aNodes[aNodeId].next;
deba@2116
  1080
        } else {
deba@2116
  1081
          first_anode = aNodes[aNodeId].next >> 1;
deba@2116
  1082
        }
deba@2116
  1083
        if (aNodes[aNodeId].next != -1) {
deba@2116
  1084
          aNodes[aNodes[aNodeId].next >> 1].prev = aNodes[aNodeId].prev;
deba@2116
  1085
        }
deba@2116
  1086
        aNodes[aNodeId].next = first_free_anode;
deba@2116
  1087
        first_free_anode = aNodeId;
deba@2116
  1088
      } else {
deba@2116
  1089
        int bNodeId = node.id >> 1;
deba@2116
  1090
        if (bNodes[bNodeId].prev != -1) {
deba@2116
  1091
          bNodes[bNodes[bNodeId].prev >> 1].next = bNodes[bNodeId].next;
deba@2116
  1092
        } else {
deba@2116
  1093
          first_bnode = bNodes[bNodeId].next >> 1;
deba@2116
  1094
        }
deba@2116
  1095
        if (bNodes[bNodeId].next != -1) {
deba@2116
  1096
          bNodes[bNodes[bNodeId].next >> 1].prev = bNodes[bNodeId].prev;
deba@2116
  1097
        }
deba@2116
  1098
        bNodes[bNodeId].next = first_free_bnode;
deba@2116
  1099
        first_free_bnode = bNodeId;
deba@2116
  1100
      }
deba@2116
  1101
    }
deba@2116
  1102
deba@2116
  1103
    void erase(const UEdge& edge) {
deba@2116
  1104
deba@2116
  1105
      if (edges[edge.id].prev_out != -1) {
deba@2116
  1106
        edges[edges[edge.id].prev_out].next_out = edges[edge.id].next_out;
deba@2116
  1107
      } else {
deba@2116
  1108
        aNodes[edges[edge.id].aNode >> 1].first_edge = edges[edge.id].next_out;
deba@2116
  1109
      }
deba@2116
  1110
      if (edges[edge.id].next_out != -1) {
deba@2116
  1111
        edges[edges[edge.id].next_out].prev_out = edges[edge.id].prev_out;
deba@2116
  1112
      }
deba@2116
  1113
deba@2116
  1114
      if (edges[edge.id].prev_in != -1) {
deba@2116
  1115
        edges[edges[edge.id].prev_in].next_in = edges[edge.id].next_in;
deba@2116
  1116
      } else {
deba@2116
  1117
        bNodes[edges[edge.id].bNode >> 1].first_edge = edges[edge.id].next_in;
deba@2116
  1118
      }
deba@2116
  1119
      if (edges[edge.id].next_in != -1) {
deba@2116
  1120
        edges[edges[edge.id].next_in].prev_in = edges[edge.id].prev_in;
deba@2116
  1121
      }
deba@2116
  1122
deba@2116
  1123
      edges[edge.id].next_out = first_free_edge;
deba@2116
  1124
      first_free_edge = edge.id;
deba@2116
  1125
    }
deba@2116
  1126
deba@2116
  1127
    void clear() {
deba@2116
  1128
      aNodes.clear();
deba@2116
  1129
      bNodes.clear();
deba@2116
  1130
      edges.clear();
deba@2116
  1131
      first_anode = -1;
deba@2116
  1132
      first_free_anode = -1;
deba@2116
  1133
      first_bnode = -1;
deba@2116
  1134
      first_free_bnode = -1;
deba@2116
  1135
      first_free_edge = -1;
deba@2116
  1136
    }
deba@2116
  1137
deba@2116
  1138
  };
deba@2116
  1139
deba@2116
  1140
deba@2116
  1141
  typedef BpUGraphExtender< ListBpUGraphBase > ExtendedListBpUGraphBase;
deba@2116
  1142
deba@2116
  1143
  /// \ingroup graphs
deba@2116
  1144
  ///
deba@2116
  1145
  /// \brief A smart bipartite undirected graph class.
deba@2116
  1146
  ///
deba@2116
  1147
  /// This is a bipartite undirected graph implementation.
deba@2116
  1148
  /// It is conforms to the \ref concept::ErasableBpUGraph "ErasableBpUGraph" 
deba@2116
  1149
  /// concept.
deba@2116
  1150
  /// \sa concept::BpUGraph.
deba@2116
  1151
  ///
deba@2116
  1152
  class ListBpUGraph : public ExtendedListBpUGraphBase {};
deba@2116
  1153
deba@2116
  1154
  
deba@2116
  1155
  /// @}  
alpar@948
  1156
} //namespace lemon
klao@946
  1157
  
alpar@400
  1158
klao@946
  1159
#endif