0
                         29
                         7
                     
                 
                    1100
100
57
59
62
110
110
166
139
55
60
60
60
2
9
125
118
Changeset was too big and was cut off... Show full diff
| 1 | 
		/* -*- C++ -*-  | 
|
| 2 | 
		*  | 
|
| 3 | 
		* This file is a part of LEMON, a generic C++ optimization library  | 
|
| 4 | 
		*  | 
|
| 5 | 
		* Copyright (C) 2003-2008  | 
|
| 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
|
| 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
|
| 8 | 
		*  | 
|
| 9 | 
		* Permission to use, modify and distribute this software is granted  | 
|
| 10 | 
		* provided that this copyright notice appears in all copies. For  | 
|
| 11 | 
		* precise terms see the accompanying LICENSE file.  | 
|
| 12 | 
		*  | 
|
| 13 | 
		* This software is provided "AS IS" with no warranty of any kind,  | 
|
| 14 | 
		* express or implied, and with no claim as to its suitability for any  | 
|
| 15 | 
		* purpose.  | 
|
| 16 | 
		*  | 
|
| 17 | 
		*/  | 
|
| 18 | 
		 | 
|
| 19 | 
		#ifndef LEMON_BELLMAN_FORD_H  | 
|
| 20 | 
		#define LEMON_BELLMAN_FORD_H  | 
|
| 21 | 
		 | 
|
| 22 | 
		/// \ingroup shortest_path  | 
|
| 23 | 
		/// \file  | 
|
| 24 | 
		/// \brief Bellman-Ford algorithm.  | 
|
| 25 | 
		 | 
|
| 26 | 
		#include <lemon/bits/path_dump.h>  | 
|
| 27 | 
		#include <lemon/core.h>  | 
|
| 28 | 
		#include <lemon/error.h>  | 
|
| 29 | 
		#include <lemon/maps.h>  | 
|
| 30 | 
		#include <lemon/path.h>  | 
|
| 31 | 
		 | 
|
| 32 | 
		#include <limits>  | 
|
| 33 | 
		 | 
|
| 34 | 
		namespace lemon {
	 | 
|
| 35 | 
		 | 
|
| 36 | 
		/// \brief Default OperationTraits for the BellmanFord algorithm class.  | 
|
| 37 | 
		///  | 
|
| 38 | 
		/// This operation traits class defines all computational operations  | 
|
| 39 | 
		/// and constants that are used in the Bellman-Ford algorithm.  | 
|
| 40 | 
		/// The default implementation is based on the \c numeric_limits class.  | 
|
| 41 | 
		/// If the numeric type does not have infinity value, then the maximum  | 
|
| 42 | 
		/// value is used as extremal infinity value.  | 
|
| 43 | 
		template <  | 
|
| 44 | 
		typename V,  | 
|
| 45 | 
		bool has_inf = std::numeric_limits<V>::has_infinity>  | 
|
| 46 | 
		  struct BellmanFordDefaultOperationTraits {
	 | 
|
| 47 | 
		/// \e  | 
|
| 48 | 
		typedef V Value;  | 
|
| 49 | 
		/// \brief Gives back the zero value of the type.  | 
|
| 50 | 
		    static Value zero() {
	 | 
|
| 51 | 
		return static_cast<Value>(0);  | 
|
| 52 | 
		}  | 
|
| 53 | 
		/// \brief Gives back the positive infinity value of the type.  | 
|
| 54 | 
		    static Value infinity() {
	 | 
|
| 55 | 
		return std::numeric_limits<Value>::infinity();  | 
|
| 56 | 
		}  | 
|
| 57 | 
		/// \brief Gives back the sum of the given two elements.  | 
|
| 58 | 
		    static Value plus(const Value& left, const Value& right) {
	 | 
|
| 59 | 
		return left + right;  | 
|
| 60 | 
		}  | 
|
| 61 | 
		/// \brief Gives back \c true only if the first value is less than  | 
|
| 62 | 
		/// the second.  | 
|
| 63 | 
		    static bool less(const Value& left, const Value& right) {
	 | 
|
| 64 | 
		return left < right;  | 
|
| 65 | 
		}  | 
|
| 66 | 
		};  | 
|
| 67 | 
		 | 
|
| 68 | 
		template <typename V>  | 
|
| 69 | 
		  struct BellmanFordDefaultOperationTraits<V, false> {
	 | 
|
| 70 | 
		typedef V Value;  | 
|
| 71 | 
		    static Value zero() {
	 | 
|
| 72 | 
		return static_cast<Value>(0);  | 
|
| 73 | 
		}  | 
|
| 74 | 
		    static Value infinity() {
	 | 
|
| 75 | 
		return std::numeric_limits<Value>::max();  | 
|
| 76 | 
		}  | 
|
| 77 | 
		    static Value plus(const Value& left, const Value& right) {
	 | 
|
| 78 | 
		if (left == infinity() || right == infinity()) return infinity();  | 
|
| 79 | 
		return left + right;  | 
|
| 80 | 
		}  | 
|
| 81 | 
		    static bool less(const Value& left, const Value& right) {
	 | 
|
| 82 | 
		return left < right;  | 
|
| 83 | 
		}  | 
|
| 84 | 
		};  | 
|
| 85 | 
		 | 
|
| 86 | 
		/// \brief Default traits class of BellmanFord class.  | 
|
| 87 | 
		///  | 
|
| 88 | 
		/// Default traits class of BellmanFord class.  | 
|
| 89 | 
		/// \param GR The type of the digraph.  | 
|
| 90 | 
		/// \param LEN The type of the length map.  | 
|
| 91 | 
		template<typename GR, typename LEN>  | 
|
| 92 | 
		  struct BellmanFordDefaultTraits {
	 | 
|
| 93 | 
		/// The type of the digraph the algorithm runs on.  | 
|
| 94 | 
		typedef GR Digraph;  | 
|
| 95 | 
		 | 
|
| 96 | 
		/// \brief The type of the map that stores the arc lengths.  | 
|
| 97 | 
		///  | 
|
| 98 | 
		/// The type of the map that stores the arc lengths.  | 
|
| 99 | 
		/// It must conform to the \ref concepts::ReadMap "ReadMap" concept.  | 
|
| 100 | 
		typedef LEN LengthMap;  | 
|
| 101 | 
		 | 
|
| 102 | 
		/// The type of the arc lengths.  | 
|
| 103 | 
		typedef typename LEN::Value Value;  | 
|
| 104 | 
		 | 
|
| 105 | 
		/// \brief Operation traits for Bellman-Ford algorithm.  | 
|
| 106 | 
		///  | 
|
| 107 | 
		/// It defines the used operations and the infinity value for the  | 
|
| 108 | 
		/// given \c Value type.  | 
|
| 109 | 
		/// \see BellmanFordDefaultOperationTraits  | 
|
| 110 | 
		typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;  | 
|
| 111 | 
		 | 
|
| 112 | 
		/// \brief The type of the map that stores the last arcs of the  | 
|
| 113 | 
		/// shortest paths.  | 
|
| 114 | 
		///  | 
|
| 115 | 
		/// The type of the map that stores the last  | 
|
| 116 | 
		/// arcs of the shortest paths.  | 
|
| 117 | 
		/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 118 | 
		typedef typename GR::template NodeMap<typename GR::Arc> PredMap;  | 
|
| 119 | 
		 | 
|
| 120 | 
		/// \brief Instantiates a \c PredMap.  | 
|
| 121 | 
		///  | 
|
| 122 | 
		/// This function instantiates a \ref PredMap.  | 
|
| 123 | 
		/// \param g is the digraph to which we would like to define the  | 
|
| 124 | 
		/// \ref PredMap.  | 
|
| 125 | 
		    static PredMap *createPredMap(const GR& g) {
	 | 
|
| 126 | 
		return new PredMap(g);  | 
|
| 127 | 
		}  | 
|
| 128 | 
		 | 
|
| 129 | 
		/// \brief The type of the map that stores the distances of the nodes.  | 
|
| 130 | 
		///  | 
|
| 131 | 
		/// The type of the map that stores the distances of the nodes.  | 
|
| 132 | 
		/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 133 | 
		typedef typename GR::template NodeMap<typename LEN::Value> DistMap;  | 
|
| 134 | 
		 | 
|
| 135 | 
		/// \brief Instantiates a \c DistMap.  | 
|
| 136 | 
		///  | 
|
| 137 | 
		/// This function instantiates a \ref DistMap.  | 
|
| 138 | 
		/// \param g is the digraph to which we would like to define the  | 
|
| 139 | 
		/// \ref DistMap.  | 
|
| 140 | 
		    static DistMap *createDistMap(const GR& g) {
	 | 
|
| 141 | 
		return new DistMap(g);  | 
|
| 142 | 
		}  | 
|
| 143 | 
		 | 
|
| 144 | 
		};  | 
|
| 145 | 
		 | 
|
| 146 | 
		/// \brief %BellmanFord algorithm class.  | 
|
| 147 | 
		///  | 
|
| 148 | 
		/// \ingroup shortest_path  | 
|
| 149 | 
		/// This class provides an efficient implementation of the Bellman-Ford  | 
|
| 150 | 
		/// algorithm. The maximum time complexity of the algorithm is  | 
|
| 151 | 
		/// <tt>O(ne)</tt>.  | 
|
| 152 | 
		///  | 
|
| 153 | 
		/// The Bellman-Ford algorithm solves the single-source shortest path  | 
|
| 154 | 
		/// problem when the arcs can have negative lengths, but the digraph  | 
|
| 155 | 
		/// should not contain directed cycles with negative total length.  | 
|
| 156 | 
		/// If all arc costs are non-negative, consider to use the Dijkstra  | 
|
| 157 | 
		/// algorithm instead, since it is more efficient.  | 
|
| 158 | 
		///  | 
|
| 159 | 
		/// The arc lengths are passed to the algorithm using a  | 
|
| 160 | 
		/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any  | 
|
| 161 | 
		/// kind of length. The type of the length values is determined by the  | 
|
| 162 | 
		/// \ref concepts::ReadMap::Value "Value" type of the length map.  | 
|
| 163 | 
		///  | 
|
| 164 | 
		/// There is also a \ref bellmanFord() "function-type interface" for the  | 
|
| 165 | 
		/// Bellman-Ford algorithm, which is convenient in the simplier cases and  | 
|
| 166 | 
		/// it can be used easier.  | 
|
| 167 | 
		///  | 
|
| 168 | 
		/// \tparam GR The type of the digraph the algorithm runs on.  | 
|
| 169 | 
		/// The default type is \ref ListDigraph.  | 
|
| 170 | 
		/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies  | 
|
| 171 | 
		/// the lengths of the arcs. The default map type is  | 
|
| 172 | 
		/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".  | 
|
| 173 | 
		#ifdef DOXYGEN  | 
|
| 174 | 
		template <typename GR, typename LEN, typename TR>  | 
|
| 175 | 
		#else  | 
|
| 176 | 
		template <typename GR=ListDigraph,  | 
|
| 177 | 
		typename LEN=typename GR::template ArcMap<int>,  | 
|
| 178 | 
		typename TR=BellmanFordDefaultTraits<GR,LEN> >  | 
|
| 179 | 
		#endif  | 
|
| 180 | 
		  class BellmanFord {
	 | 
|
| 181 | 
		public:  | 
|
| 182 | 
		 | 
|
| 183 | 
		///The type of the underlying digraph.  | 
|
| 184 | 
		typedef typename TR::Digraph Digraph;  | 
|
| 185 | 
		 | 
|
| 186 | 
		/// \brief The type of the arc lengths.  | 
|
| 187 | 
		typedef typename TR::LengthMap::Value Value;  | 
|
| 188 | 
		/// \brief The type of the map that stores the arc lengths.  | 
|
| 189 | 
		typedef typename TR::LengthMap LengthMap;  | 
|
| 190 | 
		/// \brief The type of the map that stores the last  | 
|
| 191 | 
		/// arcs of the shortest paths.  | 
|
| 192 | 
		typedef typename TR::PredMap PredMap;  | 
|
| 193 | 
		/// \brief The type of the map that stores the distances of the nodes.  | 
|
| 194 | 
		typedef typename TR::DistMap DistMap;  | 
|
| 195 | 
		/// The type of the paths.  | 
|
| 196 | 
		typedef PredMapPath<Digraph, PredMap> Path;  | 
|
| 197 | 
		///\brief The \ref BellmanFordDefaultOperationTraits  | 
|
| 198 | 
		/// "operation traits class" of the algorithm.  | 
|
| 199 | 
		typedef typename TR::OperationTraits OperationTraits;  | 
|
| 200 | 
		 | 
|
| 201 | 
		///The \ref BellmanFordDefaultTraits "traits class" of the algorithm.  | 
|
| 202 | 
		typedef TR Traits;  | 
|
| 203 | 
		 | 
|
| 204 | 
		private:  | 
|
| 205 | 
		 | 
|
| 206 | 
		typedef typename Digraph::Node Node;  | 
|
| 207 | 
		typedef typename Digraph::NodeIt NodeIt;  | 
|
| 208 | 
		typedef typename Digraph::Arc Arc;  | 
|
| 209 | 
		typedef typename Digraph::OutArcIt OutArcIt;  | 
|
| 210 | 
		 | 
|
| 211 | 
		// Pointer to the underlying digraph.  | 
|
| 212 | 
		const Digraph *_gr;  | 
|
| 213 | 
		// Pointer to the length map  | 
|
| 214 | 
		const LengthMap *_length;  | 
|
| 215 | 
		// Pointer to the map of predecessors arcs.  | 
|
| 216 | 
		PredMap *_pred;  | 
|
| 217 | 
		// Indicates if _pred is locally allocated (true) or not.  | 
|
| 218 | 
		bool _local_pred;  | 
|
| 219 | 
		// Pointer to the map of distances.  | 
|
| 220 | 
		DistMap *_dist;  | 
|
| 221 | 
		// Indicates if _dist is locally allocated (true) or not.  | 
|
| 222 | 
		bool _local_dist;  | 
|
| 223 | 
		 | 
|
| 224 | 
		typedef typename Digraph::template NodeMap<bool> MaskMap;  | 
|
| 225 | 
		MaskMap *_mask;  | 
|
| 226 | 
		 | 
|
| 227 | 
		std::vector<Node> _process;  | 
|
| 228 | 
		 | 
|
| 229 | 
		// Creates the maps if necessary.  | 
|
| 230 | 
		    void create_maps() {
	 | 
|
| 231 | 
		      if(!_pred) {
	 | 
|
| 232 | 
		_local_pred = true;  | 
|
| 233 | 
		_pred = Traits::createPredMap(*_gr);  | 
|
| 234 | 
		}  | 
|
| 235 | 
		      if(!_dist) {
	 | 
|
| 236 | 
		_local_dist = true;  | 
|
| 237 | 
		_dist = Traits::createDistMap(*_gr);  | 
|
| 238 | 
		}  | 
|
| 239 | 
		_mask = new MaskMap(*_gr, false);  | 
|
| 240 | 
		}  | 
|
| 241 | 
		 | 
|
| 242 | 
		public :  | 
|
| 243 | 
		 | 
|
| 244 | 
		typedef BellmanFord Create;  | 
|
| 245 | 
		 | 
|
| 246 | 
		/// \name Named Template Parameters  | 
|
| 247 | 
		 | 
|
| 248 | 
		    ///@{
	 | 
|
| 249 | 
		 | 
|
| 250 | 
		template <class T>  | 
|
| 251 | 
		    struct SetPredMapTraits : public Traits {
	 | 
|
| 252 | 
		typedef T PredMap;  | 
|
| 253 | 
		      static PredMap *createPredMap(const Digraph&) {
	 | 
|
| 254 | 
		LEMON_ASSERT(false, "PredMap is not initialized");  | 
|
| 255 | 
		return 0; // ignore warnings  | 
|
| 256 | 
		}  | 
|
| 257 | 
		};  | 
|
| 258 | 
		 | 
|
| 259 | 
		/// \brief \ref named-templ-param "Named parameter" for setting  | 
|
| 260 | 
		/// \c PredMap type.  | 
|
| 261 | 
		///  | 
|
| 262 | 
		/// \ref named-templ-param "Named parameter" for setting  | 
|
| 263 | 
		/// \c PredMap type.  | 
|
| 264 | 
		/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 265 | 
		template <class T>  | 
|
| 266 | 
		struct SetPredMap  | 
|
| 267 | 
		      : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
	 | 
|
| 268 | 
		typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;  | 
|
| 269 | 
		};  | 
|
| 270 | 
		 | 
|
| 271 | 
		template <class T>  | 
|
| 272 | 
		    struct SetDistMapTraits : public Traits {
	 | 
|
| 273 | 
		typedef T DistMap;  | 
|
| 274 | 
		      static DistMap *createDistMap(const Digraph&) {
	 | 
|
| 275 | 
		LEMON_ASSERT(false, "DistMap is not initialized");  | 
|
| 276 | 
		return 0; // ignore warnings  | 
|
| 277 | 
		}  | 
|
| 278 | 
		};  | 
|
| 279 | 
		 | 
|
| 280 | 
		/// \brief \ref named-templ-param "Named parameter" for setting  | 
|
| 281 | 
		/// \c DistMap type.  | 
|
| 282 | 
		///  | 
|
| 283 | 
		/// \ref named-templ-param "Named parameter" for setting  | 
|
| 284 | 
		/// \c DistMap type.  | 
|
| 285 | 
		/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 286 | 
		template <class T>  | 
|
| 287 | 
		struct SetDistMap  | 
|
| 288 | 
		      : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
	 | 
|
| 289 | 
		typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;  | 
|
| 290 | 
		};  | 
|
| 291 | 
		 | 
|
| 292 | 
		template <class T>  | 
|
| 293 | 
		    struct SetOperationTraitsTraits : public Traits {
	 | 
|
| 294 | 
		typedef T OperationTraits;  | 
|
| 295 | 
		};  | 
|
| 296 | 
		 | 
|
| 297 | 
		/// \brief \ref named-templ-param "Named parameter" for setting  | 
|
| 298 | 
		/// \c OperationTraits type.  | 
|
| 299 | 
		///  | 
|
| 300 | 
		/// \ref named-templ-param "Named parameter" for setting  | 
|
| 301 | 
		/// \c OperationTraits type.  | 
|
| 302 | 
		/// For more information see \ref BellmanFordDefaultOperationTraits.  | 
|
| 303 | 
		template <class T>  | 
|
| 304 | 
		struct SetOperationTraits  | 
|
| 305 | 
		      : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
	 | 
|
| 306 | 
		typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >  | 
|
| 307 | 
		Create;  | 
|
| 308 | 
		};  | 
|
| 309 | 
		 | 
|
| 310 | 
		///@}  | 
|
| 311 | 
		 | 
|
| 312 | 
		protected:  | 
|
| 313 | 
		 | 
|
| 314 | 
		    BellmanFord() {}
	 | 
|
| 315 | 
		 | 
|
| 316 | 
		public:  | 
|
| 317 | 
		 | 
|
| 318 | 
		/// \brief Constructor.  | 
|
| 319 | 
		///  | 
|
| 320 | 
		/// Constructor.  | 
|
| 321 | 
		/// \param g The digraph the algorithm runs on.  | 
|
| 322 | 
		/// \param length The length map used by the algorithm.  | 
|
| 323 | 
		BellmanFord(const Digraph& g, const LengthMap& length) :  | 
|
| 324 | 
		_gr(&g), _length(&length),  | 
|
| 325 | 
		_pred(0), _local_pred(false),  | 
|
| 326 | 
		      _dist(0), _local_dist(false), _mask(0) {}
	 | 
|
| 327 | 
		 | 
|
| 328 | 
		///Destructor.  | 
|
| 329 | 
		    ~BellmanFord() {
	 | 
|
| 330 | 
		if(_local_pred) delete _pred;  | 
|
| 331 | 
		if(_local_dist) delete _dist;  | 
|
| 332 | 
		if(_mask) delete _mask;  | 
|
| 333 | 
		}  | 
|
| 334 | 
		 | 
|
| 335 | 
		/// \brief Sets the length map.  | 
|
| 336 | 
		///  | 
|
| 337 | 
		/// Sets the length map.  | 
|
| 338 | 
		/// \return <tt>(*this)</tt>  | 
|
| 339 | 
		    BellmanFord &lengthMap(const LengthMap &map) {
	 | 
|
| 340 | 
		_length = ↦  | 
|
| 341 | 
		return *this;  | 
|
| 342 | 
		}  | 
|
| 343 | 
		 | 
|
| 344 | 
		/// \brief Sets the map that stores the predecessor arcs.  | 
|
| 345 | 
		///  | 
|
| 346 | 
		/// Sets the map that stores the predecessor arcs.  | 
|
| 347 | 
		/// If you don't use this function before calling \ref run()  | 
|
| 348 | 
		/// or \ref init(), an instance will be allocated automatically.  | 
|
| 349 | 
		/// The destructor deallocates this automatically allocated map,  | 
|
| 350 | 
		/// of course.  | 
|
| 351 | 
		/// \return <tt>(*this)</tt>  | 
|
| 352 | 
		    BellmanFord &predMap(PredMap &map) {
	 | 
|
| 353 | 
		      if(_local_pred) {
	 | 
|
| 354 | 
		delete _pred;  | 
|
| 355 | 
		_local_pred=false;  | 
|
| 356 | 
		}  | 
|
| 357 | 
		_pred = ↦  | 
|
| 358 | 
		return *this;  | 
|
| 359 | 
		}  | 
|
| 360 | 
		 | 
|
| 361 | 
		/// \brief Sets the map that stores the distances of the nodes.  | 
|
| 362 | 
		///  | 
|
| 363 | 
		/// Sets the map that stores the distances of the nodes calculated  | 
|
| 364 | 
		/// by the algorithm.  | 
|
| 365 | 
		/// If you don't use this function before calling \ref run()  | 
|
| 366 | 
		/// or \ref init(), an instance will be allocated automatically.  | 
|
| 367 | 
		/// The destructor deallocates this automatically allocated map,  | 
|
| 368 | 
		/// of course.  | 
|
| 369 | 
		/// \return <tt>(*this)</tt>  | 
|
| 370 | 
		    BellmanFord &distMap(DistMap &map) {
	 | 
|
| 371 | 
		      if(_local_dist) {
	 | 
|
| 372 | 
		delete _dist;  | 
|
| 373 | 
		_local_dist=false;  | 
|
| 374 | 
		}  | 
|
| 375 | 
		_dist = ↦  | 
|
| 376 | 
		return *this;  | 
|
| 377 | 
		}  | 
|
| 378 | 
		 | 
|
| 379 | 
		/// \name Execution Control  | 
|
| 380 | 
		/// The simplest way to execute the Bellman-Ford algorithm is to use  | 
|
| 381 | 
		/// one of the member functions called \ref run().\n  | 
|
| 382 | 
		/// If you need better control on the execution, you have to call  | 
|
| 383 | 
		/// \ref init() first, then you can add several source nodes  | 
|
| 384 | 
		/// with \ref addSource(). Finally the actual path computation can be  | 
|
| 385 | 
		/// performed with \ref start(), \ref checkedStart() or  | 
|
| 386 | 
		/// \ref limitedStart().  | 
|
| 387 | 
		 | 
|
| 388 | 
		    ///@{
	 | 
|
| 389 | 
		 | 
|
| 390 | 
		/// \brief Initializes the internal data structures.  | 
|
| 391 | 
		///  | 
|
| 392 | 
		/// Initializes the internal data structures. The optional parameter  | 
|
| 393 | 
		/// is the initial distance of each node.  | 
|
| 394 | 
		    void init(const Value value = OperationTraits::infinity()) {
	 | 
|
| 395 | 
		create_maps();  | 
|
| 396 | 
		      for (NodeIt it(*_gr); it != INVALID; ++it) {
	 | 
|
| 397 | 
		_pred->set(it, INVALID);  | 
|
| 398 | 
		_dist->set(it, value);  | 
|
| 399 | 
		}  | 
|
| 400 | 
		_process.clear();  | 
|
| 401 | 
		      if (OperationTraits::less(value, OperationTraits::infinity())) {
	 | 
|
| 402 | 
			for (NodeIt it(*_gr); it != INVALID; ++it) {
	 | 
|
| 403 | 
		_process.push_back(it);  | 
|
| 404 | 
		_mask->set(it, true);  | 
|
| 405 | 
		}  | 
|
| 406 | 
		}  | 
|
| 407 | 
		}  | 
|
| 408 | 
		 | 
|
| 409 | 
		/// \brief Adds a new source node.  | 
|
| 410 | 
		///  | 
|
| 411 | 
		/// This function adds a new source node. The optional second parameter  | 
|
| 412 | 
		/// is the initial distance of the node.  | 
|
| 413 | 
		    void addSource(Node source, Value dst = OperationTraits::zero()) {
	 | 
|
| 414 | 
		_dist->set(source, dst);  | 
|
| 415 | 
		      if (!(*_mask)[source]) {
	 | 
|
| 416 | 
		_process.push_back(source);  | 
|
| 417 | 
		_mask->set(source, true);  | 
|
| 418 | 
		}  | 
|
| 419 | 
		}  | 
|
| 420 | 
		 | 
|
| 421 | 
		/// \brief Executes one round from the Bellman-Ford algorithm.  | 
|
| 422 | 
		///  | 
|
| 423 | 
		/// If the algoritm calculated the distances in the previous round  | 
|
| 424 | 
		/// exactly for the paths of at most \c k arcs, then this function  | 
|
| 425 | 
		/// will calculate the distances exactly for the paths of at most  | 
|
| 426 | 
		/// <tt>k+1</tt> arcs. Performing \c k iterations using this function  | 
|
| 427 | 
		/// calculates the shortest path distances exactly for the paths  | 
|
| 428 | 
		/// consisting of at most \c k arcs.  | 
|
| 429 | 
		///  | 
|
| 430 | 
		/// \warning The paths with limited arc number cannot be retrieved  | 
|
| 431 | 
		/// easily with \ref path() or \ref predArc() functions. If you also  | 
|
| 432 | 
		/// need the shortest paths and not only the distances, you should  | 
|
| 433 | 
		/// store the \ref predMap() "predecessor map" after each iteration  | 
|
| 434 | 
		/// and build the path manually.  | 
|
| 435 | 
		///  | 
|
| 436 | 
		/// \return \c true when the algorithm have not found more shorter  | 
|
| 437 | 
		/// paths.  | 
|
| 438 | 
		///  | 
|
| 439 | 
		/// \see ActiveIt  | 
|
| 440 | 
		    bool processNextRound() {
	 | 
|
| 441 | 
		      for (int i = 0; i < int(_process.size()); ++i) {
	 | 
|
| 442 | 
		_mask->set(_process[i], false);  | 
|
| 443 | 
		}  | 
|
| 444 | 
		std::vector<Node> nextProcess;  | 
|
| 445 | 
		std::vector<Value> values(_process.size());  | 
|
| 446 | 
		      for (int i = 0; i < int(_process.size()); ++i) {
	 | 
|
| 447 | 
		values[i] = (*_dist)[_process[i]];  | 
|
| 448 | 
		}  | 
|
| 449 | 
		      for (int i = 0; i < int(_process.size()); ++i) {
	 | 
|
| 450 | 
			for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
	 | 
|
| 451 | 
		Node target = _gr->target(it);  | 
|
| 452 | 
		Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);  | 
|
| 453 | 
			  if (OperationTraits::less(relaxed, (*_dist)[target])) {
	 | 
|
| 454 | 
		_pred->set(target, it);  | 
|
| 455 | 
		_dist->set(target, relaxed);  | 
|
| 456 | 
			    if (!(*_mask)[target]) {
	 | 
|
| 457 | 
		_mask->set(target, true);  | 
|
| 458 | 
		nextProcess.push_back(target);  | 
|
| 459 | 
		}  | 
|
| 460 | 
		}  | 
|
| 461 | 
		}  | 
|
| 462 | 
		}  | 
|
| 463 | 
		_process.swap(nextProcess);  | 
|
| 464 | 
		return _process.empty();  | 
|
| 465 | 
		}  | 
|
| 466 | 
		 | 
|
| 467 | 
		/// \brief Executes one weak round from the Bellman-Ford algorithm.  | 
|
| 468 | 
		///  | 
|
| 469 | 
		/// If the algorithm calculated the distances in the previous round  | 
|
| 470 | 
		/// at least for the paths of at most \c k arcs, then this function  | 
|
| 471 | 
		/// will calculate the distances at least for the paths of at most  | 
|
| 472 | 
		/// <tt>k+1</tt> arcs.  | 
|
| 473 | 
		/// This function does not make it possible to calculate the shortest  | 
|
| 474 | 
		/// path distances exactly for paths consisting of at most \c k arcs,  | 
|
| 475 | 
		/// this is why it is called weak round.  | 
|
| 476 | 
		///  | 
|
| 477 | 
		/// \return \c true when the algorithm have not found more shorter  | 
|
| 478 | 
		/// paths.  | 
|
| 479 | 
		///  | 
|
| 480 | 
		/// \see ActiveIt  | 
|
| 481 | 
		    bool processNextWeakRound() {
	 | 
|
| 482 | 
		      for (int i = 0; i < int(_process.size()); ++i) {
	 | 
|
| 483 | 
		_mask->set(_process[i], false);  | 
|
| 484 | 
		}  | 
|
| 485 | 
		std::vector<Node> nextProcess;  | 
|
| 486 | 
		      for (int i = 0; i < int(_process.size()); ++i) {
	 | 
|
| 487 | 
			for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
	 | 
|
| 488 | 
		Node target = _gr->target(it);  | 
|
| 489 | 
		Value relaxed =  | 
|
| 490 | 
		OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);  | 
|
| 491 | 
			  if (OperationTraits::less(relaxed, (*_dist)[target])) {
	 | 
|
| 492 | 
		_pred->set(target, it);  | 
|
| 493 | 
		_dist->set(target, relaxed);  | 
|
| 494 | 
			    if (!(*_mask)[target]) {
	 | 
|
| 495 | 
		_mask->set(target, true);  | 
|
| 496 | 
		nextProcess.push_back(target);  | 
|
| 497 | 
		}  | 
|
| 498 | 
		}  | 
|
| 499 | 
		}  | 
|
| 500 | 
		}  | 
|
| 501 | 
		_process.swap(nextProcess);  | 
|
| 502 | 
		return _process.empty();  | 
|
| 503 | 
		}  | 
|
| 504 | 
		 | 
|
| 505 | 
		/// \brief Executes the algorithm.  | 
|
| 506 | 
		///  | 
|
| 507 | 
		/// Executes the algorithm.  | 
|
| 508 | 
		///  | 
|
| 509 | 
		/// This method runs the Bellman-Ford algorithm from the root node(s)  | 
|
| 510 | 
		/// in order to compute the shortest path to each node.  | 
|
| 511 | 
		///  | 
|
| 512 | 
		/// The algorithm computes  | 
|
| 513 | 
		/// - the shortest path tree (forest),  | 
|
| 514 | 
		/// - the distance of each node from the root(s).  | 
|
| 515 | 
		///  | 
|
| 516 | 
		/// \pre init() must be called and at least one root node should be  | 
|
| 517 | 
		/// added with addSource() before using this function.  | 
|
| 518 | 
		    void start() {
	 | 
|
| 519 | 
		int num = countNodes(*_gr) - 1;  | 
|
| 520 | 
		      for (int i = 0; i < num; ++i) {
	 | 
|
| 521 | 
		if (processNextWeakRound()) break;  | 
|
| 522 | 
		}  | 
|
| 523 | 
		}  | 
|
| 524 | 
		 | 
|
| 525 | 
		/// \brief Executes the algorithm and checks the negative cycles.  | 
|
| 526 | 
		///  | 
|
| 527 | 
		/// Executes the algorithm and checks the negative cycles.  | 
|
| 528 | 
		///  | 
|
| 529 | 
		/// This method runs the Bellman-Ford algorithm from the root node(s)  | 
|
| 530 | 
		/// in order to compute the shortest path to each node and also checks  | 
|
| 531 | 
		/// if the digraph contains cycles with negative total length.  | 
|
| 532 | 
		///  | 
|
| 533 | 
		/// The algorithm computes  | 
|
| 534 | 
		/// - the shortest path tree (forest),  | 
|
| 535 | 
		/// - the distance of each node from the root(s).  | 
|
| 536 | 
		///  | 
|
| 537 | 
		/// \return \c false if there is a negative cycle in the digraph.  | 
|
| 538 | 
		///  | 
|
| 539 | 
		/// \pre init() must be called and at least one root node should be  | 
|
| 540 | 
		/// added with addSource() before using this function.  | 
|
| 541 | 
		    bool checkedStart() {
	 | 
|
| 542 | 
		int num = countNodes(*_gr);  | 
|
| 543 | 
		      for (int i = 0; i < num; ++i) {
	 | 
|
| 544 | 
		if (processNextWeakRound()) return true;  | 
|
| 545 | 
		}  | 
|
| 546 | 
		return _process.empty();  | 
|
| 547 | 
		}  | 
|
| 548 | 
		 | 
|
| 549 | 
		/// \brief Executes the algorithm with arc number limit.  | 
|
| 550 | 
		///  | 
|
| 551 | 
		/// Executes the algorithm with arc number limit.  | 
|
| 552 | 
		///  | 
|
| 553 | 
		/// This method runs the Bellman-Ford algorithm from the root node(s)  | 
|
| 554 | 
		/// in order to compute the shortest path distance for each node  | 
|
| 555 | 
		/// using only the paths consisting of at most \c num arcs.  | 
|
| 556 | 
		///  | 
|
| 557 | 
		/// The algorithm computes  | 
|
| 558 | 
		/// - the limited distance of each node from the root(s),  | 
|
| 559 | 
		/// - the predecessor arc for each node.  | 
|
| 560 | 
		///  | 
|
| 561 | 
		/// \warning The paths with limited arc number cannot be retrieved  | 
|
| 562 | 
		/// easily with \ref path() or \ref predArc() functions. If you also  | 
|
| 563 | 
		/// need the shortest paths and not only the distances, you should  | 
|
| 564 | 
		/// store the \ref predMap() "predecessor map" after each iteration  | 
|
| 565 | 
		/// and build the path manually.  | 
|
| 566 | 
		///  | 
|
| 567 | 
		/// \pre init() must be called and at least one root node should be  | 
|
| 568 | 
		/// added with addSource() before using this function.  | 
|
| 569 | 
		    void limitedStart(int num) {
	 | 
|
| 570 | 
		      for (int i = 0; i < num; ++i) {
	 | 
|
| 571 | 
		if (processNextRound()) break;  | 
|
| 572 | 
		}  | 
|
| 573 | 
		}  | 
|
| 574 | 
		 | 
|
| 575 | 
		/// \brief Runs the algorithm from the given root node.  | 
|
| 576 | 
		///  | 
|
| 577 | 
		/// This method runs the Bellman-Ford algorithm from the given root  | 
|
| 578 | 
		/// node \c s in order to compute the shortest path to each node.  | 
|
| 579 | 
		///  | 
|
| 580 | 
		/// The algorithm computes  | 
|
| 581 | 
		/// - the shortest path tree (forest),  | 
|
| 582 | 
		/// - the distance of each node from the root(s).  | 
|
| 583 | 
		///  | 
|
| 584 | 
		/// \note bf.run(s) is just a shortcut of the following code.  | 
|
| 585 | 
		/// \code  | 
|
| 586 | 
		/// bf.init();  | 
|
| 587 | 
		/// bf.addSource(s);  | 
|
| 588 | 
		/// bf.start();  | 
|
| 589 | 
		/// \endcode  | 
|
| 590 | 
		    void run(Node s) {
	 | 
|
| 591 | 
		init();  | 
|
| 592 | 
		addSource(s);  | 
|
| 593 | 
		start();  | 
|
| 594 | 
		}  | 
|
| 595 | 
		 | 
|
| 596 | 
		/// \brief Runs the algorithm from the given root node with arc  | 
|
| 597 | 
		/// number limit.  | 
|
| 598 | 
		///  | 
|
| 599 | 
		/// This method runs the Bellman-Ford algorithm from the given root  | 
|
| 600 | 
		/// node \c s in order to compute the shortest path distance for each  | 
|
| 601 | 
		/// node using only the paths consisting of at most \c num arcs.  | 
|
| 602 | 
		///  | 
|
| 603 | 
		/// The algorithm computes  | 
|
| 604 | 
		/// - the limited distance of each node from the root(s),  | 
|
| 605 | 
		/// - the predecessor arc for each node.  | 
|
| 606 | 
		///  | 
|
| 607 | 
		/// \warning The paths with limited arc number cannot be retrieved  | 
|
| 608 | 
		/// easily with \ref path() or \ref predArc() functions. If you also  | 
|
| 609 | 
		/// need the shortest paths and not only the distances, you should  | 
|
| 610 | 
		/// store the \ref predMap() "predecessor map" after each iteration  | 
|
| 611 | 
		/// and build the path manually.  | 
|
| 612 | 
		///  | 
|
| 613 | 
		/// \note bf.run(s, num) is just a shortcut of the following code.  | 
|
| 614 | 
		/// \code  | 
|
| 615 | 
		/// bf.init();  | 
|
| 616 | 
		/// bf.addSource(s);  | 
|
| 617 | 
		/// bf.limitedStart(num);  | 
|
| 618 | 
		/// \endcode  | 
|
| 619 | 
		    void run(Node s, int num) {
	 | 
|
| 620 | 
		init();  | 
|
| 621 | 
		addSource(s);  | 
|
| 622 | 
		limitedStart(num);  | 
|
| 623 | 
		}  | 
|
| 624 | 
		 | 
|
| 625 | 
		///@}  | 
|
| 626 | 
		 | 
|
| 627 | 
		/// \brief LEMON iterator for getting the active nodes.  | 
|
| 628 | 
		///  | 
|
| 629 | 
		/// This class provides a common style LEMON iterator that traverses  | 
|
| 630 | 
		/// the active nodes of the Bellman-Ford algorithm after the last  | 
|
| 631 | 
		/// phase. These nodes should be checked in the next phase to  | 
|
| 632 | 
		/// find augmenting arcs outgoing from them.  | 
|
| 633 | 
		    class ActiveIt {
	 | 
|
| 634 | 
		public:  | 
|
| 635 | 
		 | 
|
| 636 | 
		/// \brief Constructor.  | 
|
| 637 | 
		///  | 
|
| 638 | 
		/// Constructor for getting the active nodes of the given BellmanFord  | 
|
| 639 | 
		/// instance.  | 
|
| 640 | 
		ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)  | 
|
| 641 | 
		      {
	 | 
|
| 642 | 
		_index = _algorithm->_process.size() - 1;  | 
|
| 643 | 
		}  | 
|
| 644 | 
		 | 
|
| 645 | 
		/// \brief Invalid constructor.  | 
|
| 646 | 
		///  | 
|
| 647 | 
		/// Invalid constructor.  | 
|
| 648 | 
		      ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
	 | 
|
| 649 | 
		 | 
|
| 650 | 
		/// \brief Conversion to \c Node.  | 
|
| 651 | 
		///  | 
|
| 652 | 
		/// Conversion to \c Node.  | 
|
| 653 | 
		      operator Node() const { 
	 | 
|
| 654 | 
		return _index >= 0 ? _algorithm->_process[_index] : INVALID;  | 
|
| 655 | 
		}  | 
|
| 656 | 
		 | 
|
| 657 | 
		/// \brief Increment operator.  | 
|
| 658 | 
		///  | 
|
| 659 | 
		/// Increment operator.  | 
|
| 660 | 
		      ActiveIt& operator++() {
	 | 
|
| 661 | 
		--_index;  | 
|
| 662 | 
		return *this;  | 
|
| 663 | 
		}  | 
|
| 664 | 
		 | 
|
| 665 | 
		      bool operator==(const ActiveIt& it) const { 
	 | 
|
| 666 | 
		return static_cast<Node>(*this) == static_cast<Node>(it);  | 
|
| 667 | 
		}  | 
|
| 668 | 
		      bool operator!=(const ActiveIt& it) const { 
	 | 
|
| 669 | 
		return static_cast<Node>(*this) != static_cast<Node>(it);  | 
|
| 670 | 
		}  | 
|
| 671 | 
		      bool operator<(const ActiveIt& it) const { 
	 | 
|
| 672 | 
		return static_cast<Node>(*this) < static_cast<Node>(it);  | 
|
| 673 | 
		}  | 
|
| 674 | 
		 | 
|
| 675 | 
		private:  | 
|
| 676 | 
		const BellmanFord* _algorithm;  | 
|
| 677 | 
		int _index;  | 
|
| 678 | 
		};  | 
|
| 679 | 
		 | 
|
| 680 | 
		/// \name Query Functions  | 
|
| 681 | 
		/// The result of the Bellman-Ford algorithm can be obtained using these  | 
|
| 682 | 
		/// functions.\n  | 
|
| 683 | 
		/// Either \ref run() or \ref init() should be called before using them.  | 
|
| 684 | 
		 | 
|
| 685 | 
		    ///@{
	 | 
|
| 686 | 
		 | 
|
| 687 | 
		/// \brief The shortest path to the given node.  | 
|
| 688 | 
		///  | 
|
| 689 | 
		/// Gives back the shortest path to the given node from the root(s).  | 
|
| 690 | 
		///  | 
|
| 691 | 
		/// \warning \c t should be reached from the root(s).  | 
|
| 692 | 
		///  | 
|
| 693 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
|
| 694 | 
		/// using this function.  | 
|
| 695 | 
		Path path(Node t) const  | 
|
| 696 | 
		    {
	 | 
|
| 697 | 
		return Path(*_gr, *_pred, t);  | 
|
| 698 | 
		}  | 
|
| 699 | 
		 | 
|
| 700 | 
		/// \brief The distance of the given node from the root(s).  | 
|
| 701 | 
		///  | 
|
| 702 | 
		/// Returns the distance of the given node from the root(s).  | 
|
| 703 | 
		///  | 
|
| 704 | 
		/// \warning If node \c v is not reached from the root(s), then  | 
|
| 705 | 
		/// the return value of this function is undefined.  | 
|
| 706 | 
		///  | 
|
| 707 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
|
| 708 | 
		/// using this function.  | 
|
| 709 | 
		    Value dist(Node v) const { return (*_dist)[v]; }
	 | 
|
| 710 | 
		 | 
|
| 711 | 
		/// \brief Returns the 'previous arc' of the shortest path tree for  | 
|
| 712 | 
		/// the given node.  | 
|
| 713 | 
		///  | 
|
| 714 | 
		/// This function returns the 'previous arc' of the shortest path  | 
|
| 715 | 
		/// tree for node \c v, i.e. it returns the last arc of a  | 
|
| 716 | 
		/// shortest path from a root to \c v. It is \c INVALID if \c v  | 
|
| 717 | 
		/// is not reached from the root(s) or if \c v is a root.  | 
|
| 718 | 
		///  | 
|
| 719 | 
		/// The shortest path tree used here is equal to the shortest path  | 
|
| 720 | 
		/// tree used in \ref predNode() and \predMap().  | 
|
| 721 | 
		///  | 
|
| 722 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
|
| 723 | 
		/// using this function.  | 
|
| 724 | 
		    Arc predArc(Node v) const { return (*_pred)[v]; }
	 | 
|
| 725 | 
		 | 
|
| 726 | 
		/// \brief Returns the 'previous node' of the shortest path tree for  | 
|
| 727 | 
		/// the given node.  | 
|
| 728 | 
		///  | 
|
| 729 | 
		/// This function returns the 'previous node' of the shortest path  | 
|
| 730 | 
		/// tree for node \c v, i.e. it returns the last but one node of  | 
|
| 731 | 
		/// a shortest path from a root to \c v. It is \c INVALID if \c v  | 
|
| 732 | 
		/// is not reached from the root(s) or if \c v is a root.  | 
|
| 733 | 
		///  | 
|
| 734 | 
		/// The shortest path tree used here is equal to the shortest path  | 
|
| 735 | 
		/// tree used in \ref predArc() and \predMap().  | 
|
| 736 | 
		///  | 
|
| 737 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
|
| 738 | 
		/// using this function.  | 
|
| 739 | 
		    Node predNode(Node v) const { 
	 | 
|
| 740 | 
		return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]);  | 
|
| 741 | 
		}  | 
|
| 742 | 
		 | 
|
| 743 | 
		/// \brief Returns a const reference to the node map that stores the  | 
|
| 744 | 
		/// distances of the nodes.  | 
|
| 745 | 
		///  | 
|
| 746 | 
		/// Returns a const reference to the node map that stores the distances  | 
|
| 747 | 
		/// of the nodes calculated by the algorithm.  | 
|
| 748 | 
		///  | 
|
| 749 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
|
| 750 | 
		/// using this function.  | 
|
| 751 | 
		    const DistMap &distMap() const { return *_dist;}
	 | 
|
| 752 | 
		 | 
|
| 753 | 
		/// \brief Returns a const reference to the node map that stores the  | 
|
| 754 | 
		/// predecessor arcs.  | 
|
| 755 | 
		///  | 
|
| 756 | 
		/// Returns a const reference to the node map that stores the predecessor  | 
|
| 757 | 
		/// arcs, which form the shortest path tree (forest).  | 
|
| 758 | 
		///  | 
|
| 759 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
|
| 760 | 
		/// using this function.  | 
|
| 761 | 
		    const PredMap &predMap() const { return *_pred; }
	 | 
|
| 762 | 
		 | 
|
| 763 | 
		/// \brief Checks if a node is reached from the root(s).  | 
|
| 764 | 
		///  | 
|
| 765 | 
		/// Returns \c true if \c v is reached from the root(s).  | 
|
| 766 | 
		///  | 
|
| 767 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
|
| 768 | 
		/// using this function.  | 
|
| 769 | 
		    bool reached(Node v) const {
	 | 
|
| 770 | 
		return (*_dist)[v] != OperationTraits::infinity();  | 
|
| 771 | 
		}  | 
|
| 772 | 
		 | 
|
| 773 | 
		/// \brief Gives back a negative cycle.  | 
|
| 774 | 
		///  | 
|
| 775 | 
		/// This function gives back a directed cycle with negative total  | 
|
| 776 | 
		/// length if the algorithm has already found one.  | 
|
| 777 | 
		/// Otherwise it gives back an empty path.  | 
|
| 778 | 
		    lemon::Path<Digraph> negativeCycle() {
	 | 
|
| 779 | 
		typename Digraph::template NodeMap<int> state(*_gr, -1);  | 
|
| 780 | 
		lemon::Path<Digraph> cycle;  | 
|
| 781 | 
		      for (int i = 0; i < int(_process.size()); ++i) {
	 | 
|
| 782 | 
		if (state[_process[i]] != -1) continue;  | 
|
| 783 | 
		for (Node v = _process[i]; (*_pred)[v] != INVALID;  | 
|
| 784 | 
		             v = _gr->source((*_pred)[v])) {
	 | 
|
| 785 | 
		          if (state[v] == i) {
	 | 
|
| 786 | 
		cycle.addFront((*_pred)[v]);  | 
|
| 787 | 
		for (Node u = _gr->source((*_pred)[v]); u != v;  | 
|
| 788 | 
		                 u = _gr->source((*_pred)[u])) {
	 | 
|
| 789 | 
		cycle.addFront((*_pred)[u]);  | 
|
| 790 | 
		}  | 
|
| 791 | 
		return cycle;  | 
|
| 792 | 
		}  | 
|
| 793 | 
		          else if (state[v] >= 0) {
	 | 
|
| 794 | 
		break;  | 
|
| 795 | 
		}  | 
|
| 796 | 
		state[v] = i;  | 
|
| 797 | 
		}  | 
|
| 798 | 
		}  | 
|
| 799 | 
		return cycle;  | 
|
| 800 | 
		}  | 
|
| 801 | 
		 | 
|
| 802 | 
		///@}  | 
|
| 803 | 
		};  | 
|
| 804 | 
		 | 
|
| 805 | 
		/// \brief Default traits class of bellmanFord() function.  | 
|
| 806 | 
		///  | 
|
| 807 | 
		/// Default traits class of bellmanFord() function.  | 
|
| 808 | 
		/// \tparam GR The type of the digraph.  | 
|
| 809 | 
		/// \tparam LEN The type of the length map.  | 
|
| 810 | 
		template <typename GR, typename LEN>  | 
|
| 811 | 
		  struct BellmanFordWizardDefaultTraits {
	 | 
|
| 812 | 
		/// The type of the digraph the algorithm runs on.  | 
|
| 813 | 
		typedef GR Digraph;  | 
|
| 814 | 
		 | 
|
| 815 | 
		/// \brief The type of the map that stores the arc lengths.  | 
|
| 816 | 
		///  | 
|
| 817 | 
		/// The type of the map that stores the arc lengths.  | 
|
| 818 | 
		/// It must meet the \ref concepts::ReadMap "ReadMap" concept.  | 
|
| 819 | 
		typedef LEN LengthMap;  | 
|
| 820 | 
		 | 
|
| 821 | 
		/// The type of the arc lengths.  | 
|
| 822 | 
		typedef typename LEN::Value Value;  | 
|
| 823 | 
		 | 
|
| 824 | 
		/// \brief Operation traits for Bellman-Ford algorithm.  | 
|
| 825 | 
		///  | 
|
| 826 | 
		/// It defines the used operations and the infinity value for the  | 
|
| 827 | 
		/// given \c Value type.  | 
|
| 828 | 
		/// \see BellmanFordDefaultOperationTraits  | 
|
| 829 | 
		typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;  | 
|
| 830 | 
		 | 
|
| 831 | 
		/// \brief The type of the map that stores the last  | 
|
| 832 | 
		/// arcs of the shortest paths.  | 
|
| 833 | 
		///  | 
|
| 834 | 
		/// The type of the map that stores the last arcs of the shortest paths.  | 
|
| 835 | 
		/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 836 | 
		typedef typename GR::template NodeMap<typename GR::Arc> PredMap;  | 
|
| 837 | 
		 | 
|
| 838 | 
		/// \brief Instantiates a \c PredMap.  | 
|
| 839 | 
		///  | 
|
| 840 | 
		/// This function instantiates a \ref PredMap.  | 
|
| 841 | 
		/// \param g is the digraph to which we would like to define the  | 
|
| 842 | 
		/// \ref PredMap.  | 
|
| 843 | 
		    static PredMap *createPredMap(const GR &g) {
	 | 
|
| 844 | 
		return new PredMap(g);  | 
|
| 845 | 
		}  | 
|
| 846 | 
		 | 
|
| 847 | 
		/// \brief The type of the map that stores the distances of the nodes.  | 
|
| 848 | 
		///  | 
|
| 849 | 
		/// The type of the map that stores the distances of the nodes.  | 
|
| 850 | 
		/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 851 | 
		typedef typename GR::template NodeMap<Value> DistMap;  | 
|
| 852 | 
		 | 
|
| 853 | 
		/// \brief Instantiates a \c DistMap.  | 
|
| 854 | 
		///  | 
|
| 855 | 
		/// This function instantiates a \ref DistMap.  | 
|
| 856 | 
		/// \param g is the digraph to which we would like to define the  | 
|
| 857 | 
		/// \ref DistMap.  | 
|
| 858 | 
		    static DistMap *createDistMap(const GR &g) {
	 | 
|
| 859 | 
		return new DistMap(g);  | 
|
| 860 | 
		}  | 
|
| 861 | 
		 | 
|
| 862 | 
		///The type of the shortest paths.  | 
|
| 863 | 
		 | 
|
| 864 | 
		///The type of the shortest paths.  | 
|
| 865 | 
		///It must meet the \ref concepts::Path "Path" concept.  | 
|
| 866 | 
		typedef lemon::Path<Digraph> Path;  | 
|
| 867 | 
		};  | 
|
| 868 | 
		 | 
|
| 869 | 
		/// \brief Default traits class used by BellmanFordWizard.  | 
|
| 870 | 
		///  | 
|
| 871 | 
		/// Default traits class used by BellmanFordWizard.  | 
|
| 872 | 
		/// \tparam GR The type of the digraph.  | 
|
| 873 | 
		/// \tparam LEN The type of the length map.  | 
|
| 874 | 
		template <typename GR, typename LEN>  | 
|
| 875 | 
		class BellmanFordWizardBase  | 
|
| 876 | 
		    : public BellmanFordWizardDefaultTraits<GR, LEN> {
	 | 
|
| 877 | 
		 | 
|
| 878 | 
		typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;  | 
|
| 879 | 
		protected:  | 
|
| 880 | 
		// Type of the nodes in the digraph.  | 
|
| 881 | 
		typedef typename Base::Digraph::Node Node;  | 
|
| 882 | 
		 | 
|
| 883 | 
		// Pointer to the underlying digraph.  | 
|
| 884 | 
		void *_graph;  | 
|
| 885 | 
		// Pointer to the length map  | 
|
| 886 | 
		void *_length;  | 
|
| 887 | 
		// Pointer to the map of predecessors arcs.  | 
|
| 888 | 
		void *_pred;  | 
|
| 889 | 
		// Pointer to the map of distances.  | 
|
| 890 | 
		void *_dist;  | 
|
| 891 | 
		//Pointer to the shortest path to the target node.  | 
|
| 892 | 
		void *_path;  | 
|
| 893 | 
		//Pointer to the distance of the target node.  | 
|
| 894 | 
		void *_di;  | 
|
| 895 | 
		 | 
|
| 896 | 
		public:  | 
|
| 897 | 
		/// Constructor.  | 
|
| 898 | 
		 | 
|
| 899 | 
		/// This constructor does not require parameters, it initiates  | 
|
| 900 | 
		/// all of the attributes to default values \c 0.  | 
|
| 901 | 
		BellmanFordWizardBase() :  | 
|
| 902 | 
		      _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
	 | 
|
| 903 | 
		 | 
|
| 904 | 
		/// Constructor.  | 
|
| 905 | 
		 | 
|
| 906 | 
		/// This constructor requires two parameters,  | 
|
| 907 | 
		/// others are initiated to \c 0.  | 
|
| 908 | 
		/// \param gr The digraph the algorithm runs on.  | 
|
| 909 | 
		/// \param len The length map.  | 
|
| 910 | 
		BellmanFordWizardBase(const GR& gr,  | 
|
| 911 | 
		const LEN& len) :  | 
|
| 912 | 
		_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))),  | 
|
| 913 | 
		_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))),  | 
|
| 914 | 
		      _pred(0), _dist(0), _path(0), _di(0) {}
	 | 
|
| 915 | 
		 | 
|
| 916 | 
		};  | 
|
| 917 | 
		 | 
|
| 918 | 
		/// \brief Auxiliary class for the function-type interface of the  | 
|
| 919 | 
		/// \ref BellmanFord "Bellman-Ford" algorithm.  | 
|
| 920 | 
		///  | 
|
| 921 | 
		/// This auxiliary class is created to implement the  | 
|
| 922 | 
		/// \ref bellmanFord() "function-type interface" of the  | 
|
| 923 | 
		/// \ref BellmanFord "Bellman-Ford" algorithm.  | 
|
| 924 | 
		/// It does not have own \ref run() method, it uses the  | 
|
| 925 | 
		/// functions and features of the plain \ref BellmanFord.  | 
|
| 926 | 
		///  | 
|
| 927 | 
		/// This class should only be used through the \ref bellmanFord()  | 
|
| 928 | 
		/// function, which makes it easier to use the algorithm.  | 
|
| 929 | 
		template<class TR>  | 
|
| 930 | 
		  class BellmanFordWizard : public TR {
	 | 
|
| 931 | 
		typedef TR Base;  | 
|
| 932 | 
		 | 
|
| 933 | 
		typedef typename TR::Digraph Digraph;  | 
|
| 934 | 
		 | 
|
| 935 | 
		typedef typename Digraph::Node Node;  | 
|
| 936 | 
		typedef typename Digraph::NodeIt NodeIt;  | 
|
| 937 | 
		typedef typename Digraph::Arc Arc;  | 
|
| 938 | 
		typedef typename Digraph::OutArcIt ArcIt;  | 
|
| 939 | 
		 | 
|
| 940 | 
		typedef typename TR::LengthMap LengthMap;  | 
|
| 941 | 
		typedef typename LengthMap::Value Value;  | 
|
| 942 | 
		typedef typename TR::PredMap PredMap;  | 
|
| 943 | 
		typedef typename TR::DistMap DistMap;  | 
|
| 944 | 
		typedef typename TR::Path Path;  | 
|
| 945 | 
		 | 
|
| 946 | 
		public:  | 
|
| 947 | 
		/// Constructor.  | 
|
| 948 | 
		    BellmanFordWizard() : TR() {}
	 | 
|
| 949 | 
		 | 
|
| 950 | 
		/// \brief Constructor that requires parameters.  | 
|
| 951 | 
		///  | 
|
| 952 | 
		/// Constructor that requires parameters.  | 
|
| 953 | 
		/// These parameters will be the default values for the traits class.  | 
|
| 954 | 
		/// \param gr The digraph the algorithm runs on.  | 
|
| 955 | 
		/// \param len The length map.  | 
|
| 956 | 
		BellmanFordWizard(const Digraph& gr, const LengthMap& len)  | 
|
| 957 | 
		      : TR(gr, len) {}
	 | 
|
| 958 | 
		 | 
|
| 959 | 
		/// \brief Copy constructor  | 
|
| 960 | 
		    BellmanFordWizard(const TR &b) : TR(b) {}
	 | 
|
| 961 | 
		 | 
|
| 962 | 
		    ~BellmanFordWizard() {}
	 | 
|
| 963 | 
		 | 
|
| 964 | 
		/// \brief Runs the Bellman-Ford algorithm from the given source node.  | 
|
| 965 | 
		///  | 
|
| 966 | 
		/// This method runs the Bellman-Ford algorithm from the given source  | 
|
| 967 | 
		/// node in order to compute the shortest path to each node.  | 
|
| 968 | 
		    void run(Node s) {
	 | 
|
| 969 | 
		BellmanFord<Digraph,LengthMap,TR>  | 
|
| 970 | 
		bf(*reinterpret_cast<const Digraph*>(Base::_graph),  | 
|
| 971 | 
		*reinterpret_cast<const LengthMap*>(Base::_length));  | 
|
| 972 | 
		if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));  | 
|
| 973 | 
		if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));  | 
|
| 974 | 
		bf.run(s);  | 
|
| 975 | 
		}  | 
|
| 976 | 
		 | 
|
| 977 | 
		/// \brief Runs the Bellman-Ford algorithm to find the shortest path  | 
|
| 978 | 
		/// between \c s and \c t.  | 
|
| 979 | 
		///  | 
|
| 980 | 
		/// This method runs the Bellman-Ford algorithm from node \c s  | 
|
| 981 | 
		/// in order to compute the shortest path to node \c t.  | 
|
| 982 | 
		/// Actually, it computes the shortest path to each node, but using  | 
|
| 983 | 
		/// this function you can retrieve the distance and the shortest path  | 
|
| 984 | 
		/// for a single target node easier.  | 
|
| 985 | 
		///  | 
|
| 986 | 
		/// \return \c true if \c t is reachable form \c s.  | 
|
| 987 | 
		    bool run(Node s, Node t) {
	 | 
|
| 988 | 
		BellmanFord<Digraph,LengthMap,TR>  | 
|
| 989 | 
		bf(*reinterpret_cast<const Digraph*>(Base::_graph),  | 
|
| 990 | 
		*reinterpret_cast<const LengthMap*>(Base::_length));  | 
|
| 991 | 
		if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));  | 
|
| 992 | 
		if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));  | 
|
| 993 | 
		bf.run(s);  | 
|
| 994 | 
		if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);  | 
|
| 995 | 
		if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);  | 
|
| 996 | 
		return bf.reached(t);  | 
|
| 997 | 
		}  | 
|
| 998 | 
		 | 
|
| 999 | 
		template<class T>  | 
|
| 1000 | 
		    struct SetPredMapBase : public Base {
	 | 
|
| 1001 | 
		typedef T PredMap;  | 
|
| 1002 | 
		      static PredMap *createPredMap(const Digraph &) { return 0; };
	 | 
|
| 1003 | 
		      SetPredMapBase(const TR &b) : TR(b) {}
	 | 
|
| 1004 | 
		};  | 
|
| 1005 | 
		 | 
|
| 1006 | 
		/// \brief \ref named-templ-param "Named parameter" for setting  | 
|
| 1007 | 
		/// the predecessor map.  | 
|
| 1008 | 
		///  | 
|
| 1009 | 
		/// \ref named-templ-param "Named parameter" for setting  | 
|
| 1010 | 
		/// the map that stores the predecessor arcs of the nodes.  | 
|
| 1011 | 
		template<class T>  | 
|
| 1012 | 
		    BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
	 | 
|
| 1013 | 
		Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
|
| 1014 | 
		return BellmanFordWizard<SetPredMapBase<T> >(*this);  | 
|
| 1015 | 
		}  | 
|
| 1016 | 
		 | 
|
| 1017 | 
		template<class T>  | 
|
| 1018 | 
		    struct SetDistMapBase : public Base {
	 | 
|
| 1019 | 
		typedef T DistMap;  | 
|
| 1020 | 
		      static DistMap *createDistMap(const Digraph &) { return 0; };
	 | 
|
| 1021 | 
		      SetDistMapBase(const TR &b) : TR(b) {}
	 | 
|
| 1022 | 
		};  | 
|
| 1023 | 
		 | 
|
| 1024 | 
		/// \brief \ref named-templ-param "Named parameter" for setting  | 
|
| 1025 | 
		/// the distance map.  | 
|
| 1026 | 
		///  | 
|
| 1027 | 
		/// \ref named-templ-param "Named parameter" for setting  | 
|
| 1028 | 
		/// the map that stores the distances of the nodes calculated  | 
|
| 1029 | 
		/// by the algorithm.  | 
|
| 1030 | 
		template<class T>  | 
|
| 1031 | 
		    BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
	 | 
|
| 1032 | 
		Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
|
| 1033 | 
		return BellmanFordWizard<SetDistMapBase<T> >(*this);  | 
|
| 1034 | 
		}  | 
|
| 1035 | 
		 | 
|
| 1036 | 
		template<class T>  | 
|
| 1037 | 
		    struct SetPathBase : public Base {
	 | 
|
| 1038 | 
		typedef T Path;  | 
|
| 1039 | 
		      SetPathBase(const TR &b) : TR(b) {}
	 | 
|
| 1040 | 
		};  | 
|
| 1041 | 
		 | 
|
| 1042 | 
		/// \brief \ref named-func-param "Named parameter" for getting  | 
|
| 1043 | 
		/// the shortest path to the target node.  | 
|
| 1044 | 
		///  | 
|
| 1045 | 
		/// \ref named-func-param "Named parameter" for getting  | 
|
| 1046 | 
		/// the shortest path to the target node.  | 
|
| 1047 | 
		template<class T>  | 
|
| 1048 | 
		BellmanFordWizard<SetPathBase<T> > path(const T &t)  | 
|
| 1049 | 
		    {
	 | 
|
| 1050 | 
		Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
|
| 1051 | 
		return BellmanFordWizard<SetPathBase<T> >(*this);  | 
|
| 1052 | 
		}  | 
|
| 1053 | 
		 | 
|
| 1054 | 
		/// \brief \ref named-func-param "Named parameter" for getting  | 
|
| 1055 | 
		/// the distance of the target node.  | 
|
| 1056 | 
		///  | 
|
| 1057 | 
		/// \ref named-func-param "Named parameter" for getting  | 
|
| 1058 | 
		/// the distance of the target node.  | 
|
| 1059 | 
		BellmanFordWizard dist(const Value &d)  | 
|
| 1060 | 
		    {
	 | 
|
| 1061 | 
		Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));  | 
|
| 1062 | 
		return *this;  | 
|
| 1063 | 
		}  | 
|
| 1064 | 
		 | 
|
| 1065 | 
		};  | 
|
| 1066 | 
		 | 
|
| 1067 | 
		/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"  | 
|
| 1068 | 
		/// algorithm.  | 
|
| 1069 | 
		///  | 
|
| 1070 | 
		/// \ingroup shortest_path  | 
|
| 1071 | 
		/// Function type interface for the \ref BellmanFord "Bellman-Ford"  | 
|
| 1072 | 
		/// algorithm.  | 
|
| 1073 | 
		///  | 
|
| 1074 | 
		/// This function also has several \ref named-templ-func-param  | 
|
| 1075 | 
		/// "named parameters", they are declared as the members of class  | 
|
| 1076 | 
		/// \ref BellmanFordWizard.  | 
|
| 1077 | 
		/// The following examples show how to use these parameters.  | 
|
| 1078 | 
		/// \code  | 
|
| 1079 | 
		/// // Compute shortest path from node s to each node  | 
|
| 1080 | 
		/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s);  | 
|
| 1081 | 
		///  | 
|
| 1082 | 
		/// // Compute shortest path from s to t  | 
|
| 1083 | 
		/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);  | 
|
| 1084 | 
		/// \endcode  | 
|
| 1085 | 
		/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"  | 
|
| 1086 | 
		/// to the end of the parameter list.  | 
|
| 1087 | 
		/// \sa BellmanFordWizard  | 
|
| 1088 | 
		/// \sa BellmanFord  | 
|
| 1089 | 
		template<typename GR, typename LEN>  | 
|
| 1090 | 
		BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >  | 
|
| 1091 | 
		bellmanFord(const GR& digraph,  | 
|
| 1092 | 
		const LEN& length)  | 
|
| 1093 | 
		  {
	 | 
|
| 1094 | 
		return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);  | 
|
| 1095 | 
		}  | 
|
| 1096 | 
		 | 
|
| 1097 | 
		} //END OF NAMESPACE LEMON  | 
|
| 1098 | 
		 | 
|
| 1099 | 
		#endif  | 
|
| 1100 | 
| 1 | 
		/* -*- mode: C++; indent-tabs-mode: nil; -*-  | 
|
| 2 | 
		*  | 
|
| 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
|
| 4 | 
		*  | 
|
| 5 | 
		* Copyright (C) 2003-2009  | 
|
| 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
|
| 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
|
| 8 | 
		*  | 
|
| 9 | 
		* Permission to use, modify and distribute this software is granted  | 
|
| 10 | 
		* provided that this copyright notice appears in all copies. For  | 
|
| 11 | 
		* precise terms see the accompanying LICENSE file.  | 
|
| 12 | 
		*  | 
|
| 13 | 
		* This software is provided "AS IS" with no warranty of any kind,  | 
|
| 14 | 
		* express or implied, and with no claim as to its suitability for any  | 
|
| 15 | 
		* purpose.  | 
|
| 16 | 
		*  | 
|
| 17 | 
		*/  | 
|
| 18 | 
		 | 
|
| 19 | 
		#ifndef LEMON_BINOM_HEAP_H  | 
|
| 20 | 
		#define LEMON_BINOM_HEAP_H  | 
|
| 21 | 
		 | 
|
| 22 | 
		///\file  | 
|
| 23 | 
		///\ingroup heaps  | 
|
| 24 | 
		///\brief Binomial Heap implementation.  | 
|
| 25 | 
		 | 
|
| 26 | 
		#include <vector>  | 
|
| 27 | 
		#include <utility>  | 
|
| 28 | 
		#include <functional>  | 
|
| 29 | 
		#include <lemon/math.h>  | 
|
| 30 | 
		#include <lemon/counter.h>  | 
|
| 31 | 
		 | 
|
| 32 | 
		namespace lemon {
	 | 
|
| 33 | 
		 | 
|
| 34 | 
		/// \ingroup heaps  | 
|
| 35 | 
		///  | 
|
| 36 | 
		///\brief Binomial heap data structure.  | 
|
| 37 | 
		///  | 
|
| 38 | 
		/// This class implements the \e binomial \e heap data structure.  | 
|
| 39 | 
		/// It fully conforms to the \ref concepts::Heap "heap concept".  | 
|
| 40 | 
		///  | 
|
| 41 | 
		/// The methods \ref increase() and \ref erase() are not efficient  | 
|
| 42 | 
		/// in a binomial heap. In case of many calls of these operations,  | 
|
| 43 | 
		/// it is better to use other heap structure, e.g. \ref BinHeap  | 
|
| 44 | 
		/// "binary heap".  | 
|
| 45 | 
		///  | 
|
| 46 | 
		/// \tparam PR Type of the priorities of the items.  | 
|
| 47 | 
		/// \tparam IM A read-writable item map with \c int values, used  | 
|
| 48 | 
		/// internally to handle the cross references.  | 
|
| 49 | 
		/// \tparam CMP A functor class for comparing the priorities.  | 
|
| 50 | 
		/// The default is \c std::less<PR>.  | 
|
| 51 | 
		#ifdef DOXYGEN  | 
|
| 52 | 
		template <typename PR, typename IM, typename CMP>  | 
|
| 53 | 
		#else  | 
|
| 54 | 
		template <typename PR, typename IM, typename CMP = std::less<PR> >  | 
|
| 55 | 
		#endif  | 
|
| 56 | 
		  class BinomHeap {
	 | 
|
| 57 | 
		public:  | 
|
| 58 | 
		/// Type of the item-int map.  | 
|
| 59 | 
		typedef IM ItemIntMap;  | 
|
| 60 | 
		/// Type of the priorities.  | 
|
| 61 | 
		typedef PR Prio;  | 
|
| 62 | 
		/// Type of the items stored in the heap.  | 
|
| 63 | 
		typedef typename ItemIntMap::Key Item;  | 
|
| 64 | 
		/// Functor type for comparing the priorities.  | 
|
| 65 | 
		typedef CMP Compare;  | 
|
| 66 | 
		 | 
|
| 67 | 
		/// \brief Type to represent the states of the items.  | 
|
| 68 | 
		///  | 
|
| 69 | 
		/// Each item has a state associated to it. It can be "in heap",  | 
|
| 70 | 
		/// "pre-heap" or "post-heap". The latter two are indifferent from the  | 
|
| 71 | 
		/// heap's point of view, but may be useful to the user.  | 
|
| 72 | 
		///  | 
|
| 73 | 
		/// The item-int map must be initialized in such way that it assigns  | 
|
| 74 | 
		/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.  | 
|
| 75 | 
		    enum State {
	 | 
|
| 76 | 
		IN_HEAP = 0, ///< = 0.  | 
|
| 77 | 
		PRE_HEAP = -1, ///< = -1.  | 
|
| 78 | 
		POST_HEAP = -2 ///< = -2.  | 
|
| 79 | 
		};  | 
|
| 80 | 
		 | 
|
| 81 | 
		private:  | 
|
| 82 | 
		class Store;  | 
|
| 83 | 
		 | 
|
| 84 | 
		std::vector<Store> _data;  | 
|
| 85 | 
		int _min, _head;  | 
|
| 86 | 
		ItemIntMap &_iim;  | 
|
| 87 | 
		Compare _comp;  | 
|
| 88 | 
		int _num_items;  | 
|
| 89 | 
		 | 
|
| 90 | 
		public:  | 
|
| 91 | 
		/// \brief Constructor.  | 
|
| 92 | 
		///  | 
|
| 93 | 
		/// Constructor.  | 
|
| 94 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 95 | 
		/// It is used internally to handle the cross references.  | 
|
| 96 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 97 | 
		explicit BinomHeap(ItemIntMap &map)  | 
|
| 98 | 
		      : _min(0), _head(-1), _iim(map), _num_items(0) {}
	 | 
|
| 99 | 
		 | 
|
| 100 | 
		/// \brief Constructor.  | 
|
| 101 | 
		///  | 
|
| 102 | 
		/// Constructor.  | 
|
| 103 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 104 | 
		/// It is used internally to handle the cross references.  | 
|
| 105 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 106 | 
		/// \param comp The function object used for comparing the priorities.  | 
|
| 107 | 
		BinomHeap(ItemIntMap &map, const Compare &comp)  | 
|
| 108 | 
		      : _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
	 | 
|
| 109 | 
		 | 
|
| 110 | 
		/// \brief The number of items stored in the heap.  | 
|
| 111 | 
		///  | 
|
| 112 | 
		/// This function returns the number of items stored in the heap.  | 
|
| 113 | 
		    int size() const { return _num_items; }
	 | 
|
| 114 | 
		 | 
|
| 115 | 
		/// \brief Check if the heap is empty.  | 
|
| 116 | 
		///  | 
|
| 117 | 
		/// This function returns \c true if the heap is empty.  | 
|
| 118 | 
		    bool empty() const { return _num_items==0; }
	 | 
|
| 119 | 
		 | 
|
| 120 | 
		/// \brief Make the heap empty.  | 
|
| 121 | 
		///  | 
|
| 122 | 
		/// This functon makes the heap empty.  | 
|
| 123 | 
		/// It does not change the cross reference map. If you want to reuse  | 
|
| 124 | 
		/// a heap that is not surely empty, you should first clear it and  | 
|
| 125 | 
		/// then you should set the cross reference map to \c PRE_HEAP  | 
|
| 126 | 
		/// for each item.  | 
|
| 127 | 
		    void clear() {
	 | 
|
| 128 | 
		_data.clear(); _min=0; _num_items=0; _head=-1;  | 
|
| 129 | 
		}  | 
|
| 130 | 
		 | 
|
| 131 | 
		/// \brief Set the priority of an item or insert it, if it is  | 
|
| 132 | 
		/// not stored in the heap.  | 
|
| 133 | 
		///  | 
|
| 134 | 
		/// This method sets the priority of the given item if it is  | 
|
| 135 | 
		/// already stored in the heap. Otherwise it inserts the given  | 
|
| 136 | 
		/// item into the heap with the given priority.  | 
|
| 137 | 
		/// \param item The item.  | 
|
| 138 | 
		/// \param value The priority.  | 
|
| 139 | 
		    void set (const Item& item, const Prio& value) {
	 | 
|
| 140 | 
		int i=_iim[item];  | 
|
| 141 | 
		      if ( i >= 0 && _data[i].in ) {
	 | 
|
| 142 | 
		if ( _comp(value, _data[i].prio) ) decrease(item, value);  | 
|
| 143 | 
		if ( _comp(_data[i].prio, value) ) increase(item, value);  | 
|
| 144 | 
		} else push(item, value);  | 
|
| 145 | 
		}  | 
|
| 146 | 
		 | 
|
| 147 | 
		/// \brief Insert an item into the heap with the given priority.  | 
|
| 148 | 
		///  | 
|
| 149 | 
		/// This function inserts the given item into the heap with the  | 
|
| 150 | 
		/// given priority.  | 
|
| 151 | 
		/// \param item The item to insert.  | 
|
| 152 | 
		/// \param value The priority of the item.  | 
|
| 153 | 
		/// \pre \e item must not be stored in the heap.  | 
|
| 154 | 
		    void push (const Item& item, const Prio& value) {
	 | 
|
| 155 | 
		int i=_iim[item];  | 
|
| 156 | 
		      if ( i<0 ) {
	 | 
|
| 157 | 
		int s=_data.size();  | 
|
| 158 | 
		_iim.set( item,s );  | 
|
| 159 | 
		Store st;  | 
|
| 160 | 
		st.name=item;  | 
|
| 161 | 
		st.prio=value;  | 
|
| 162 | 
		_data.push_back(st);  | 
|
| 163 | 
		i=s;  | 
|
| 164 | 
		}  | 
|
| 165 | 
		      else {
	 | 
|
| 166 | 
		_data[i].parent=_data[i].right_neighbor=_data[i].child=-1;  | 
|
| 167 | 
		_data[i].degree=0;  | 
|
| 168 | 
		_data[i].in=true;  | 
|
| 169 | 
		_data[i].prio=value;  | 
|
| 170 | 
		}  | 
|
| 171 | 
		 | 
|
| 172 | 
		      if( 0==_num_items ) {
	 | 
|
| 173 | 
		_head=i;  | 
|
| 174 | 
		_min=i;  | 
|
| 175 | 
		      } else {
	 | 
|
| 176 | 
		merge(i);  | 
|
| 177 | 
		if( _comp(_data[i].prio, _data[_min].prio) ) _min=i;  | 
|
| 178 | 
		}  | 
|
| 179 | 
		++_num_items;  | 
|
| 180 | 
		}  | 
|
| 181 | 
		 | 
|
| 182 | 
		/// \brief Return the item having minimum priority.  | 
|
| 183 | 
		///  | 
|
| 184 | 
		/// This function returns the item having minimum priority.  | 
|
| 185 | 
		/// \pre The heap must be non-empty.  | 
|
| 186 | 
		    Item top() const { return _data[_min].name; }
	 | 
|
| 187 | 
		 | 
|
| 188 | 
		/// \brief The minimum priority.  | 
|
| 189 | 
		///  | 
|
| 190 | 
		/// This function returns the minimum priority.  | 
|
| 191 | 
		/// \pre The heap must be non-empty.  | 
|
| 192 | 
		    Prio prio() const { return _data[_min].prio; }
	 | 
|
| 193 | 
		 | 
|
| 194 | 
		/// \brief The priority of the given item.  | 
|
| 195 | 
		///  | 
|
| 196 | 
		/// This function returns the priority of the given item.  | 
|
| 197 | 
		/// \param item The item.  | 
|
| 198 | 
		/// \pre \e item must be in the heap.  | 
|
| 199 | 
		    const Prio& operator[](const Item& item) const {
	 | 
|
| 200 | 
		return _data[_iim[item]].prio;  | 
|
| 201 | 
		}  | 
|
| 202 | 
		 | 
|
| 203 | 
		/// \brief Remove the item having minimum priority.  | 
|
| 204 | 
		///  | 
|
| 205 | 
		/// This function removes the item having minimum priority.  | 
|
| 206 | 
		/// \pre The heap must be non-empty.  | 
|
| 207 | 
		    void pop() {
	 | 
|
| 208 | 
		_data[_min].in=false;  | 
|
| 209 | 
		 | 
|
| 210 | 
		int head_child=-1;  | 
|
| 211 | 
		      if ( _data[_min].child!=-1 ) {
	 | 
|
| 212 | 
		int child=_data[_min].child;  | 
|
| 213 | 
		int neighb;  | 
|
| 214 | 
		        while( child!=-1 ) {
	 | 
|
| 215 | 
		neighb=_data[child].right_neighbor;  | 
|
| 216 | 
		_data[child].parent=-1;  | 
|
| 217 | 
		_data[child].right_neighbor=head_child;  | 
|
| 218 | 
		head_child=child;  | 
|
| 219 | 
		child=neighb;  | 
|
| 220 | 
		}  | 
|
| 221 | 
		}  | 
|
| 222 | 
		 | 
|
| 223 | 
		      if ( _data[_head].right_neighbor==-1 ) {
	 | 
|
| 224 | 
		// there was only one root  | 
|
| 225 | 
		_head=head_child;  | 
|
| 226 | 
		}  | 
|
| 227 | 
		      else {
	 | 
|
| 228 | 
		// there were more roots  | 
|
| 229 | 
		        if( _head!=_min )  { unlace(_min); }
	 | 
|
| 230 | 
		        else { _head=_data[_head].right_neighbor; }
	 | 
|
| 231 | 
		merge(head_child);  | 
|
| 232 | 
		}  | 
|
| 233 | 
		_min=findMin();  | 
|
| 234 | 
		--_num_items;  | 
|
| 235 | 
		}  | 
|
| 236 | 
		 | 
|
| 237 | 
		/// \brief Remove the given item from the heap.  | 
|
| 238 | 
		///  | 
|
| 239 | 
		/// This function removes the given item from the heap if it is  | 
|
| 240 | 
		/// already stored.  | 
|
| 241 | 
		/// \param item The item to delete.  | 
|
| 242 | 
		/// \pre \e item must be in the heap.  | 
|
| 243 | 
		    void erase (const Item& item) {
	 | 
|
| 244 | 
		int i=_iim[item];  | 
|
| 245 | 
		      if ( i >= 0 && _data[i].in ) {
	 | 
|
| 246 | 
		decrease( item, _data[_min].prio-1 );  | 
|
| 247 | 
		pop();  | 
|
| 248 | 
		}  | 
|
| 249 | 
		}  | 
|
| 250 | 
		 | 
|
| 251 | 
		/// \brief Decrease the priority of an item to the given value.  | 
|
| 252 | 
		///  | 
|
| 253 | 
		/// This function decreases the priority of an item to the given value.  | 
|
| 254 | 
		/// \param item The item.  | 
|
| 255 | 
		/// \param value The priority.  | 
|
| 256 | 
		/// \pre \e item must be stored in the heap with priority at least \e value.  | 
|
| 257 | 
		    void decrease (Item item, const Prio& value) {
	 | 
|
| 258 | 
		int i=_iim[item];  | 
|
| 259 | 
		int p=_data[i].parent;  | 
|
| 260 | 
		_data[i].prio=value;  | 
|
| 261 | 
		 | 
|
| 262 | 
		      while( p!=-1 && _comp(value, _data[p].prio) ) {
	 | 
|
| 263 | 
		_data[i].name=_data[p].name;  | 
|
| 264 | 
		_data[i].prio=_data[p].prio;  | 
|
| 265 | 
		_data[p].name=item;  | 
|
| 266 | 
		_data[p].prio=value;  | 
|
| 267 | 
		_iim[_data[i].name]=i;  | 
|
| 268 | 
		i=p;  | 
|
| 269 | 
		p=_data[p].parent;  | 
|
| 270 | 
		}  | 
|
| 271 | 
		_iim[item]=i;  | 
|
| 272 | 
		if ( _comp(value, _data[_min].prio) ) _min=i;  | 
|
| 273 | 
		}  | 
|
| 274 | 
		 | 
|
| 275 | 
		/// \brief Increase the priority of an item to the given value.  | 
|
| 276 | 
		///  | 
|
| 277 | 
		/// This function increases the priority of an item to the given value.  | 
|
| 278 | 
		/// \param item The item.  | 
|
| 279 | 
		/// \param value The priority.  | 
|
| 280 | 
		/// \pre \e item must be stored in the heap with priority at most \e value.  | 
|
| 281 | 
		    void increase (Item item, const Prio& value) {
	 | 
|
| 282 | 
		erase(item);  | 
|
| 283 | 
		push(item, value);  | 
|
| 284 | 
		}  | 
|
| 285 | 
		 | 
|
| 286 | 
		/// \brief Return the state of an item.  | 
|
| 287 | 
		///  | 
|
| 288 | 
		/// This method returns \c PRE_HEAP if the given item has never  | 
|
| 289 | 
		/// been in the heap, \c IN_HEAP if it is in the heap at the moment,  | 
|
| 290 | 
		/// and \c POST_HEAP otherwise.  | 
|
| 291 | 
		/// In the latter case it is possible that the item will get back  | 
|
| 292 | 
		/// to the heap again.  | 
|
| 293 | 
		/// \param item The item.  | 
|
| 294 | 
		    State state(const Item &item) const {
	 | 
|
| 295 | 
		int i=_iim[item];  | 
|
| 296 | 
		      if( i>=0 ) {
	 | 
|
| 297 | 
		if ( _data[i].in ) i=0;  | 
|
| 298 | 
		else i=-2;  | 
|
| 299 | 
		}  | 
|
| 300 | 
		return State(i);  | 
|
| 301 | 
		}  | 
|
| 302 | 
		 | 
|
| 303 | 
		/// \brief Set the state of an item in the heap.  | 
|
| 304 | 
		///  | 
|
| 305 | 
		/// This function sets the state of the given item in the heap.  | 
|
| 306 | 
		/// It can be used to manually clear the heap when it is important  | 
|
| 307 | 
		/// to achive better time complexity.  | 
|
| 308 | 
		/// \param i The item.  | 
|
| 309 | 
		/// \param st The state. It should not be \c IN_HEAP.  | 
|
| 310 | 
		    void state(const Item& i, State st) {
	 | 
|
| 311 | 
		      switch (st) {
	 | 
|
| 312 | 
		case POST_HEAP:  | 
|
| 313 | 
		case PRE_HEAP:  | 
|
| 314 | 
		        if (state(i) == IN_HEAP) {
	 | 
|
| 315 | 
		erase(i);  | 
|
| 316 | 
		}  | 
|
| 317 | 
		_iim[i] = st;  | 
|
| 318 | 
		break;  | 
|
| 319 | 
		case IN_HEAP:  | 
|
| 320 | 
		break;  | 
|
| 321 | 
		}  | 
|
| 322 | 
		}  | 
|
| 323 | 
		 | 
|
| 324 | 
		private:  | 
|
| 325 | 
		 | 
|
| 326 | 
		// Find the minimum of the roots  | 
|
| 327 | 
		    int findMin() {
	 | 
|
| 328 | 
		      if( _head!=-1 ) {
	 | 
|
| 329 | 
		int min_loc=_head, min_val=_data[_head].prio;  | 
|
| 330 | 
		for( int x=_data[_head].right_neighbor; x!=-1;  | 
|
| 331 | 
		             x=_data[x].right_neighbor ) {
	 | 
|
| 332 | 
		          if( _comp( _data[x].prio,min_val ) ) {
	 | 
|
| 333 | 
		min_val=_data[x].prio;  | 
|
| 334 | 
		min_loc=x;  | 
|
| 335 | 
		}  | 
|
| 336 | 
		}  | 
|
| 337 | 
		return min_loc;  | 
|
| 338 | 
		}  | 
|
| 339 | 
		else return -1;  | 
|
| 340 | 
		}  | 
|
| 341 | 
		 | 
|
| 342 | 
		// Merge the heap with another heap starting at the given position  | 
|
| 343 | 
		    void merge(int a) {
	 | 
|
| 344 | 
		if( _head==-1 || a==-1 ) return;  | 
|
| 345 | 
		if( _data[a].right_neighbor==-1 &&  | 
|
| 346 | 
		          _data[a].degree<=_data[_head].degree ) {
	 | 
|
| 347 | 
		_data[a].right_neighbor=_head;  | 
|
| 348 | 
		_head=a;  | 
|
| 349 | 
		      } else {
	 | 
|
| 350 | 
		interleave(a);  | 
|
| 351 | 
		}  | 
|
| 352 | 
		if( _data[_head].right_neighbor==-1 ) return;  | 
|
| 353 | 
		 | 
|
| 354 | 
		int x=_head;  | 
|
| 355 | 
		int x_prev=-1, x_next=_data[x].right_neighbor;  | 
|
| 356 | 
		      while( x_next!=-1 ) {
	 | 
|
| 357 | 
		if( _data[x].degree!=_data[x_next].degree ||  | 
|
| 358 | 
		( _data[x_next].right_neighbor!=-1 &&  | 
|
| 359 | 
		              _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
	 | 
|
| 360 | 
		x_prev=x;  | 
|
| 361 | 
		x=x_next;  | 
|
| 362 | 
		}  | 
|
| 363 | 
		        else {
	 | 
|
| 364 | 
		          if( _comp(_data[x_next].prio,_data[x].prio) ) {
	 | 
|
| 365 | 
		            if( x_prev==-1 ) {
	 | 
|
| 366 | 
		_head=x_next;  | 
|
| 367 | 
		            } else {
	 | 
|
| 368 | 
		_data[x_prev].right_neighbor=x_next;  | 
|
| 369 | 
		}  | 
|
| 370 | 
		fuse(x,x_next);  | 
|
| 371 | 
		x=x_next;  | 
|
| 372 | 
		}  | 
|
| 373 | 
		          else {
	 | 
|
| 374 | 
		_data[x].right_neighbor=_data[x_next].right_neighbor;  | 
|
| 375 | 
		fuse(x_next,x);  | 
|
| 376 | 
		}  | 
|
| 377 | 
		}  | 
|
| 378 | 
		x_next=_data[x].right_neighbor;  | 
|
| 379 | 
		}  | 
|
| 380 | 
		}  | 
|
| 381 | 
		 | 
|
| 382 | 
		// Interleave the elements of the given list into the list of the roots  | 
|
| 383 | 
		    void interleave(int a) {
	 | 
|
| 384 | 
		int p=_head, q=a;  | 
|
| 385 | 
		int curr=_data.size();  | 
|
| 386 | 
		_data.push_back(Store());  | 
|
| 387 | 
		 | 
|
| 388 | 
		      while( p!=-1 || q!=-1 ) {
	 | 
|
| 389 | 
		        if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
	 | 
|
| 390 | 
		_data[curr].right_neighbor=p;  | 
|
| 391 | 
		curr=p;  | 
|
| 392 | 
		p=_data[p].right_neighbor;  | 
|
| 393 | 
		}  | 
|
| 394 | 
		        else {
	 | 
|
| 395 | 
		_data[curr].right_neighbor=q;  | 
|
| 396 | 
		curr=q;  | 
|
| 397 | 
		q=_data[q].right_neighbor;  | 
|
| 398 | 
		}  | 
|
| 399 | 
		}  | 
|
| 400 | 
		 | 
|
| 401 | 
		_head=_data.back().right_neighbor;  | 
|
| 402 | 
		_data.pop_back();  | 
|
| 403 | 
		}  | 
|
| 404 | 
		 | 
|
| 405 | 
		// Lace node a under node b  | 
|
| 406 | 
		    void fuse(int a, int b) {
	 | 
|
| 407 | 
		_data[a].parent=b;  | 
|
| 408 | 
		_data[a].right_neighbor=_data[b].child;  | 
|
| 409 | 
		_data[b].child=a;  | 
|
| 410 | 
		 | 
|
| 411 | 
		++_data[b].degree;  | 
|
| 412 | 
		}  | 
|
| 413 | 
		 | 
|
| 414 | 
		// Unlace node a (if it has siblings)  | 
|
| 415 | 
		    void unlace(int a) {
	 | 
|
| 416 | 
		int neighb=_data[a].right_neighbor;  | 
|
| 417 | 
		int other=_head;  | 
|
| 418 | 
		 | 
|
| 419 | 
		while( _data[other].right_neighbor!=a )  | 
|
| 420 | 
		other=_data[other].right_neighbor;  | 
|
| 421 | 
		_data[other].right_neighbor=neighb;  | 
|
| 422 | 
		}  | 
|
| 423 | 
		 | 
|
| 424 | 
		private:  | 
|
| 425 | 
		 | 
|
| 426 | 
		    class Store {
	 | 
|
| 427 | 
		friend class BinomHeap;  | 
|
| 428 | 
		 | 
|
| 429 | 
		Item name;  | 
|
| 430 | 
		int parent;  | 
|
| 431 | 
		int right_neighbor;  | 
|
| 432 | 
		int child;  | 
|
| 433 | 
		int degree;  | 
|
| 434 | 
		bool in;  | 
|
| 435 | 
		Prio prio;  | 
|
| 436 | 
		 | 
|
| 437 | 
		Store() : parent(-1), right_neighbor(-1), child(-1), degree(0),  | 
|
| 438 | 
		        in(true) {}
	 | 
|
| 439 | 
		};  | 
|
| 440 | 
		};  | 
|
| 441 | 
		 | 
|
| 442 | 
		} //namespace lemon  | 
|
| 443 | 
		 | 
|
| 444 | 
		#endif //LEMON_BINOM_HEAP_H  | 
|
| 445 | 
| 1 | 
		/* -*- mode: C++; indent-tabs-mode: nil; -*-  | 
|
| 2 | 
		*  | 
|
| 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
|
| 4 | 
		*  | 
|
| 5 | 
		* Copyright (C) 2003-2009  | 
|
| 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
|
| 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
|
| 8 | 
		*  | 
|
| 9 | 
		* Permission to use, modify and distribute this software is granted  | 
|
| 10 | 
		* provided that this copyright notice appears in all copies. For  | 
|
| 11 | 
		* precise terms see the accompanying LICENSE file.  | 
|
| 12 | 
		*  | 
|
| 13 | 
		* This software is provided "AS IS" with no warranty of any kind,  | 
|
| 14 | 
		* express or implied, and with no claim as to its suitability for any  | 
|
| 15 | 
		* purpose.  | 
|
| 16 | 
		*  | 
|
| 17 | 
		*/  | 
|
| 18 | 
		 | 
|
| 19 | 
		#ifndef LEMON_FOURARY_HEAP_H  | 
|
| 20 | 
		#define LEMON_FOURARY_HEAP_H  | 
|
| 21 | 
		 | 
|
| 22 | 
		///\ingroup heaps  | 
|
| 23 | 
		///\file  | 
|
| 24 | 
		///\brief Fourary heap implementation.  | 
|
| 25 | 
		 | 
|
| 26 | 
		#include <vector>  | 
|
| 27 | 
		#include <utility>  | 
|
| 28 | 
		#include <functional>  | 
|
| 29 | 
		 | 
|
| 30 | 
		namespace lemon {
	 | 
|
| 31 | 
		 | 
|
| 32 | 
		/// \ingroup heaps  | 
|
| 33 | 
		///  | 
|
| 34 | 
		///\brief Fourary heap data structure.  | 
|
| 35 | 
		///  | 
|
| 36 | 
		/// This class implements the \e fourary \e heap data structure.  | 
|
| 37 | 
		/// It fully conforms to the \ref concepts::Heap "heap concept".  | 
|
| 38 | 
		///  | 
|
| 39 | 
		/// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap"  | 
|
| 40 | 
		/// for <tt>K=4</tt>. It is similar to the \ref BinHeap "binary heap",  | 
|
| 41 | 
		/// but its nodes have at most four children, instead of two.  | 
|
| 42 | 
		///  | 
|
| 43 | 
		/// \tparam PR Type of the priorities of the items.  | 
|
| 44 | 
		/// \tparam IM A read-writable item map with \c int values, used  | 
|
| 45 | 
		/// internally to handle the cross references.  | 
|
| 46 | 
		/// \tparam CMP A functor class for comparing the priorities.  | 
|
| 47 | 
		/// The default is \c std::less<PR>.  | 
|
| 48 | 
		///  | 
|
| 49 | 
		///\sa BinHeap  | 
|
| 50 | 
		///\sa KaryHeap  | 
|
| 51 | 
		#ifdef DOXYGEN  | 
|
| 52 | 
		template <typename PR, typename IM, typename CMP>  | 
|
| 53 | 
		#else  | 
|
| 54 | 
		template <typename PR, typename IM, typename CMP = std::less<PR> >  | 
|
| 55 | 
		#endif  | 
|
| 56 | 
		  class FouraryHeap {
	 | 
|
| 57 | 
		public:  | 
|
| 58 | 
		/// Type of the item-int map.  | 
|
| 59 | 
		typedef IM ItemIntMap;  | 
|
| 60 | 
		/// Type of the priorities.  | 
|
| 61 | 
		typedef PR Prio;  | 
|
| 62 | 
		/// Type of the items stored in the heap.  | 
|
| 63 | 
		typedef typename ItemIntMap::Key Item;  | 
|
| 64 | 
		/// Type of the item-priority pairs.  | 
|
| 65 | 
		typedef std::pair<Item,Prio> Pair;  | 
|
| 66 | 
		/// Functor type for comparing the priorities.  | 
|
| 67 | 
		typedef CMP Compare;  | 
|
| 68 | 
		 | 
|
| 69 | 
		/// \brief Type to represent the states of the items.  | 
|
| 70 | 
		///  | 
|
| 71 | 
		/// Each item has a state associated to it. It can be "in heap",  | 
|
| 72 | 
		/// "pre-heap" or "post-heap". The latter two are indifferent from the  | 
|
| 73 | 
		/// heap's point of view, but may be useful to the user.  | 
|
| 74 | 
		///  | 
|
| 75 | 
		/// The item-int map must be initialized in such way that it assigns  | 
|
| 76 | 
		/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.  | 
|
| 77 | 
		    enum State {
	 | 
|
| 78 | 
		IN_HEAP = 0, ///< = 0.  | 
|
| 79 | 
		PRE_HEAP = -1, ///< = -1.  | 
|
| 80 | 
		POST_HEAP = -2 ///< = -2.  | 
|
| 81 | 
		};  | 
|
| 82 | 
		 | 
|
| 83 | 
		private:  | 
|
| 84 | 
		std::vector<Pair> _data;  | 
|
| 85 | 
		Compare _comp;  | 
|
| 86 | 
		ItemIntMap &_iim;  | 
|
| 87 | 
		 | 
|
| 88 | 
		public:  | 
|
| 89 | 
		/// \brief Constructor.  | 
|
| 90 | 
		///  | 
|
| 91 | 
		/// Constructor.  | 
|
| 92 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 93 | 
		/// It is used internally to handle the cross references.  | 
|
| 94 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 95 | 
		    explicit FouraryHeap(ItemIntMap &map) : _iim(map) {}
	 | 
|
| 96 | 
		 | 
|
| 97 | 
		/// \brief Constructor.  | 
|
| 98 | 
		///  | 
|
| 99 | 
		/// Constructor.  | 
|
| 100 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 101 | 
		/// It is used internally to handle the cross references.  | 
|
| 102 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 103 | 
		/// \param comp The function object used for comparing the priorities.  | 
|
| 104 | 
		FouraryHeap(ItemIntMap &map, const Compare &comp)  | 
|
| 105 | 
		      : _iim(map), _comp(comp) {}
	 | 
|
| 106 | 
		 | 
|
| 107 | 
		/// \brief The number of items stored in the heap.  | 
|
| 108 | 
		///  | 
|
| 109 | 
		/// This function returns the number of items stored in the heap.  | 
|
| 110 | 
		    int size() const { return _data.size(); }
	 | 
|
| 111 | 
		 | 
|
| 112 | 
		/// \brief Check if the heap is empty.  | 
|
| 113 | 
		///  | 
|
| 114 | 
		/// This function returns \c true if the heap is empty.  | 
|
| 115 | 
		    bool empty() const { return _data.empty(); }
	 | 
|
| 116 | 
		 | 
|
| 117 | 
		/// \brief Make the heap empty.  | 
|
| 118 | 
		///  | 
|
| 119 | 
		/// This functon makes the heap empty.  | 
|
| 120 | 
		/// It does not change the cross reference map. If you want to reuse  | 
|
| 121 | 
		/// a heap that is not surely empty, you should first clear it and  | 
|
| 122 | 
		/// then you should set the cross reference map to \c PRE_HEAP  | 
|
| 123 | 
		/// for each item.  | 
|
| 124 | 
		    void clear() { _data.clear(); }
	 | 
|
| 125 | 
		 | 
|
| 126 | 
		private:  | 
|
| 127 | 
		    static int parent(int i) { return (i-1)/4; }
	 | 
|
| 128 | 
		    static int firstChild(int i) { return 4*i+1; }
	 | 
|
| 129 | 
		 | 
|
| 130 | 
		    bool less(const Pair &p1, const Pair &p2) const {
	 | 
|
| 131 | 
		return _comp(p1.second, p2.second);  | 
|
| 132 | 
		}  | 
|
| 133 | 
		 | 
|
| 134 | 
		    void bubbleUp(int hole, Pair p) {
	 | 
|
| 135 | 
		int par = parent(hole);  | 
|
| 136 | 
		      while( hole>0 && less(p,_data[par]) ) {
	 | 
|
| 137 | 
		move(_data[par],hole);  | 
|
| 138 | 
		hole = par;  | 
|
| 139 | 
		par = parent(hole);  | 
|
| 140 | 
		}  | 
|
| 141 | 
		move(p, hole);  | 
|
| 142 | 
		}  | 
|
| 143 | 
		 | 
|
| 144 | 
		    void bubbleDown(int hole, Pair p, int length) {
	 | 
|
| 145 | 
		      if( length>1 ) {
	 | 
|
| 146 | 
		int child = firstChild(hole);  | 
|
| 147 | 
		        while( child+3<length ) {
	 | 
|
| 148 | 
		int min=child;  | 
|
| 149 | 
		if( less(_data[++child], _data[min]) ) min=child;  | 
|
| 150 | 
		if( less(_data[++child], _data[min]) ) min=child;  | 
|
| 151 | 
		if( less(_data[++child], _data[min]) ) min=child;  | 
|
| 152 | 
		if( !less(_data[min], p) )  | 
|
| 153 | 
		goto ok;  | 
|
| 154 | 
		move(_data[min], hole);  | 
|
| 155 | 
		hole = min;  | 
|
| 156 | 
		child = firstChild(hole);  | 
|
| 157 | 
		}  | 
|
| 158 | 
		        if ( child<length ) {
	 | 
|
| 159 | 
		int min = child;  | 
|
| 160 | 
		if( ++child<length && less(_data[child], _data[min]) ) min=child;  | 
|
| 161 | 
		if( ++child<length && less(_data[child], _data[min]) ) min=child;  | 
|
| 162 | 
		          if( less(_data[min], p) ) {
	 | 
|
| 163 | 
		move(_data[min], hole);  | 
|
| 164 | 
		hole = min;  | 
|
| 165 | 
		}  | 
|
| 166 | 
		}  | 
|
| 167 | 
		}  | 
|
| 168 | 
		ok:  | 
|
| 169 | 
		move(p, hole);  | 
|
| 170 | 
		}  | 
|
| 171 | 
		 | 
|
| 172 | 
		    void move(const Pair &p, int i) {
	 | 
|
| 173 | 
		_data[i] = p;  | 
|
| 174 | 
		_iim.set(p.first, i);  | 
|
| 175 | 
		}  | 
|
| 176 | 
		 | 
|
| 177 | 
		public:  | 
|
| 178 | 
		/// \brief Insert a pair of item and priority into the heap.  | 
|
| 179 | 
		///  | 
|
| 180 | 
		/// This function inserts \c p.first to the heap with priority  | 
|
| 181 | 
		/// \c p.second.  | 
|
| 182 | 
		/// \param p The pair to insert.  | 
|
| 183 | 
		/// \pre \c p.first must not be stored in the heap.  | 
|
| 184 | 
		    void push(const Pair &p) {
	 | 
|
| 185 | 
		int n = _data.size();  | 
|
| 186 | 
		_data.resize(n+1);  | 
|
| 187 | 
		bubbleUp(n, p);  | 
|
| 188 | 
		}  | 
|
| 189 | 
		 | 
|
| 190 | 
		/// \brief Insert an item into the heap with the given priority.  | 
|
| 191 | 
		///  | 
|
| 192 | 
		/// This function inserts the given item into the heap with the  | 
|
| 193 | 
		/// given priority.  | 
|
| 194 | 
		/// \param i The item to insert.  | 
|
| 195 | 
		/// \param p The priority of the item.  | 
|
| 196 | 
		/// \pre \e i must not be stored in the heap.  | 
|
| 197 | 
		    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
	 | 
|
| 198 | 
		 | 
|
| 199 | 
		/// \brief Return the item having minimum priority.  | 
|
| 200 | 
		///  | 
|
| 201 | 
		/// This function returns the item having minimum priority.  | 
|
| 202 | 
		/// \pre The heap must be non-empty.  | 
|
| 203 | 
		    Item top() const { return _data[0].first; }
	 | 
|
| 204 | 
		 | 
|
| 205 | 
		/// \brief The minimum priority.  | 
|
| 206 | 
		///  | 
|
| 207 | 
		/// This function returns the minimum priority.  | 
|
| 208 | 
		/// \pre The heap must be non-empty.  | 
|
| 209 | 
		    Prio prio() const { return _data[0].second; }
	 | 
|
| 210 | 
		 | 
|
| 211 | 
		/// \brief Remove the item having minimum priority.  | 
|
| 212 | 
		///  | 
|
| 213 | 
		/// This function removes the item having minimum priority.  | 
|
| 214 | 
		/// \pre The heap must be non-empty.  | 
|
| 215 | 
		    void pop() {
	 | 
|
| 216 | 
		int n = _data.size()-1;  | 
|
| 217 | 
		_iim.set(_data[0].first, POST_HEAP);  | 
|
| 218 | 
		if (n>0) bubbleDown(0, _data[n], n);  | 
|
| 219 | 
		_data.pop_back();  | 
|
| 220 | 
		}  | 
|
| 221 | 
		 | 
|
| 222 | 
		/// \brief Remove the given item from the heap.  | 
|
| 223 | 
		///  | 
|
| 224 | 
		/// This function removes the given item from the heap if it is  | 
|
| 225 | 
		/// already stored.  | 
|
| 226 | 
		/// \param i The item to delete.  | 
|
| 227 | 
		/// \pre \e i must be in the heap.  | 
|
| 228 | 
		    void erase(const Item &i) {
	 | 
|
| 229 | 
		int h = _iim[i];  | 
|
| 230 | 
		int n = _data.size()-1;  | 
|
| 231 | 
		_iim.set(_data[h].first, POST_HEAP);  | 
|
| 232 | 
		      if( h<n ) {
	 | 
|
| 233 | 
		if( less(_data[parent(h)], _data[n]) )  | 
|
| 234 | 
		bubbleDown(h, _data[n], n);  | 
|
| 235 | 
		else  | 
|
| 236 | 
		bubbleUp(h, _data[n]);  | 
|
| 237 | 
		}  | 
|
| 238 | 
		_data.pop_back();  | 
|
| 239 | 
		}  | 
|
| 240 | 
		 | 
|
| 241 | 
		/// \brief The priority of the given item.  | 
|
| 242 | 
		///  | 
|
| 243 | 
		/// This function returns the priority of the given item.  | 
|
| 244 | 
		/// \param i The item.  | 
|
| 245 | 
		/// \pre \e i must be in the heap.  | 
|
| 246 | 
		    Prio operator[](const Item &i) const {
	 | 
|
| 247 | 
		int idx = _iim[i];  | 
|
| 248 | 
		return _data[idx].second;  | 
|
| 249 | 
		}  | 
|
| 250 | 
		 | 
|
| 251 | 
		/// \brief Set the priority of an item or insert it, if it is  | 
|
| 252 | 
		/// not stored in the heap.  | 
|
| 253 | 
		///  | 
|
| 254 | 
		/// This method sets the priority of the given item if it is  | 
|
| 255 | 
		/// already stored in the heap. Otherwise it inserts the given  | 
|
| 256 | 
		/// item into the heap with the given priority.  | 
|
| 257 | 
		/// \param i The item.  | 
|
| 258 | 
		/// \param p The priority.  | 
|
| 259 | 
		    void set(const Item &i, const Prio &p) {
	 | 
|
| 260 | 
		int idx = _iim[i];  | 
|
| 261 | 
		if( idx < 0 )  | 
|
| 262 | 
		push(i,p);  | 
|
| 263 | 
		else if( _comp(p, _data[idx].second) )  | 
|
| 264 | 
		bubbleUp(idx, Pair(i,p));  | 
|
| 265 | 
		else  | 
|
| 266 | 
		bubbleDown(idx, Pair(i,p), _data.size());  | 
|
| 267 | 
		}  | 
|
| 268 | 
		 | 
|
| 269 | 
		/// \brief Decrease the priority of an item to the given value.  | 
|
| 270 | 
		///  | 
|
| 271 | 
		/// This function decreases the priority of an item to the given value.  | 
|
| 272 | 
		/// \param i The item.  | 
|
| 273 | 
		/// \param p The priority.  | 
|
| 274 | 
		/// \pre \e i must be stored in the heap with priority at least \e p.  | 
|
| 275 | 
		    void decrease(const Item &i, const Prio &p) {
	 | 
|
| 276 | 
		int idx = _iim[i];  | 
|
| 277 | 
		bubbleUp(idx, Pair(i,p));  | 
|
| 278 | 
		}  | 
|
| 279 | 
		 | 
|
| 280 | 
		/// \brief Increase the priority of an item to the given value.  | 
|
| 281 | 
		///  | 
|
| 282 | 
		/// This function increases the priority of an item to the given value.  | 
|
| 283 | 
		/// \param i The item.  | 
|
| 284 | 
		/// \param p The priority.  | 
|
| 285 | 
		/// \pre \e i must be stored in the heap with priority at most \e p.  | 
|
| 286 | 
		    void increase(const Item &i, const Prio &p) {
	 | 
|
| 287 | 
		int idx = _iim[i];  | 
|
| 288 | 
		bubbleDown(idx, Pair(i,p), _data.size());  | 
|
| 289 | 
		}  | 
|
| 290 | 
		 | 
|
| 291 | 
		/// \brief Return the state of an item.  | 
|
| 292 | 
		///  | 
|
| 293 | 
		/// This method returns \c PRE_HEAP if the given item has never  | 
|
| 294 | 
		/// been in the heap, \c IN_HEAP if it is in the heap at the moment,  | 
|
| 295 | 
		/// and \c POST_HEAP otherwise.  | 
|
| 296 | 
		/// In the latter case it is possible that the item will get back  | 
|
| 297 | 
		/// to the heap again.  | 
|
| 298 | 
		/// \param i The item.  | 
|
| 299 | 
		    State state(const Item &i) const {
	 | 
|
| 300 | 
		int s = _iim[i];  | 
|
| 301 | 
		if (s>=0) s=0;  | 
|
| 302 | 
		return State(s);  | 
|
| 303 | 
		}  | 
|
| 304 | 
		 | 
|
| 305 | 
		/// \brief Set the state of an item in the heap.  | 
|
| 306 | 
		///  | 
|
| 307 | 
		/// This function sets the state of the given item in the heap.  | 
|
| 308 | 
		/// It can be used to manually clear the heap when it is important  | 
|
| 309 | 
		/// to achive better time complexity.  | 
|
| 310 | 
		/// \param i The item.  | 
|
| 311 | 
		/// \param st The state. It should not be \c IN_HEAP.  | 
|
| 312 | 
		    void state(const Item& i, State st) {
	 | 
|
| 313 | 
		      switch (st) {
	 | 
|
| 314 | 
		case POST_HEAP:  | 
|
| 315 | 
		case PRE_HEAP:  | 
|
| 316 | 
		if (state(i) == IN_HEAP) erase(i);  | 
|
| 317 | 
		_iim[i] = st;  | 
|
| 318 | 
		break;  | 
|
| 319 | 
		case IN_HEAP:  | 
|
| 320 | 
		break;  | 
|
| 321 | 
		}  | 
|
| 322 | 
		}  | 
|
| 323 | 
		 | 
|
| 324 | 
		/// \brief Replace an item in the heap.  | 
|
| 325 | 
		///  | 
|
| 326 | 
		/// This function replaces item \c i with item \c j.  | 
|
| 327 | 
		/// Item \c i must be in the heap, while \c j must be out of the heap.  | 
|
| 328 | 
		/// After calling this method, item \c i will be out of the  | 
|
| 329 | 
		/// heap and \c j will be in the heap with the same prioriority  | 
|
| 330 | 
		/// as item \c i had before.  | 
|
| 331 | 
		    void replace(const Item& i, const Item& j) {
	 | 
|
| 332 | 
		int idx = _iim[i];  | 
|
| 333 | 
		_iim.set(i, _iim[j]);  | 
|
| 334 | 
		_iim.set(j, idx);  | 
|
| 335 | 
		_data[idx].first = j;  | 
|
| 336 | 
		}  | 
|
| 337 | 
		 | 
|
| 338 | 
		}; // class FouraryHeap  | 
|
| 339 | 
		 | 
|
| 340 | 
		} // namespace lemon  | 
|
| 341 | 
		 | 
|
| 342 | 
		#endif // LEMON_FOURARY_HEAP_H  | 
| 1 | 
		/* -*- mode: C++; indent-tabs-mode: nil; -*-  | 
|
| 2 | 
		*  | 
|
| 3 | 
		* This file is a part of LEMON, a generic C++ optimization library.  | 
|
| 4 | 
		*  | 
|
| 5 | 
		* Copyright (C) 2003-2009  | 
|
| 6 | 
		* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
|
| 7 | 
		* (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
|
| 8 | 
		*  | 
|
| 9 | 
		* Permission to use, modify and distribute this software is granted  | 
|
| 10 | 
		* provided that this copyright notice appears in all copies. For  | 
|
| 11 | 
		* precise terms see the accompanying LICENSE file.  | 
|
| 12 | 
		*  | 
|
| 13 | 
		* This software is provided "AS IS" with no warranty of any kind,  | 
|
| 14 | 
		* express or implied, and with no claim as to its suitability for any  | 
|
| 15 | 
		* purpose.  | 
|
| 16 | 
		*  | 
|
| 17 | 
		*/  | 
|
| 18 | 
		 | 
|
| 19 | 
		#ifndef LEMON_KARY_HEAP_H  | 
|
| 20 | 
		#define LEMON_KARY_HEAP_H  | 
|
| 21 | 
		 | 
|
| 22 | 
		///\ingroup heaps  | 
|
| 23 | 
		///\file  | 
|
| 24 | 
		///\brief Fourary heap implementation.  | 
|
| 25 | 
		 | 
|
| 26 | 
		#include <vector>  | 
|
| 27 | 
		#include <utility>  | 
|
| 28 | 
		#include <functional>  | 
|
| 29 | 
		 | 
|
| 30 | 
		namespace lemon {
	 | 
|
| 31 | 
		 | 
|
| 32 | 
		/// \ingroup heaps  | 
|
| 33 | 
		///  | 
|
| 34 | 
		///\brief K-ary heap data structure.  | 
|
| 35 | 
		///  | 
|
| 36 | 
		/// This class implements the \e K-ary \e heap data structure.  | 
|
| 37 | 
		/// It fully conforms to the \ref concepts::Heap "heap concept".  | 
|
| 38 | 
		///  | 
|
| 39 | 
		/// The \ref KaryHeap "K-ary heap" is a generalization of the  | 
|
| 40 | 
		/// \ref BinHeap "binary heap" structure, its nodes have at most  | 
|
| 41 | 
		/// \c K children, instead of two.  | 
|
| 42 | 
		/// \ref BinHeap and \ref FouraryHeap are specialized implementations  | 
|
| 43 | 
		/// of this structure for <tt>K=2</tt> and <tt>K=4</tt>, respectively.  | 
|
| 44 | 
		///  | 
|
| 45 | 
		/// \tparam PR Type of the priorities of the items.  | 
|
| 46 | 
		/// \tparam IM A read-writable item map with \c int values, used  | 
|
| 47 | 
		/// internally to handle the cross references.  | 
|
| 48 | 
		/// \tparam K The degree of the heap, each node have at most \e K  | 
|
| 49 | 
		/// children. The default is 16. Powers of two are suggested to use  | 
|
| 50 | 
		/// so that the multiplications and divisions needed to traverse the  | 
|
| 51 | 
		/// nodes of the heap could be performed faster.  | 
|
| 52 | 
		/// \tparam CMP A functor class for comparing the priorities.  | 
|
| 53 | 
		/// The default is \c std::less<PR>.  | 
|
| 54 | 
		///  | 
|
| 55 | 
		///\sa BinHeap  | 
|
| 56 | 
		///\sa FouraryHeap  | 
|
| 57 | 
		#ifdef DOXYGEN  | 
|
| 58 | 
		template <typename PR, typename IM, int K, typename CMP>  | 
|
| 59 | 
		#else  | 
|
| 60 | 
		template <typename PR, typename IM, int K = 16,  | 
|
| 61 | 
		typename CMP = std::less<PR> >  | 
|
| 62 | 
		#endif  | 
|
| 63 | 
		  class KaryHeap {
	 | 
|
| 64 | 
		public:  | 
|
| 65 | 
		/// Type of the item-int map.  | 
|
| 66 | 
		typedef IM ItemIntMap;  | 
|
| 67 | 
		/// Type of the priorities.  | 
|
| 68 | 
		typedef PR Prio;  | 
|
| 69 | 
		/// Type of the items stored in the heap.  | 
|
| 70 | 
		typedef typename ItemIntMap::Key Item;  | 
|
| 71 | 
		/// Type of the item-priority pairs.  | 
|
| 72 | 
		typedef std::pair<Item,Prio> Pair;  | 
|
| 73 | 
		/// Functor type for comparing the priorities.  | 
|
| 74 | 
		typedef CMP Compare;  | 
|
| 75 | 
		 | 
|
| 76 | 
		/// \brief Type to represent the states of the items.  | 
|
| 77 | 
		///  | 
|
| 78 | 
		/// Each item has a state associated to it. It can be "in heap",  | 
|
| 79 | 
		/// "pre-heap" or "post-heap". The latter two are indifferent from the  | 
|
| 80 | 
		/// heap's point of view, but may be useful to the user.  | 
|
| 81 | 
		///  | 
|
| 82 | 
		/// The item-int map must be initialized in such way that it assigns  | 
|
| 83 | 
		/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.  | 
|
| 84 | 
		    enum State {
	 | 
|
| 85 | 
		IN_HEAP = 0, ///< = 0.  | 
|
| 86 | 
		PRE_HEAP = -1, ///< = -1.  | 
|
| 87 | 
		POST_HEAP = -2 ///< = -2.  | 
|
| 88 | 
		};  | 
|
| 89 | 
		 | 
|
| 90 | 
		private:  | 
|
| 91 | 
		std::vector<Pair> _data;  | 
|
| 92 | 
		Compare _comp;  | 
|
| 93 | 
		ItemIntMap &_iim;  | 
|
| 94 | 
		 | 
|
| 95 | 
		public:  | 
|
| 96 | 
		/// \brief Constructor.  | 
|
| 97 | 
		///  | 
|
| 98 | 
		/// Constructor.  | 
|
| 99 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 100 | 
		/// It is used internally to handle the cross references.  | 
|
| 101 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 102 | 
		    explicit KaryHeap(ItemIntMap &map) : _iim(map) {}
	 | 
|
| 103 | 
		 | 
|
| 104 | 
		/// \brief Constructor.  | 
|
| 105 | 
		///  | 
|
| 106 | 
		/// Constructor.  | 
|
| 107 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 108 | 
		/// It is used internally to handle the cross references.  | 
|
| 109 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 110 | 
		/// \param comp The function object used for comparing the priorities.  | 
|
| 111 | 
		KaryHeap(ItemIntMap &map, const Compare &comp)  | 
|
| 112 | 
		      : _iim(map), _comp(comp) {}
	 | 
|
| 113 | 
		 | 
|
| 114 | 
		/// \brief The number of items stored in the heap.  | 
|
| 115 | 
		///  | 
|
| 116 | 
		/// This function returns the number of items stored in the heap.  | 
|
| 117 | 
		    int size() const { return _data.size(); }
	 | 
|
| 118 | 
		 | 
|
| 119 | 
		/// \brief Check if the heap is empty.  | 
|
| 120 | 
		///  | 
|
| 121 | 
		/// This function returns \c true if the heap is empty.  | 
|
| 122 | 
		    bool empty() const { return _data.empty(); }
	 | 
|
| 123 | 
		 | 
|
| 124 | 
		/// \brief Make the heap empty.  | 
|
| 125 | 
		///  | 
|
| 126 | 
		/// This functon makes the heap empty.  | 
|
| 127 | 
		/// It does not change the cross reference map. If you want to reuse  | 
|
| 128 | 
		/// a heap that is not surely empty, you should first clear it and  | 
|
| 129 | 
		/// then you should set the cross reference map to \c PRE_HEAP  | 
|
| 130 | 
		/// for each item.  | 
|
| 131 | 
		    void clear() { _data.clear(); }
	 | 
|
| 132 | 
		 | 
|
| 133 | 
		private:  | 
|
| 134 | 
		    int parent(int i) { return (i-1)/K; }
	 | 
|
| 135 | 
		    int firstChild(int i) { return K*i+1; }
	 | 
|
| 136 | 
		 | 
|
| 137 | 
		    bool less(const Pair &p1, const Pair &p2) const {
	 | 
|
| 138 | 
		return _comp(p1.second, p2.second);  | 
|
| 139 | 
		}  | 
|
| 140 | 
		 | 
|
| 141 | 
		    void bubbleUp(int hole, Pair p) {
	 | 
|
| 142 | 
		int par = parent(hole);  | 
|
| 143 | 
		      while( hole>0 && less(p,_data[par]) ) {
	 | 
|
| 144 | 
		move(_data[par],hole);  | 
|
| 145 | 
		hole = par;  | 
|
| 146 | 
		par = parent(hole);  | 
|
| 147 | 
		}  | 
|
| 148 | 
		move(p, hole);  | 
|
| 149 | 
		}  | 
|
| 150 | 
		 | 
|
| 151 | 
		    void bubbleDown(int hole, Pair p, int length) {
	 | 
|
| 152 | 
		      if( length>1 ) {
	 | 
|
| 153 | 
		int child = firstChild(hole);  | 
|
| 154 | 
		        while( child+K<=length ) {
	 | 
|
| 155 | 
		int min=child;  | 
|
| 156 | 
		          for (int i=1; i<K; ++i) {
	 | 
|
| 157 | 
		if( less(_data[child+i], _data[min]) )  | 
|
| 158 | 
		min=child+i;  | 
|
| 159 | 
		}  | 
|
| 160 | 
		if( !less(_data[min], p) )  | 
|
| 161 | 
		goto ok;  | 
|
| 162 | 
		move(_data[min], hole);  | 
|
| 163 | 
		hole = min;  | 
|
| 164 | 
		child = firstChild(hole);  | 
|
| 165 | 
		}  | 
|
| 166 | 
		        if ( child<length ) {
	 | 
|
| 167 | 
		int min = child;  | 
|
| 168 | 
		          while (++child < length) {
	 | 
|
| 169 | 
		if( less(_data[child], _data[min]) )  | 
|
| 170 | 
		min=child;  | 
|
| 171 | 
		}  | 
|
| 172 | 
		          if( less(_data[min], p) ) {
	 | 
|
| 173 | 
		move(_data[min], hole);  | 
|
| 174 | 
		hole = min;  | 
|
| 175 | 
		}  | 
|
| 176 | 
		}  | 
|
| 177 | 
		}  | 
|
| 178 | 
		ok:  | 
|
| 179 | 
		move(p, hole);  | 
|
| 180 | 
		}  | 
|
| 181 | 
		 | 
|
| 182 | 
		    void move(const Pair &p, int i) {
	 | 
|
| 183 | 
		_data[i] = p;  | 
|
| 184 | 
		_iim.set(p.first, i);  | 
|
| 185 | 
		}  | 
|
| 186 | 
		 | 
|
| 187 | 
		public:  | 
|
| 188 | 
		/// \brief Insert a pair of item and priority into the heap.  | 
|
| 189 | 
		///  | 
|
| 190 | 
		/// This function inserts \c p.first to the heap with priority  | 
|
| 191 | 
		/// \c p.second.  | 
|
| 192 | 
		/// \param p The pair to insert.  | 
|
| 193 | 
		/// \pre \c p.first must not be stored in the heap.  | 
|
| 194 | 
		    void push(const Pair &p) {
	 | 
|
| 195 | 
		int n = _data.size();  | 
|
| 196 | 
		_data.resize(n+1);  | 
|
| 197 | 
		bubbleUp(n, p);  | 
|
| 198 | 
		}  | 
|
| 199 | 
		 | 
|
| 200 | 
		/// \brief Insert an item into the heap with the given priority.  | 
|
| 201 | 
		///  | 
|
| 202 | 
		/// This function inserts the given item into the heap with the  | 
|
| 203 | 
		/// given priority.  | 
|
| 204 | 
		/// \param i The item to insert.  | 
|
| 205 | 
		/// \param p The priority of the item.  | 
|
| 206 | 
		/// \pre \e i must not be stored in the heap.  | 
|
| 207 | 
		    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
	 | 
|
| 208 | 
		 | 
|
| 209 | 
		/// \brief Return the item having minimum priority.  | 
|
| 210 | 
		///  | 
|
| 211 | 
		/// This function returns the item having minimum priority.  | 
|
| 212 | 
		/// \pre The heap must be non-empty.  | 
|
| 213 | 
		    Item top() const { return _data[0].first; }
	 | 
|
| 214 | 
		 | 
|
| 215 | 
		/// \brief The minimum priority.  | 
|
| 216 | 
		///  | 
|
| 217 | 
		/// This function returns the minimum priority.  | 
|
| 218 | 
		/// \pre The heap must be non-empty.  | 
|
| 219 | 
		    Prio prio() const { return _data[0].second; }
	 | 
|
| 220 | 
		 | 
|
| 221 | 
		/// \brief Remove the item having minimum priority.  | 
|
| 222 | 
		///  | 
|
| 223 | 
		/// This function removes the item having minimum priority.  | 
|
| 224 | 
		/// \pre The heap must be non-empty.  | 
|
| 225 | 
		    void pop() {
	 | 
|
| 226 | 
		int n = _data.size()-1;  | 
|
| 227 | 
		_iim.set(_data[0].first, POST_HEAP);  | 
|
| 228 | 
		if (n>0) bubbleDown(0, _data[n], n);  | 
|
| 229 | 
		_data.pop_back();  | 
|
| 230 | 
		}  | 
|
| 231 | 
		 | 
|
| 232 | 
		/// \brief Remove the given item from the heap.  | 
|
| 233 | 
		///  | 
|
| 234 | 
		/// This function removes the given item from the heap if it is  | 
|
| 235 | 
		/// already stored.  | 
|
| 236 | 
		/// \param i The item to delete.  | 
|
| 237 | 
		/// \pre \e i must be in the heap.  | 
|
| 238 | 
		    void erase(const Item &i) {
	 | 
|
| 239 | 
		int h = _iim[i];  | 
|
| 240 | 
		int n = _data.size()-1;  | 
|
| 241 | 
		_iim.set(_data[h].first, POST_HEAP);  | 
|
| 242 | 
		      if( h<n ) {
	 | 
|
| 243 | 
		if( less(_data[parent(h)], _data[n]) )  | 
|
| 244 | 
		bubbleDown(h, _data[n], n);  | 
|
| 245 | 
		else  | 
|
| 246 | 
		bubbleUp(h, _data[n]);  | 
|
| 247 | 
		}  | 
|
| 248 | 
		_data.pop_back();  | 
|
| 249 | 
		}  | 
|
| 250 | 
		 | 
|
| 251 | 
		/// \brief The priority of the given item.  | 
|
| 252 | 
		///  | 
|
| 253 | 
		/// This function returns the priority of the given item.  | 
|
| 254 | 
		/// \param i The item.  | 
|
| 255 | 
		/// \pre \e i must be in the heap.  | 
|
| 256 | 
		    Prio operator[](const Item &i) const {
	 | 
|
| 257 | 
		int idx = _iim[i];  | 
|
| 258 | 
		return _data[idx].second;  | 
|
| 259 | 
		}  | 
|
| 260 | 
		 | 
|
| 261 | 
		/// \brief Set the priority of an item or insert it, if it is  | 
|
| 262 | 
		/// not stored in the heap.  | 
|
| 263 | 
		///  | 
|
| 264 | 
		/// This method sets the priority of the given item if it is  | 
|
| 265 | 
		/// already stored in the heap. Otherwise it inserts the given  | 
|
| 266 | 
		/// item into the heap with the given priority.  | 
|
| 267 | 
		/// \param i The item.  | 
|
| 268 | 
		/// \param p The priority.  | 
|
| 269 | 
		    void set(const Item &i, const Prio &p) {
	 | 
|
| 270 | 
		int idx = _iim[i];  | 
|
| 271 | 
		if( idx<0 )  | 
|
| 272 | 
		push(i,p);  | 
|
| 273 | 
		else if( _comp(p, _data[idx].second) )  | 
|
| 274 | 
		bubbleUp(idx, Pair(i,p));  | 
|
| 275 | 
		else  | 
|
| 276 | 
		bubbleDown(idx, Pair(i,p), _data.size());  | 
|
| 277 | 
		}  | 
|
| 278 | 
		 | 
|
| 279 | 
		/// \brief Decrease the priority of an item to the given value.  | 
|
| 280 | 
		///  | 
|
| 281 | 
		/// This function decreases the priority of an item to the given value.  | 
|
| 282 | 
		/// \param i The item.  | 
|
| 283 | 
		/// \param p The priority.  | 
|
| 284 | 
		/// \pre \e i must be stored in the heap with priority at least \e p.  | 
|
| 285 | 
		    void decrease(const Item &i, const Prio &p) {
	 | 
|
| 286 | 
		int idx = _iim[i];  | 
|
| 287 | 
		bubbleUp(idx, Pair(i,p));  | 
|
| 288 | 
		}  | 
|
| 289 | 
		 | 
|
| 290 | 
		/// \brief Increase the priority of an item to the given value.  | 
|
| 291 | 
		///  | 
|
| 292 | 
		/// This function increases the priority of an item to the given value.  | 
|
| 293 | 
		/// \param i The item.  | 
|
| 294 | 
		/// \param p The priority.  | 
|
| 295 | 
		/// \pre \e i must be stored in the heap with priority at most \e p.  | 
|
| 296 | 
		    void increase(const Item &i, const Prio &p) {
	 | 
|
| 297 | 
		int idx = _iim[i];  | 
|
| 298 | 
		bubbleDown(idx, Pair(i,p), _data.size());  | 
|
| 299 | 
		}  | 
|
| 300 | 
		 | 
|
| 301 | 
		/// \brief Return the state of an item.  | 
|
| 302 | 
		///  | 
|
| 303 | 
		/// This method returns \c PRE_HEAP if the given item has never  | 
|
| 304 | 
		/// been in the heap, \c IN_HEAP if it is in the heap at the moment,  | 
|
| 305 | 
		/// and \c POST_HEAP otherwise.  | 
|
| 306 | 
		/// In the latter case it is possible that the item will get back  | 
|
| 307 | 
		/// to the heap again.  | 
|
| 308 | 
		/// \param i The item.  | 
|
| 309 | 
		    State state(const Item &i) const {
	 | 
|
| 310 | 
		int s = _iim[i];  | 
|
| 311 | 
		if (s>=0) s=0;  | 
|
| 312 | 
		return State(s);  | 
|
| 313 | 
		}  | 
|
| 314 | 
		 | 
|
| 315 | 
		/// \brief Set the state of an item in the heap.  | 
|
| 316 | 
		///  | 
|
| 317 | 
		/// This function sets the state of the given item in the heap.  | 
|
| 318 | 
		/// It can be used to manually clear the heap when it is important  | 
|
| 319 | 
		/// to achive better time complexity.  | 
|
| 320 | 
		/// \param i The item.  | 
|
| 321 | 
		/// \param st The state. It should not be \c IN_HEAP.  | 
|
| 322 | 
		    void state(const Item& i, State st) {
	 | 
|
| 323 | 
		      switch (st) {
	 | 
|
| 324 | 
		case POST_HEAP:  | 
|
| 325 | 
		case PRE_HEAP:  | 
|
| 326 | 
		if (state(i) == IN_HEAP) erase(i);  | 
|
| 327 | 
		_iim[i] = st;  | 
|
| 328 | 
		break;  | 
|
| 329 | 
		case IN_HEAP:  | 
|
| 330 | 
		break;  | 
|
| 331 | 
		}  | 
|
| 332 | 
		}  | 
|
| 333 | 
		 | 
|
| 334 | 
		/// \brief Replace an item in the heap.  | 
|
| 335 | 
		///  | 
|
| 336 | 
		/// This function replaces item \c i with item \c j.  | 
|
| 337 | 
		/// Item \c i must be in the heap, while \c j must be out of the heap.  | 
|
| 338 | 
		/// After calling this method, item \c i will be out of the  | 
|
| 339 | 
		/// heap and \c j will be in the heap with the same prioriority  | 
|
| 340 | 
		/// as item \c i had before.  | 
|
| 341 | 
		    void replace(const Item& i, const Item& j) {
	 | 
|
| 342 | 
		int idx=_iim[i];  | 
|
| 343 | 
		_iim.set(i, _iim[j]);  | 
|
| 344 | 
		_iim.set(j, idx);  | 
|
| 345 | 
		_data[idx].first=j;  | 
|
| 346 | 
		}  | 
|
| 347 | 
		 | 
|
| 348 | 
		}; // class KaryHeap  | 
|
| 349 | 
		 | 
|
| 350 | 
		} // namespace lemon  | 
|
| 351 | 
		 | 
|
| 352 | 
		#endif // LEMON_KARY_HEAP_H  | 
| ... | ... | 
		@@ -223,45 +223,88 @@  | 
| 223 | 223 | 
		the two maps which can be done implicitly with the \c DivMap template  | 
| 224 | 224 | 
		class. We use the implicit minimum time map as the length map of the  | 
| 225 | 225 | 
		\c Dijkstra algorithm.  | 
| 226 | 226 | 
		*/  | 
| 227 | 227 | 
		 | 
| 228 | 228 | 
		/**  | 
| 229 | 
		@defgroup matrices Matrices  | 
|
| 230 | 
		@ingroup datas  | 
|
| 231 | 
		\brief Two dimensional data storages implemented in LEMON.  | 
|
| 232 | 
		 | 
|
| 233 | 
		This group contains two dimensional data storages implemented in LEMON.  | 
|
| 234 | 
		*/  | 
|
| 235 | 
		 | 
|
| 236 | 
		/**  | 
|
| 237 | 229 | 
		@defgroup paths Path Structures  | 
| 238 | 230 | 
		@ingroup datas  | 
| 239 | 231 | 
		\brief %Path structures implemented in LEMON.  | 
| 240 | 232 | 
		 | 
| 241 | 233 | 
		This group contains the path structures implemented in LEMON.  | 
| 242 | 234 | 
		 | 
| 243 | 235 | 
		LEMON provides flexible data structures to work with paths.  | 
| 244 | 236 | 
		All of them have similar interfaces and they can be copied easily with  | 
| 245 | 237 | 
		assignment operators and copy constructors. This makes it easy and  | 
| 246 | 238 | 
		efficient to have e.g. the Dijkstra algorithm to store its result in  | 
| 247 | 239 | 
		any kind of path structure.  | 
| 248 | 240 | 
		 | 
| 249 | 
		\sa  | 
|
| 241 | 
		\sa \ref concepts::Path "Path concept"  | 
|
| 242 | 
		*/  | 
|
| 243 | 
		 | 
|
| 244 | 
		/**  | 
|
| 245 | 
		@defgroup heaps Heap Structures  | 
|
| 246 | 
		@ingroup datas  | 
|
| 247 | 
		\brief %Heap structures implemented in LEMON.  | 
|
| 248 | 
		 | 
|
| 249 | 
		This group contains the heap structures implemented in LEMON.  | 
|
| 250 | 
		 | 
|
| 251 | 
		LEMON provides several heap classes. They are efficient implementations  | 
|
| 252 | 
		of the abstract data type \e priority \e queue. They store items with  | 
|
| 253 | 
		specified values called \e priorities in such a way that finding and  | 
|
| 254 | 
		removing the item with minimum priority are efficient.  | 
|
| 255 | 
		The basic operations are adding and erasing items, changing the priority  | 
|
| 256 | 
		of an item, etc.  | 
|
| 257 | 
		 | 
|
| 258 | 
		Heaps are crucial in several algorithms, such as Dijkstra and Prim.  | 
|
| 259 | 
		The heap implementations have the same interface, thus any of them can be  | 
|
| 260 | 
		used easily in such algorithms.  | 
|
| 261 | 
		 | 
|
| 262 | 
		\sa \ref concepts::Heap "Heap concept"  | 
|
| 263 | 
		*/  | 
|
| 264 | 
		 | 
|
| 265 | 
		/**  | 
|
| 266 | 
		@defgroup matrices Matrices  | 
|
| 267 | 
		@ingroup datas  | 
|
| 268 | 
		\brief Two dimensional data storages implemented in LEMON.  | 
|
| 269 | 
		 | 
|
| 270 | 
		This group contains two dimensional data storages implemented in LEMON.  | 
|
| 250 | 271 | 
		*/  | 
| 251 | 272 | 
		 | 
| 252 | 273 | 
		/**  | 
| 253 | 274 | 
		@defgroup auxdat Auxiliary Data Structures  | 
| 254 | 275 | 
		@ingroup datas  | 
| 255 | 276 | 
		\brief Auxiliary data structures implemented in LEMON.  | 
| 256 | 277 | 
		 | 
| 257 | 278 | 
		This group contains some data structures implemented in LEMON in  | 
| 258 | 279 | 
		order to make it easier to implement combinatorial algorithms.  | 
| 259 | 280 | 
		*/  | 
| 260 | 281 | 
		 | 
| 261 | 282 | 
		/**  | 
| 283 | 
		@defgroup geomdat Geometric Data Structures  | 
|
| 284 | 
		@ingroup auxdat  | 
|
| 285 | 
		\brief Geometric data structures implemented in LEMON.  | 
|
| 286 | 
		 | 
|
| 287 | 
		This group contains geometric data structures implemented in LEMON.  | 
|
| 288 | 
		 | 
|
| 289 | 
		- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional  | 
|
| 290 | 
		vector with the usual operations.  | 
|
| 291 | 
		- \ref lemon::dim2::Box "dim2::Box" can be used to determine the  | 
|
| 292 | 
		rectangular bounding box of a set of \ref lemon::dim2::Point  | 
|
| 293 | 
		"dim2::Point"'s.  | 
|
| 294 | 
		*/  | 
|
| 295 | 
		 | 
|
| 296 | 
		/**  | 
|
| 297 | 
		@defgroup matrices Matrices  | 
|
| 298 | 
		@ingroup auxdat  | 
|
| 299 | 
		\brief Two dimensional data storages implemented in LEMON.  | 
|
| 300 | 
		 | 
|
| 301 | 
		This group contains two dimensional data storages implemented in LEMON.  | 
|
| 302 | 
		*/  | 
|
| 303 | 
		 | 
|
| 304 | 
		/**  | 
|
| 262 | 305 | 
		@defgroup algs Algorithms  | 
| 263 | 306 | 
		\brief This group contains the several algorithms  | 
| 264 | 307 | 
		implemented in LEMON.  | 
| 265 | 308 | 
		 | 
| 266 | 309 | 
		This group contains the several algorithms  | 
| 267 | 310 | 
		implemented in LEMON.  | 
| ... | ... | 
		@@ -295,12 +338,21 @@  | 
| 295 | 338 | 
		not contain directed cycles with negative total length.  | 
| 296 | 339 | 
		- \ref Suurballe A successive shortest path algorithm for finding  | 
| 297 | 340 | 
		arc-disjoint paths between two nodes having minimum total length.  | 
| 298 | 341 | 
		*/  | 
| 299 | 342 | 
		 | 
| 300 | 343 | 
		/**  | 
| 344 | 
		@defgroup spantree Minimum Spanning Tree Algorithms  | 
|
| 345 | 
		@ingroup algs  | 
|
| 346 | 
		\brief Algorithms for finding minimum cost spanning trees and arborescences.  | 
|
| 347 | 
		 | 
|
| 348 | 
		This group contains the algorithms for finding minimum cost spanning  | 
|
| 349 | 
		trees and arborescences.  | 
|
| 350 | 
		*/  | 
|
| 351 | 
		 | 
|
| 352 | 
		/**  | 
|
| 301 | 353 | 
		@defgroup max_flow Maximum Flow Algorithms  | 
| 302 | 354 | 
		@ingroup algs  | 
| 303 | 355 | 
		\brief Algorithms for finding maximum flows.  | 
| 304 | 356 | 
		 | 
| 305 | 357 | 
		This group contains the algorithms for finding maximum flows and  | 
| 306 | 358 | 
		feasible circulations.  | 
| ... | ... | 
		@@ -372,13 +424,13 @@  | 
| 372 | 424 | 
		\f$X\f$ subset of the nodes with minimum overall capacity on  | 
| 373 | 425 | 
		outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a  | 
| 374 | 426 | 
		\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
	 | 
| 375 | 427 | 
		cut is the \f$X\f$ solution of the next optimization problem:  | 
| 376 | 428 | 
		 | 
| 377 | 429 | 
		\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
	 | 
| 378 | 
		    \sum_{uv\in A
	 | 
|
| 430 | 
		    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
	 | 
|
| 379 | 431 | 
		 | 
| 380 | 432 | 
		LEMON contains several algorithms related to minimum cut problems:  | 
| 381 | 433 | 
		 | 
| 382 | 434 | 
		- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut  | 
| 383 | 435 | 
		in directed graphs.  | 
| 384 | 436 | 
		- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for  | 
| ... | ... | 
		@@ -388,36 +440,12 @@  | 
| 388 | 440 | 
		 | 
| 389 | 441 | 
		If you want to find minimum cut just between two distinict nodes,  | 
| 390 | 442 | 
		see the \ref max_flow "maximum flow problem".  | 
| 391 | 443 | 
		*/  | 
| 392 | 444 | 
		 | 
| 393 | 445 | 
		/**  | 
| 394 | 
		@defgroup graph_properties Connectivity and Other Graph Properties  | 
|
| 395 | 
		@ingroup algs  | 
|
| 396 | 
		\brief Algorithms for discovering the graph properties  | 
|
| 397 | 
		 | 
|
| 398 | 
		This group contains the algorithms for discovering the graph properties  | 
|
| 399 | 
		like connectivity, bipartiteness, euler property, simplicity etc.  | 
|
| 400 | 
		 | 
|
| 401 | 
		\image html edge_biconnected_components.png  | 
|
| 402 | 
		\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth  | 
|
| 403 | 
		*/  | 
|
| 404 | 
		 | 
|
| 405 | 
		/**  | 
|
| 406 | 
		@defgroup planar Planarity Embedding and Drawing  | 
|
| 407 | 
		@ingroup algs  | 
|
| 408 | 
		\brief Algorithms for planarity checking, embedding and drawing  | 
|
| 409 | 
		 | 
|
| 410 | 
		This group contains the algorithms for planarity checking,  | 
|
| 411 | 
		embedding and drawing.  | 
|
| 412 | 
		 | 
|
| 413 | 
		\image html planar.png  | 
|
| 414 | 
		\image latex planar.eps "Plane graph" width=\textwidth  | 
|
| 415 | 
		*/  | 
|
| 416 | 
		 | 
|
| 417 | 
		/**  | 
|
| 418 | 446 | 
		@defgroup matching Matching Algorithms  | 
| 419 | 447 | 
		@ingroup algs  | 
| 420 | 448 | 
		\brief Algorithms for finding matchings in graphs and bipartite graphs.  | 
| 421 | 449 | 
		 | 
| 422 | 450 | 
		This group contains the algorithms for calculating  | 
| 423 | 451 | 
		matchings in graphs and bipartite graphs. The general matching problem is  | 
| ... | ... | 
		@@ -452,39 +480,54 @@  | 
| 452 | 480 | 
		 | 
| 453 | 481 | 
		\image html bipartite_matching.png  | 
| 454 | 482 | 
		\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth  | 
| 455 | 483 | 
		*/  | 
| 456 | 484 | 
		 | 
| 457 | 485 | 
		/**  | 
| 458 | 
		@defgroup  | 
|
| 486 | 
		@defgroup graph_properties Connectivity and Other Graph Properties  | 
|
| 459 | 487 | 
		@ingroup algs  | 
| 460 | 
		\brief Algorithms for  | 
|
| 488 | 
		\brief Algorithms for discovering the graph properties  | 
|
| 461 | 489 | 
		 | 
| 462 | 
		This group contains the algorithms for finding minimum cost spanning  | 
|
| 463 | 
		trees and arborescences.  | 
|
| 490 | 
		This group contains the algorithms for discovering the graph properties  | 
|
| 491 | 
		like connectivity, bipartiteness, euler property, simplicity etc.  | 
|
| 492 | 
		 | 
|
| 493 | 
		\image html connected_components.png  | 
|
| 494 | 
		\image latex connected_components.eps "Connected components" width=\textwidth  | 
|
| 495 | 
		*/  | 
|
| 496 | 
		 | 
|
| 497 | 
		/**  | 
|
| 498 | 
		@defgroup planar Planarity Embedding and Drawing  | 
|
| 499 | 
		@ingroup algs  | 
|
| 500 | 
		\brief Algorithms for planarity checking, embedding and drawing  | 
|
| 501 | 
		 | 
|
| 502 | 
		This group contains the algorithms for planarity checking,  | 
|
| 503 | 
		embedding and drawing.  | 
|
| 504 | 
		 | 
|
| 505 | 
		\image html planar.png  | 
|
| 506 | 
		\image latex planar.eps "Plane graph" width=\textwidth  | 
|
| 507 | 
		*/  | 
|
| 508 | 
		 | 
|
| 509 | 
		/**  | 
|
| 510 | 
		@defgroup approx Approximation Algorithms  | 
|
| 511 | 
		@ingroup algs  | 
|
| 512 | 
		\brief Approximation algorithms.  | 
|
| 513 | 
		 | 
|
| 514 | 
		This group contains the approximation and heuristic algorithms  | 
|
| 515 | 
		implemented in LEMON.  | 
|
| 464 | 516 | 
		*/  | 
| 465 | 517 | 
		 | 
| 466 | 518 | 
		/**  | 
| 467 | 519 | 
		@defgroup auxalg Auxiliary Algorithms  | 
| 468 | 520 | 
		@ingroup algs  | 
| 469 | 521 | 
		\brief Auxiliary algorithms implemented in LEMON.  | 
| 470 | 522 | 
		 | 
| 471 | 523 | 
		This group contains some algorithms implemented in LEMON  | 
| 472 | 524 | 
		in order to make it easier to implement complex algorithms.  | 
| 473 | 525 | 
		*/  | 
| 474 | 526 | 
		 | 
| 475 | 527 | 
		/**  | 
| 476 | 
		@defgroup approx Approximation Algorithms  | 
|
| 477 | 
		@ingroup algs  | 
|
| 478 | 
		\brief Approximation algorithms.  | 
|
| 479 | 
		 | 
|
| 480 | 
		This group contains the approximation and heuristic algorithms  | 
|
| 481 | 
		implemented in LEMON.  | 
|
| 482 | 
		*/  | 
|
| 483 | 
		 | 
|
| 484 | 
		/**  | 
|
| 485 | 528 | 
		@defgroup gen_opt_group General Optimization Tools  | 
| 486 | 529 | 
		\brief This group contains some general optimization frameworks  | 
| 487 | 530 | 
		implemented in LEMON.  | 
| 488 | 531 | 
		 | 
| 489 | 532 | 
		This group contains some general optimization frameworks  | 
| 490 | 533 | 
		implemented in LEMON.  | 
| ... | ... | 
		@@ -584,13 +627,13 @@  | 
| 584 | 627 | 
		 | 
| 585 | 628 | 
		This group contains general \c EPS drawing methods and special  | 
| 586 | 629 | 
		graph exporting tools.  | 
| 587 | 630 | 
		*/  | 
| 588 | 631 | 
		 | 
| 589 | 632 | 
		/**  | 
| 590 | 
		@defgroup dimacs_group DIMACS  | 
|
| 633 | 
		@defgroup dimacs_group DIMACS Format  | 
|
| 591 | 634 | 
		@ingroup io_group  | 
| 592 | 635 | 
		\brief Read and write files in DIMACS format  | 
| 593 | 636 | 
		 | 
| 594 | 637 | 
		Tools to read a digraph from or write it to a file in DIMACS format data.  | 
| 595 | 638 | 
		*/  | 
| 596 | 639 | 
		 | 
| ... | ... | 
		@@ -646,27 +689,27 @@  | 
| 646 | 689 | 
		\brief Skeleton and concept checking classes for maps  | 
| 647 | 690 | 
		 | 
| 648 | 691 | 
		This group contains the skeletons and concept checking classes of maps.  | 
| 649 | 692 | 
		*/  | 
| 650 | 693 | 
		 | 
| 651 | 694 | 
		/**  | 
| 695 | 
		@defgroup tools Standalone Utility Applications  | 
|
| 696 | 
		 | 
|
| 697 | 
		Some utility applications are listed here.  | 
|
| 698 | 
		 | 
|
| 699 | 
		The standard compilation procedure (<tt>./configure;make</tt>) will compile  | 
|
| 700 | 
		them, as well.  | 
|
| 701 | 
		*/  | 
|
| 702 | 
		 | 
|
| 703 | 
		/**  | 
|
| 652 | 704 | 
		\anchor demoprograms  | 
| 653 | 705 | 
		 | 
| 654 | 706 | 
		@defgroup demos Demo Programs  | 
| 655 | 707 | 
		 | 
| 656 | 708 | 
		Some demo programs are listed here. Their full source codes can be found in  | 
| 657 | 709 | 
		the \c demo subdirectory of the source tree.  | 
| 658 | 710 | 
		 | 
| 659 | 711 | 
		In order to compile them, use the <tt>make demo</tt> or the  | 
| 660 | 712 | 
		<tt>make check</tt> commands.  | 
| 661 | 713 | 
		*/  | 
| 662 | 714 | 
		 | 
| 663 | 
		/**  | 
|
| 664 | 
		@defgroup tools Standalone Utility Applications  | 
|
| 665 | 
		 | 
|
| 666 | 
		Some utility applications are listed here.  | 
|
| 667 | 
		 | 
|
| 668 | 
		The standard compilation procedure (<tt>./configure;make</tt>) will compile  | 
|
| 669 | 
		them, as well.  | 
|
| 670 | 
		*/  | 
|
| 671 | 
		 | 
|
| 672 | 715 | 
		}  | 
| ... | ... | 
		@@ -54,14 +54,16 @@  | 
| 54 | 54 | 
		endif  | 
| 55 | 55 | 
		 | 
| 56 | 56 | 
		lemon_HEADERS += \  | 
| 57 | 57 | 
		lemon/adaptors.h \  | 
| 58 | 58 | 
		lemon/arg_parser.h \  | 
| 59 | 59 | 
		lemon/assert.h \  | 
| 60 | 
		lemon/bellman_ford.h \  | 
|
| 60 | 61 | 
		lemon/bfs.h \  | 
| 61 | 62 | 
		lemon/bin_heap.h \  | 
| 63 | 
		lemon/binom_heap.h \  | 
|
| 62 | 64 | 
		lemon/bucket_heap.h \  | 
| 63 | 65 | 
		lemon/cbc.h \  | 
| 64 | 66 | 
		lemon/circulation.h \  | 
| 65 | 67 | 
		lemon/clp.h \  | 
| 66 | 68 | 
		lemon/color.h \  | 
| 67 | 69 | 
		lemon/concept_check.h \  | 
| ... | ... | 
		@@ -75,18 +77,20 @@  | 
| 75 | 77 | 
		lemon/dimacs.h \  | 
| 76 | 78 | 
		lemon/edge_set.h \  | 
| 77 | 79 | 
		lemon/elevator.h \  | 
| 78 | 80 | 
		lemon/error.h \  | 
| 79 | 81 | 
		lemon/euler.h \  | 
| 80 | 82 | 
		lemon/fib_heap.h \  | 
| 83 | 
		lemon/fourary_heap.h \  | 
|
| 81 | 84 | 
		lemon/full_graph.h \  | 
| 82 | 85 | 
		lemon/glpk.h \  | 
| 83 | 86 | 
		lemon/gomory_hu.h \  | 
| 84 | 87 | 
		lemon/graph_to_eps.h \  | 
| 85 | 88 | 
		lemon/grid_graph.h \  | 
| 86 | 89 | 
		lemon/hypercube_graph.h \  | 
| 90 | 
		lemon/kary_heap.h \  | 
|
| 87 | 91 | 
		lemon/kruskal.h \  | 
| 88 | 92 | 
		lemon/hao_orlin.h \  | 
| 89 | 93 | 
		lemon/lgf_reader.h \  | 
| 90 | 94 | 
		lemon/lgf_writer.h \  | 
| 91 | 95 | 
		lemon/list_graph.h \  | 
| 92 | 96 | 
		lemon/lp.h \  | 
| ... | ... | 
		@@ -95,12 +99,13 @@  | 
| 95 | 99 | 
		lemon/maps.h \  | 
| 96 | 100 | 
		lemon/matching.h \  | 
| 97 | 101 | 
		lemon/math.h \  | 
| 98 | 102 | 
		lemon/min_cost_arborescence.h \  | 
| 99 | 103 | 
		lemon/nauty_reader.h \  | 
| 100 | 104 | 
		lemon/network_simplex.h \  | 
| 105 | 
		lemon/pairing_heap.h \  | 
|
| 101 | 106 | 
		lemon/path.h \  | 
| 102 | 107 | 
		lemon/preflow.h \  | 
| 103 | 108 | 
		lemon/radix_heap.h \  | 
| 104 | 109 | 
		lemon/radix_sort.h \  | 
| 105 | 110 | 
		lemon/random.h \  | 
| 106 | 111 | 
		lemon/smart_graph.h \  | 
| ... | ... | 
		@@ -44,13 +44,13 @@  | 
| 44 | 44 | 
		 | 
| 45 | 45 | 
		///\brief The type of the map that stores the predecessor  | 
| 46 | 46 | 
		///arcs of the shortest paths.  | 
| 47 | 47 | 
		///  | 
| 48 | 48 | 
		///The type of the map that stores the predecessor  | 
| 49 | 49 | 
		///arcs of the shortest paths.  | 
| 50 | 
		///It must  | 
|
| 50 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 51 | 51 | 
		typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;  | 
| 52 | 52 | 
		///Instantiates a \c PredMap.  | 
| 53 | 53 | 
		 | 
| 54 | 54 | 
		///This function instantiates a \ref PredMap.  | 
| 55 | 55 | 
		///\param g is the digraph, to which we would like to define the  | 
| 56 | 56 | 
		///\ref PredMap.  | 
| ... | ... | 
		@@ -59,13 +59,14 @@  | 
| 59 | 59 | 
		return new PredMap(g);  | 
| 60 | 60 | 
		}  | 
| 61 | 61 | 
		 | 
| 62 | 62 | 
		///The type of the map that indicates which nodes are processed.  | 
| 63 | 63 | 
		 | 
| 64 | 64 | 
		///The type of the map that indicates which nodes are processed.  | 
| 65 | 
		///It must  | 
|
| 65 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 66 | 
		///By default it is a NullMap.  | 
|
| 66 | 67 | 
		typedef NullMap<typename Digraph::Node,bool> ProcessedMap;  | 
| 67 | 68 | 
		///Instantiates a \c ProcessedMap.  | 
| 68 | 69 | 
		 | 
| 69 | 70 | 
		///This function instantiates a \ref ProcessedMap.  | 
| 70 | 71 | 
		///\param g is the digraph, to which  | 
| 71 | 72 | 
		///we would like to define the \ref ProcessedMap  | 
| ... | ... | 
		@@ -78,13 +79,13 @@  | 
| 78 | 79 | 
		return new ProcessedMap();  | 
| 79 | 80 | 
		}  | 
| 80 | 81 | 
		 | 
| 81 | 82 | 
		///The type of the map that indicates which nodes are reached.  | 
| 82 | 83 | 
		 | 
| 83 | 84 | 
		///The type of the map that indicates which nodes are reached.  | 
| 84 | 
		///It must  | 
|
| 85 | 
		///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.  | 
|
| 85 | 86 | 
		typedef typename Digraph::template NodeMap<bool> ReachedMap;  | 
| 86 | 87 | 
		///Instantiates a \c ReachedMap.  | 
| 87 | 88 | 
		 | 
| 88 | 89 | 
		///This function instantiates a \ref ReachedMap.  | 
| 89 | 90 | 
		///\param g is the digraph, to which  | 
| 90 | 91 | 
		///we would like to define the \ref ReachedMap.  | 
| ... | ... | 
		@@ -93,13 +94,13 @@  | 
| 93 | 94 | 
		return new ReachedMap(g);  | 
| 94 | 95 | 
		}  | 
| 95 | 96 | 
		 | 
| 96 | 97 | 
		///The type of the map that stores the distances of the nodes.  | 
| 97 | 98 | 
		 | 
| 98 | 99 | 
		///The type of the map that stores the distances of the nodes.  | 
| 99 | 
		///It must  | 
|
| 100 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 100 | 101 | 
		typedef typename Digraph::template NodeMap<int> DistMap;  | 
| 101 | 102 | 
		///Instantiates a \c DistMap.  | 
| 102 | 103 | 
		 | 
| 103 | 104 | 
		///This function instantiates a \ref DistMap.  | 
| 104 | 105 | 
		///\param g is the digraph, to which we would like to define the  | 
| 105 | 106 | 
		///\ref DistMap.  | 
| ... | ... | 
		@@ -222,13 +223,13 @@  | 
| 222 | 223 | 
		};  | 
| 223 | 224 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
| 224 | 225 | 
		///\c PredMap type.  | 
| 225 | 226 | 
		///  | 
| 226 | 227 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 227 | 228 | 
		///\c PredMap type.  | 
| 228 | 
		///It must  | 
|
| 229 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 229 | 230 | 
		template <class T>  | 
| 230 | 231 | 
		    struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
	 | 
| 231 | 232 | 
		typedef Bfs< Digraph, SetPredMapTraits<T> > Create;  | 
| 232 | 233 | 
		};  | 
| 233 | 234 | 
		 | 
| 234 | 235 | 
		template <class T>  | 
| ... | ... | 
		@@ -242,13 +243,13 @@  | 
| 242 | 243 | 
		};  | 
| 243 | 244 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
| 244 | 245 | 
		///\c DistMap type.  | 
| 245 | 246 | 
		///  | 
| 246 | 247 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 247 | 248 | 
		///\c DistMap type.  | 
| 248 | 
		///It must  | 
|
| 249 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 249 | 250 | 
		template <class T>  | 
| 250 | 251 | 
		    struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
	 | 
| 251 | 252 | 
		typedef Bfs< Digraph, SetDistMapTraits<T> > Create;  | 
| 252 | 253 | 
		};  | 
| 253 | 254 | 
		 | 
| 254 | 255 | 
		template <class T>  | 
| ... | ... | 
		@@ -262,13 +263,13 @@  | 
| 262 | 263 | 
		};  | 
| 263 | 264 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
| 264 | 265 | 
		///\c ReachedMap type.  | 
| 265 | 266 | 
		///  | 
| 266 | 267 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 267 | 268 | 
		///\c ReachedMap type.  | 
| 268 | 
		///It must  | 
|
| 269 | 
		///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.  | 
|
| 269 | 270 | 
		template <class T>  | 
| 270 | 271 | 
		    struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
	 | 
| 271 | 272 | 
		typedef Bfs< Digraph, SetReachedMapTraits<T> > Create;  | 
| 272 | 273 | 
		};  | 
| 273 | 274 | 
		 | 
| 274 | 275 | 
		template <class T>  | 
| ... | ... | 
		@@ -282,13 +283,13 @@  | 
| 282 | 283 | 
		};  | 
| 283 | 284 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
| 284 | 285 | 
		///\c ProcessedMap type.  | 
| 285 | 286 | 
		///  | 
| 286 | 287 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 287 | 288 | 
		///\c ProcessedMap type.  | 
| 288 | 
		///It must  | 
|
| 289 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 289 | 290 | 
		template <class T>  | 
| 290 | 291 | 
		    struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
	 | 
| 291 | 292 | 
		typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create;  | 
| 292 | 293 | 
		};  | 
| 293 | 294 | 
		 | 
| 294 | 295 | 
		    struct SetStandardProcessedMapTraits : public Traits {
	 | 
| ... | ... | 
		@@ -410,14 +411,14 @@  | 
| 410 | 411 | 
		 | 
| 411 | 412 | 
		public:  | 
| 412 | 413 | 
		 | 
| 413 | 414 | 
		///\name Execution Control  | 
| 414 | 415 | 
		///The simplest way to execute the BFS algorithm is to use one of the  | 
| 415 | 416 | 
		///member functions called \ref run(Node) "run()".\n  | 
| 416 | 
		///If you need more control on the execution, first you have to call  | 
|
| 417 | 
		///\ref init(), then you can add several source nodes with  | 
|
| 417 | 
		///If you need better control on the execution, you have to call  | 
|
| 418 | 
		///\ref init() first, then you can add several source nodes with  | 
|
| 418 | 419 | 
		///\ref addSource(). Finally the actual path computation can be  | 
| 419 | 420 | 
		///performed with one of the \ref start() functions.  | 
| 420 | 421 | 
		 | 
| 421 | 422 | 
		    ///@{
	 | 
| 422 | 423 | 
		 | 
| 423 | 424 | 
		///\brief Initializes the internal data structures.  | 
| ... | ... | 
		@@ -734,56 +735,58 @@  | 
| 734 | 735 | 
		///functions.\n  | 
| 735 | 736 | 
		///Either \ref run(Node) "run()" or \ref start() should be called  | 
| 736 | 737 | 
		///before using them.  | 
| 737 | 738 | 
		 | 
| 738 | 739 | 
		    ///@{
	 | 
| 739 | 740 | 
		 | 
| 740 | 
		///The shortest path to  | 
|
| 741 | 
		///The shortest path to the given node.  | 
|
| 741 | 742 | 
		 | 
| 742 | 
		///Returns the shortest path to  | 
|
| 743 | 
		///Returns the shortest path to the given node from the root(s).  | 
|
| 743 | 744 | 
		///  | 
| 744 | 745 | 
		///\warning \c t should be reached from the root(s).  | 
| 745 | 746 | 
		///  | 
| 746 | 747 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 747 | 748 | 
		///must be called before using this function.  | 
| 748 | 749 | 
		    Path path(Node t) const { return Path(*G, *_pred, t); }
	 | 
| 749 | 750 | 
		 | 
| 750 | 
		///The distance of  | 
|
| 751 | 
		///The distance of the given node from the root(s).  | 
|
| 751 | 752 | 
		 | 
| 752 | 
		///Returns the distance of  | 
|
| 753 | 
		///Returns the distance of the given node from the root(s).  | 
|
| 753 | 754 | 
		///  | 
| 754 | 755 | 
		///\warning If node \c v is not reached from the root(s), then  | 
| 755 | 756 | 
		///the return value of this function is undefined.  | 
| 756 | 757 | 
		///  | 
| 757 | 758 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 758 | 759 | 
		///must be called before using this function.  | 
| 759 | 760 | 
		    int dist(Node v) const { return (*_dist)[v]; }
	 | 
| 760 | 761 | 
		 | 
| 761 | 
		///Returns the 'previous arc' of the shortest path tree for a node.  | 
|
| 762 | 
		 | 
|
| 762 | 
		///\brief Returns the 'previous arc' of the shortest path tree for  | 
|
| 763 | 
		///the given node.  | 
|
| 764 | 
		///  | 
|
| 763 | 765 | 
		///This function returns the 'previous arc' of the shortest path  | 
| 764 | 766 | 
		///tree for the node \c v, i.e. it returns the last arc of a  | 
| 765 | 767 | 
		///shortest path from a root to \c v. It is \c INVALID if \c v  | 
| 766 | 768 | 
		///is not reached from the root(s) or if \c v is a root.  | 
| 767 | 769 | 
		///  | 
| 768 | 770 | 
		///The shortest path tree used here is equal to the shortest path  | 
| 769 | 
		///tree used in \ref predNode().  | 
|
| 771 | 
		///tree used in \ref predNode() and \ref predMap().  | 
|
| 770 | 772 | 
		///  | 
| 771 | 773 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 772 | 774 | 
		///must be called before using this function.  | 
| 773 | 775 | 
		    Arc predArc(Node v) const { return (*_pred)[v];}
	 | 
| 774 | 776 | 
		 | 
| 775 | 
		///Returns the 'previous node' of the shortest path tree for a node.  | 
|
| 776 | 
		 | 
|
| 777 | 
		///\brief Returns the 'previous node' of the shortest path tree for  | 
|
| 778 | 
		///the given node.  | 
|
| 779 | 
		///  | 
|
| 777 | 780 | 
		///This function returns the 'previous node' of the shortest path  | 
| 778 | 781 | 
		///tree for the node \c v, i.e. it returns the last but one node  | 
| 779 | 
		///  | 
|
| 782 | 
		///of a shortest path from a root to \c v. It is \c INVALID  | 
|
| 780 | 783 | 
		///if \c v is not reached from the root(s) or if \c v is a root.  | 
| 781 | 784 | 
		///  | 
| 782 | 785 | 
		///The shortest path tree used here is equal to the shortest path  | 
| 783 | 
		///tree used in \ref predArc().  | 
|
| 786 | 
		///tree used in \ref predArc() and \ref predMap().  | 
|
| 784 | 787 | 
		///  | 
| 785 | 788 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 786 | 789 | 
		///must be called before using this function.  | 
| 787 | 790 | 
		    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
	 | 
| 788 | 791 | 
		G->source((*_pred)[v]); }  | 
| 789 | 792 | 
		 | 
| ... | ... | 
		@@ -798,19 +801,19 @@  | 
| 798 | 801 | 
		    const DistMap &distMap() const { return *_dist;}
	 | 
| 799 | 802 | 
		 | 
| 800 | 803 | 
		///\brief Returns a const reference to the node map that stores the  | 
| 801 | 804 | 
		///predecessor arcs.  | 
| 802 | 805 | 
		///  | 
| 803 | 806 | 
		///Returns a const reference to the node map that stores the predecessor  | 
| 804 | 
		///arcs, which form the shortest path tree.  | 
|
| 807 | 
		///arcs, which form the shortest path tree (forest).  | 
|
| 805 | 808 | 
		///  | 
| 806 | 809 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 807 | 810 | 
		///must be called before using this function.  | 
| 808 | 811 | 
		    const PredMap &predMap() const { return *_pred;}
	 | 
| 809 | 812 | 
		 | 
| 810 | 
		///Checks if  | 
|
| 813 | 
		///Checks if the given node is reached from the root(s).  | 
|
| 811 | 814 | 
		 | 
| 812 | 815 | 
		///Returns \c true if \c v is reached from the root(s).  | 
| 813 | 816 | 
		///  | 
| 814 | 817 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 815 | 818 | 
		///must be called before using this function.  | 
| 816 | 819 | 
		    bool reached(Node v) const { return (*_reached)[v]; }
	 | 
| ... | ... | 
		@@ -830,13 +833,13 @@  | 
| 830 | 833 | 
		 | 
| 831 | 834 | 
		///\brief The type of the map that stores the predecessor  | 
| 832 | 835 | 
		///arcs of the shortest paths.  | 
| 833 | 836 | 
		///  | 
| 834 | 837 | 
		///The type of the map that stores the predecessor  | 
| 835 | 838 | 
		///arcs of the shortest paths.  | 
| 836 | 
		///It must  | 
|
| 839 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 837 | 840 | 
		typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;  | 
| 838 | 841 | 
		///Instantiates a PredMap.  | 
| 839 | 842 | 
		 | 
| 840 | 843 | 
		///This function instantiates a PredMap.  | 
| 841 | 844 | 
		///\param g is the digraph, to which we would like to define the  | 
| 842 | 845 | 
		///PredMap.  | 
| ... | ... | 
		@@ -845,13 +848,13 @@  | 
| 845 | 848 | 
		return new PredMap(g);  | 
| 846 | 849 | 
		}  | 
| 847 | 850 | 
		 | 
| 848 | 851 | 
		///The type of the map that indicates which nodes are processed.  | 
| 849 | 852 | 
		 | 
| 850 | 853 | 
		///The type of the map that indicates which nodes are processed.  | 
| 851 | 
		///It must  | 
|
| 854 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 852 | 855 | 
		///By default it is a NullMap.  | 
| 853 | 856 | 
		typedef NullMap<typename Digraph::Node,bool> ProcessedMap;  | 
| 854 | 857 | 
		///Instantiates a ProcessedMap.  | 
| 855 | 858 | 
		 | 
| 856 | 859 | 
		///This function instantiates a ProcessedMap.  | 
| 857 | 860 | 
		///\param g is the digraph, to which  | 
| ... | ... | 
		@@ -865,13 +868,13 @@  | 
| 865 | 868 | 
		return new ProcessedMap();  | 
| 866 | 869 | 
		}  | 
| 867 | 870 | 
		 | 
| 868 | 871 | 
		///The type of the map that indicates which nodes are reached.  | 
| 869 | 872 | 
		 | 
| 870 | 873 | 
		///The type of the map that indicates which nodes are reached.  | 
| 871 | 
		///It must  | 
|
| 874 | 
		///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.  | 
|
| 872 | 875 | 
		typedef typename Digraph::template NodeMap<bool> ReachedMap;  | 
| 873 | 876 | 
		///Instantiates a ReachedMap.  | 
| 874 | 877 | 
		 | 
| 875 | 878 | 
		///This function instantiates a ReachedMap.  | 
| 876 | 879 | 
		///\param g is the digraph, to which  | 
| 877 | 880 | 
		///we would like to define the ReachedMap.  | 
| ... | ... | 
		@@ -880,13 +883,13 @@  | 
| 880 | 883 | 
		return new ReachedMap(g);  | 
| 881 | 884 | 
		}  | 
| 882 | 885 | 
		 | 
| 883 | 886 | 
		///The type of the map that stores the distances of the nodes.  | 
| 884 | 887 | 
		 | 
| 885 | 888 | 
		///The type of the map that stores the distances of the nodes.  | 
| 886 | 
		///It must  | 
|
| 889 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 887 | 890 | 
		typedef typename Digraph::template NodeMap<int> DistMap;  | 
| 888 | 891 | 
		///Instantiates a DistMap.  | 
| 889 | 892 | 
		 | 
| 890 | 893 | 
		///This function instantiates a DistMap.  | 
| 891 | 894 | 
		///\param g is the digraph, to which we would like to define  | 
| 892 | 895 | 
		///the DistMap  | 
| ... | ... | 
		@@ -895,24 +898,20 @@  | 
| 895 | 898 | 
		return new DistMap(g);  | 
| 896 | 899 | 
		}  | 
| 897 | 900 | 
		 | 
| 898 | 901 | 
		///The type of the shortest paths.  | 
| 899 | 902 | 
		 | 
| 900 | 903 | 
		///The type of the shortest paths.  | 
| 901 | 
		///It must  | 
|
| 904 | 
		///It must conform to the \ref concepts::Path "Path" concept.  | 
|
| 902 | 905 | 
		typedef lemon::Path<Digraph> Path;  | 
| 903 | 906 | 
		};  | 
| 904 | 907 | 
		 | 
| 905 | 908 | 
		/// Default traits class used by BfsWizard  | 
| 906 | 909 | 
		 | 
| 907 | 
		/// To make it easier to use Bfs algorithm  | 
|
| 908 | 
		/// we have created a wizard class.  | 
|
| 909 | 
		/// This \ref BfsWizard class needs default traits,  | 
|
| 910 | 
		/// as well as the \ref Bfs class.  | 
|
| 911 | 
		/// The \ref BfsWizardBase is a class to be the default traits of the  | 
|
| 912 | 
		/// \ref BfsWizard class.  | 
|
| 910 | 
		/// Default traits class used by BfsWizard.  | 
|
| 911 | 
		/// \tparam GR The type of the digraph.  | 
|
| 913 | 912 | 
		template<class GR>  | 
| 914 | 913 | 
		class BfsWizardBase : public BfsWizardDefaultTraits<GR>  | 
| 915 | 914 | 
		  {
	 | 
| 916 | 915 | 
		 | 
| 917 | 916 | 
		typedef BfsWizardDefaultTraits<GR> Base;  | 
| 918 | 917 | 
		protected:  | 
| ... | ... | 
		@@ -934,13 +933,13 @@  | 
| 934 | 933 | 
		//Pointer to the distance of the target node.  | 
| 935 | 934 | 
		int *_di;  | 
| 936 | 935 | 
		 | 
| 937 | 936 | 
		public:  | 
| 938 | 937 | 
		/// Constructor.  | 
| 939 | 938 | 
		 | 
| 940 | 
		/// This constructor does not require parameters,  | 
|
| 939 | 
		/// This constructor does not require parameters, it initiates  | 
|
| 941 | 940 | 
		/// all of the attributes to \c 0.  | 
| 942 | 941 | 
		BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),  | 
| 943 | 942 | 
		                      _dist(0), _path(0), _di(0) {}
	 | 
| 944 | 943 | 
		 | 
| 945 | 944 | 
		/// Constructor.  | 
| 946 | 945 | 
		 | 
| ... | ... | 
		@@ -964,30 +963,23 @@  | 
| 964 | 963 | 
		/// which makes it easier to use the algorithm.  | 
| 965 | 964 | 
		template<class TR>  | 
| 966 | 965 | 
		class BfsWizard : public TR  | 
| 967 | 966 | 
		  {
	 | 
| 968 | 967 | 
		typedef TR Base;  | 
| 969 | 968 | 
		 | 
| 970 | 
		///The type of the digraph the algorithm runs on.  | 
|
| 971 | 969 | 
		typedef typename TR::Digraph Digraph;  | 
| 972 | 970 | 
		 | 
| 973 | 971 | 
		typedef typename Digraph::Node Node;  | 
| 974 | 972 | 
		typedef typename Digraph::NodeIt NodeIt;  | 
| 975 | 973 | 
		typedef typename Digraph::Arc Arc;  | 
| 976 | 974 | 
		typedef typename Digraph::OutArcIt OutArcIt;  | 
| 977 | 975 | 
		 | 
| 978 | 
		///\brief The type of the map that stores the predecessor  | 
|
| 979 | 
		///arcs of the shortest paths.  | 
|
| 980 | 976 | 
		typedef typename TR::PredMap PredMap;  | 
| 981 | 
		///\brief The type of the map that stores the distances of the nodes.  | 
|
| 982 | 977 | 
		typedef typename TR::DistMap DistMap;  | 
| 983 | 
		///\brief The type of the map that indicates which nodes are reached.  | 
|
| 984 | 978 | 
		typedef typename TR::ReachedMap ReachedMap;  | 
| 985 | 
		///\brief The type of the map that indicates which nodes are processed.  | 
|
| 986 | 979 | 
		typedef typename TR::ProcessedMap ProcessedMap;  | 
| 987 | 
		///The type of the shortest paths  | 
|
| 988 | 980 | 
		typedef typename TR::Path Path;  | 
| 989 | 981 | 
		 | 
| 990 | 982 | 
		public:  | 
| 991 | 983 | 
		 | 
| 992 | 984 | 
		/// Constructor.  | 
| 993 | 985 | 
		    BfsWizard() : TR() {}
	 | 
| ... | ... | 
		@@ -1064,17 +1056,18 @@  | 
| 1064 | 1056 | 
		template<class T>  | 
| 1065 | 1057 | 
		    struct SetPredMapBase : public Base {
	 | 
| 1066 | 1058 | 
		typedef T PredMap;  | 
| 1067 | 1059 | 
		      static PredMap *createPredMap(const Digraph &) { return 0; };
	 | 
| 1068 | 1060 | 
		      SetPredMapBase(const TR &b) : TR(b) {}
	 | 
| 1069 | 1061 | 
		};  | 
| 1070 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1071 | 
		///for setting PredMap object.  | 
|
| 1062 | 
		 | 
|
| 1063 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
|
| 1064 | 
		///the predecessor map.  | 
|
| 1072 | 1065 | 
		///  | 
| 1073 | 
		///\ref named-func-param "Named parameter"  | 
|
| 1074 | 
		///for setting PredMap object.  | 
|
| 1066 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 1067 | 
		///the map that stores the predecessor arcs of the nodes.  | 
|
| 1075 | 1068 | 
		template<class T>  | 
| 1076 | 1069 | 
		BfsWizard<SetPredMapBase<T> > predMap(const T &t)  | 
| 1077 | 1070 | 
		    {
	 | 
| 1078 | 1071 | 
		Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
| 1079 | 1072 | 
		return BfsWizard<SetPredMapBase<T> >(*this);  | 
| 1080 | 1073 | 
		}  | 
| ... | ... | 
		@@ -1082,17 +1075,18 @@  | 
| 1082 | 1075 | 
		template<class T>  | 
| 1083 | 1076 | 
		    struct SetReachedMapBase : public Base {
	 | 
| 1084 | 1077 | 
		typedef T ReachedMap;  | 
| 1085 | 1078 | 
		      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
	 | 
| 1086 | 1079 | 
		      SetReachedMapBase(const TR &b) : TR(b) {}
	 | 
| 1087 | 1080 | 
		};  | 
| 1088 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1089 | 
		///for setting ReachedMap object.  | 
|
| 1081 | 
		 | 
|
| 1082 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
|
| 1083 | 
		///the reached map.  | 
|
| 1090 | 1084 | 
		///  | 
| 1091 | 
		/// \ref named-func-param "Named parameter"  | 
|
| 1092 | 
		///for setting ReachedMap object.  | 
|
| 1085 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 1086 | 
		///the map that indicates which nodes are reached.  | 
|
| 1093 | 1087 | 
		template<class T>  | 
| 1094 | 1088 | 
		BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)  | 
| 1095 | 1089 | 
		    {
	 | 
| 1096 | 1090 | 
		Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
| 1097 | 1091 | 
		return BfsWizard<SetReachedMapBase<T> >(*this);  | 
| 1098 | 1092 | 
		}  | 
| ... | ... | 
		@@ -1100,17 +1094,19 @@  | 
| 1100 | 1094 | 
		template<class T>  | 
| 1101 | 1095 | 
		    struct SetDistMapBase : public Base {
	 | 
| 1102 | 1096 | 
		typedef T DistMap;  | 
| 1103 | 1097 | 
		      static DistMap *createDistMap(const Digraph &) { return 0; };
	 | 
| 1104 | 1098 | 
		      SetDistMapBase(const TR &b) : TR(b) {}
	 | 
| 1105 | 1099 | 
		};  | 
| 1106 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1107 | 
		///for setting DistMap object.  | 
|
| 1100 | 
		 | 
|
| 1101 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
|
| 1102 | 
		///the distance map.  | 
|
| 1108 | 1103 | 
		///  | 
| 1109 | 
		/// \ref named-func-param "Named parameter"  | 
|
| 1110 | 
		///for setting DistMap object.  | 
|
| 1104 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 1105 | 
		///the map that stores the distances of the nodes calculated  | 
|
| 1106 | 
		///by the algorithm.  | 
|
| 1111 | 1107 | 
		template<class T>  | 
| 1112 | 1108 | 
		BfsWizard<SetDistMapBase<T> > distMap(const T &t)  | 
| 1113 | 1109 | 
		    {
	 | 
| 1114 | 1110 | 
		Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
| 1115 | 1111 | 
		return BfsWizard<SetDistMapBase<T> >(*this);  | 
| 1116 | 1112 | 
		}  | 
| ... | ... | 
		@@ -1118,17 +1114,18 @@  | 
| 1118 | 1114 | 
		template<class T>  | 
| 1119 | 1115 | 
		    struct SetProcessedMapBase : public Base {
	 | 
| 1120 | 1116 | 
		typedef T ProcessedMap;  | 
| 1121 | 1117 | 
		      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
	 | 
| 1122 | 1118 | 
		      SetProcessedMapBase(const TR &b) : TR(b) {}
	 | 
| 1123 | 1119 | 
		};  | 
| 1124 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1125 | 
		///for setting ProcessedMap object.  | 
|
| 1120 | 
		 | 
|
| 1121 | 
		///\brief \ref named-func-param "Named parameter" for setting  | 
|
| 1122 | 
		///the processed map.  | 
|
| 1126 | 1123 | 
		///  | 
| 1127 | 
		/// \ref named-func-param "Named parameter"  | 
|
| 1128 | 
		///for setting ProcessedMap object.  | 
|
| 1124 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 1125 | 
		///the map that indicates which nodes are processed.  | 
|
| 1129 | 1126 | 
		template<class T>  | 
| 1130 | 1127 | 
		BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)  | 
| 1131 | 1128 | 
		    {
	 | 
| 1132 | 1129 | 
		Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
| 1133 | 1130 | 
		return BfsWizard<SetProcessedMapBase<T> >(*this);  | 
| 1134 | 1131 | 
		}  | 
| ... | ... | 
		@@ -1261,13 +1258,13 @@  | 
| 1261 | 1258 | 
		/// \brief The type of the digraph the algorithm runs on.  | 
| 1262 | 1259 | 
		typedef GR Digraph;  | 
| 1263 | 1260 | 
		 | 
| 1264 | 1261 | 
		/// \brief The type of the map that indicates which nodes are reached.  | 
| 1265 | 1262 | 
		///  | 
| 1266 | 1263 | 
		/// The type of the map that indicates which nodes are reached.  | 
| 1267 | 
		/// It must  | 
|
| 1264 | 
		/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.  | 
|
| 1268 | 1265 | 
		typedef typename Digraph::template NodeMap<bool> ReachedMap;  | 
| 1269 | 1266 | 
		 | 
| 1270 | 1267 | 
		/// \brief Instantiates a ReachedMap.  | 
| 1271 | 1268 | 
		///  | 
| 1272 | 1269 | 
		/// This function instantiates a ReachedMap.  | 
| 1273 | 1270 | 
		/// \param digraph is the digraph, to which  | 
| ... | ... | 
		@@ -1422,14 +1419,14 @@  | 
| 1422 | 1419 | 
		 | 
| 1423 | 1420 | 
		public:  | 
| 1424 | 1421 | 
		 | 
| 1425 | 1422 | 
		/// \name Execution Control  | 
| 1426 | 1423 | 
		/// The simplest way to execute the BFS algorithm is to use one of the  | 
| 1427 | 1424 | 
		/// member functions called \ref run(Node) "run()".\n  | 
| 1428 | 
		/// If you need more control on the execution, first you have to call  | 
|
| 1429 | 
		/// \ref init(), then you can add several source nodes with  | 
|
| 1425 | 
		/// If you need better control on the execution, you have to call  | 
|
| 1426 | 
		/// \ref init() first, then you can add several source nodes with  | 
|
| 1430 | 1427 | 
		/// \ref addSource(). Finally the actual path computation can be  | 
| 1431 | 1428 | 
		/// performed with one of the \ref start() functions.  | 
| 1432 | 1429 | 
		 | 
| 1433 | 1430 | 
		    /// @{
	 | 
| 1434 | 1431 | 
		 | 
| 1435 | 1432 | 
		/// \brief Initializes the internal data structures.  | 
| ... | ... | 
		@@ -1732,13 +1729,13 @@  | 
| 1732 | 1729 | 
		/// functions.\n  | 
| 1733 | 1730 | 
		/// Either \ref run(Node) "run()" or \ref start() should be called  | 
| 1734 | 1731 | 
		/// before using them.  | 
| 1735 | 1732 | 
		 | 
| 1736 | 1733 | 
		    ///@{
	 | 
| 1737 | 1734 | 
		 | 
| 1738 | 
		/// \brief Checks if  | 
|
| 1735 | 
		/// \brief Checks if the given node is reached from the root(s).  | 
|
| 1739 | 1736 | 
		///  | 
| 1740 | 1737 | 
		/// Returns \c true if \c v is reached from the root(s).  | 
| 1741 | 1738 | 
		///  | 
| 1742 | 1739 | 
		/// \pre Either \ref run(Node) "run()" or \ref init()  | 
| 1743 | 1740 | 
		/// must be called before using this function.  | 
| 1744 | 1741 | 
		    bool reached(Node v) const { return (*_reached)[v]; }
	 | 
| ... | ... | 
		@@ -16,61 +16,57 @@  | 
| 16 | 16 | 
		*  | 
| 17 | 17 | 
		*/  | 
| 18 | 18 | 
		 | 
| 19 | 19 | 
		#ifndef LEMON_BIN_HEAP_H  | 
| 20 | 20 | 
		#define LEMON_BIN_HEAP_H  | 
| 21 | 21 | 
		 | 
| 22 | 
		///\ingroup  | 
|
| 22 | 
		///\ingroup heaps  | 
|
| 23 | 23 | 
		///\file  | 
| 24 | 
		///\brief Binary  | 
|
| 24 | 
		///\brief Binary heap implementation.  | 
|
| 25 | 25 | 
		 | 
| 26 | 26 | 
		#include <vector>  | 
| 27 | 27 | 
		#include <utility>  | 
| 28 | 28 | 
		#include <functional>  | 
| 29 | 29 | 
		 | 
| 30 | 30 | 
		namespace lemon {
	 | 
| 31 | 31 | 
		 | 
| 32 | 
		///\ingroup  | 
|
| 32 | 
		/// \ingroup heaps  | 
|
| 33 | 33 | 
		///  | 
| 34 | 
		///\brief  | 
|
| 34 | 
		/// \brief Binary heap data structure.  | 
|
| 35 | 35 | 
		///  | 
| 36 | 
		///This class implements the \e binary \e heap data structure.  | 
|
| 36 | 
		/// This class implements the \e binary \e heap data structure.  | 
|
| 37 | 
		/// It fully conforms to the \ref concepts::Heap "heap concept".  | 
|
| 37 | 38 | 
		///  | 
| 38 | 
		///A \e heap is a data structure for storing items with specified values  | 
|
| 39 | 
		///called \e priorities in such a way that finding the item with minimum  | 
|
| 40 | 
		///priority is efficient. \c CMP specifies the ordering of the priorities.  | 
|
| 41 | 
		///In a heap one can change the priority of an item, add or erase an  | 
|
| 42 | 
		///item, etc.  | 
|
| 43 | 
		///  | 
|
| 44 | 
		///\tparam PR Type of the priority of the items.  | 
|
| 45 | 
		///\tparam IM A read and writable item map with int values, used internally  | 
|
| 46 | 
		///to handle the cross references.  | 
|
| 47 | 
		///\tparam CMP A functor class for the ordering of the priorities.  | 
|
| 48 | 
		///The default is \c std::less<PR>.  | 
|
| 49 | 
		///  | 
|
| 50 | 
		///\sa FibHeap  | 
|
| 51 | 
		///\sa Dijkstra  | 
|
| 39 | 
		/// \tparam PR Type of the priorities of the items.  | 
|
| 40 | 
		/// \tparam IM A read-writable item map with \c int values, used  | 
|
| 41 | 
		/// internally to handle the cross references.  | 
|
| 42 | 
		/// \tparam CMP A functor class for comparing the priorities.  | 
|
| 43 | 
		/// The default is \c std::less<PR>.  | 
|
| 44 | 
		#ifdef DOXYGEN  | 
|
| 45 | 
		template <typename PR, typename IM, typename CMP>  | 
|
| 46 | 
		#else  | 
|
| 52 | 47 | 
		template <typename PR, typename IM, typename CMP = std::less<PR> >  | 
| 48 | 
		#endif  | 
|
| 53 | 49 | 
		  class BinHeap {
	 | 
| 50 | 
		public:  | 
|
| 54 | 51 | 
		 | 
| 55 | 
		public:  | 
|
| 56 | 
		///\e  | 
|
| 52 | 
		/// Type of the item-int map.  | 
|
| 57 | 53 | 
		typedef IM ItemIntMap;  | 
| 58 | 
		///  | 
|
| 54 | 
		/// Type of the priorities.  | 
|
| 59 | 55 | 
		typedef PR Prio;  | 
| 60 | 
		///  | 
|
| 56 | 
		/// Type of the items stored in the heap.  | 
|
| 61 | 57 | 
		typedef typename ItemIntMap::Key Item;  | 
| 62 | 
		///  | 
|
| 58 | 
		/// Type of the item-priority pairs.  | 
|
| 63 | 59 | 
		typedef std::pair<Item,Prio> Pair;  | 
| 64 | 
		///  | 
|
| 60 | 
		/// Functor type for comparing the priorities.  | 
|
| 65 | 61 | 
		typedef CMP Compare;  | 
| 66 | 62 | 
		 | 
| 67 | 
		/// \brief Type to represent the  | 
|
| 63 | 
		/// \brief Type to represent the states of the items.  | 
|
| 68 | 64 | 
		///  | 
| 69 | 
		/// Each Item element have a state associated to it. It may be "in heap",  | 
|
| 70 | 
		/// "pre heap" or "post heap". The latter two are indifferent from the  | 
|
| 65 | 
		/// Each item has a state associated to it. It can be "in heap",  | 
|
| 66 | 
		/// "pre-heap" or "post-heap". The latter two are indifferent from the  | 
|
| 71 | 67 | 
		/// heap's point of view, but may be useful to the user.  | 
| 72 | 68 | 
		///  | 
| 73 | 69 | 
		/// The item-int map must be initialized in such way that it assigns  | 
| 74 | 70 | 
		/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.  | 
| 75 | 71 | 
		    enum State {
	 | 
| 76 | 72 | 
		IN_HEAP = 0, ///< = 0.  | 
| ... | ... | 
		@@ -81,82 +77,83 @@  | 
| 81 | 77 | 
		private:  | 
| 82 | 78 | 
		std::vector<Pair> _data;  | 
| 83 | 79 | 
		Compare _comp;  | 
| 84 | 80 | 
		ItemIntMap &_iim;  | 
| 85 | 81 | 
		 | 
| 86 | 82 | 
		public:  | 
| 87 | 
		
  | 
|
| 83 | 
		 | 
|
| 84 | 
		/// \brief Constructor.  | 
|
| 88 | 85 | 
		///  | 
| 89 | 
		/// The constructor.  | 
|
| 90 | 
		/// \param map should be given to the constructor, since it is used  | 
|
| 91 | 
		/// internally to handle the cross references. The value of the map  | 
|
| 92 | 
		/// must be \c PRE_HEAP (<tt>-1</tt>) for every item.  | 
|
| 86 | 
		/// Constructor.  | 
|
| 87 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 88 | 
		/// It is used internally to handle the cross references.  | 
|
| 89 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 93 | 90 | 
		    explicit BinHeap(ItemIntMap &map) : _iim(map) {}
	 | 
| 94 | 91 | 
		 | 
| 95 | 
		/// \brief  | 
|
| 92 | 
		/// \brief Constructor.  | 
|
| 96 | 93 | 
		///  | 
| 97 | 
		/// The constructor.  | 
|
| 98 | 
		/// \param map should be given to the constructor, since it is used  | 
|
| 99 | 
		/// internally to handle the cross references. The value of the map  | 
|
| 100 | 
		/// should be PRE_HEAP (-1) for each element.  | 
|
| 101 | 
		///  | 
|
| 102 | 
		/// \param comp The comparator function object.  | 
|
| 94 | 
		/// Constructor.  | 
|
| 95 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 96 | 
		/// It is used internally to handle the cross references.  | 
|
| 97 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 98 | 
		/// \param comp The function object used for comparing the priorities.  | 
|
| 103 | 99 | 
		BinHeap(ItemIntMap &map, const Compare &comp)  | 
| 104 | 100 | 
		      : _iim(map), _comp(comp) {}
	 | 
| 105 | 101 | 
		 | 
| 106 | 102 | 
		 | 
| 107 | 
		/// The number of items stored in the heap.  | 
|
| 103 | 
		/// \brief The number of items stored in the heap.  | 
|
| 108 | 104 | 
		///  | 
| 109 | 
		///  | 
|
| 105 | 
		/// This function returns the number of items stored in the heap.  | 
|
| 110 | 106 | 
		    int size() const { return _data.size(); }
	 | 
| 111 | 107 | 
		 | 
| 112 | 
		/// \brief  | 
|
| 108 | 
		/// \brief Check if the heap is empty.  | 
|
| 113 | 109 | 
		///  | 
| 114 | 
		///  | 
|
| 110 | 
		/// This function returns \c true if the heap is empty.  | 
|
| 115 | 111 | 
		    bool empty() const { return _data.empty(); }
	 | 
| 116 | 112 | 
		 | 
| 117 | 
		/// \brief Make  | 
|
| 113 | 
		/// \brief Make the heap empty.  | 
|
| 118 | 114 | 
		///  | 
| 119 | 
		/// Make empty this heap. It does not change the cross reference map.  | 
|
| 120 | 
		/// If you want to reuse what is not surely empty you should first clear  | 
|
| 121 | 
		/// the heap and after that you should set the cross reference map for  | 
|
| 122 | 
		/// each item to \c PRE_HEAP.  | 
|
| 115 | 
		/// This functon makes the heap empty.  | 
|
| 116 | 
		/// It does not change the cross reference map. If you want to reuse  | 
|
| 117 | 
		/// a heap that is not surely empty, you should first clear it and  | 
|
| 118 | 
		/// then you should set the cross reference map to \c PRE_HEAP  | 
|
| 119 | 
		/// for each item.  | 
|
| 123 | 120 | 
		    void clear() {
	 | 
| 124 | 121 | 
		_data.clear();  | 
| 125 | 122 | 
		}  | 
| 126 | 123 | 
		 | 
| 127 | 124 | 
		private:  | 
| 128 | 125 | 
		    static int parent(int i) { return (i-1)/2; }
	 | 
| 129 | 126 | 
		 | 
| 130 | 
		static int  | 
|
| 127 | 
		    static int secondChild(int i) { return 2*i+2; }
	 | 
|
| 131 | 128 | 
		    bool less(const Pair &p1, const Pair &p2) const {
	 | 
| 132 | 129 | 
		return _comp(p1.second, p2.second);  | 
| 133 | 130 | 
		}  | 
| 134 | 131 | 
		 | 
| 135 | 
		int  | 
|
| 132 | 
		    int bubbleUp(int hole, Pair p) {
	 | 
|
| 136 | 133 | 
		int par = parent(hole);  | 
| 137 | 134 | 
		      while( hole>0 && less(p,_data[par]) ) {
	 | 
| 138 | 135 | 
		move(_data[par],hole);  | 
| 139 | 136 | 
		hole = par;  | 
| 140 | 137 | 
		par = parent(hole);  | 
| 141 | 138 | 
		}  | 
| 142 | 139 | 
		move(p, hole);  | 
| 143 | 140 | 
		return hole;  | 
| 144 | 141 | 
		}  | 
| 145 | 142 | 
		 | 
| 146 | 
		    int bubble_down(int hole, Pair p, int length) {
	 | 
|
| 147 | 
		int child = second_child(hole);  | 
|
| 143 | 
		    int bubbleDown(int hole, Pair p, int length) {
	 | 
|
| 144 | 
		int child = secondChild(hole);  | 
|
| 148 | 145 | 
		      while(child < length) {
	 | 
| 149 | 146 | 
		        if( less(_data[child-1], _data[child]) ) {
	 | 
| 150 | 147 | 
		--child;  | 
| 151 | 148 | 
		}  | 
| 152 | 149 | 
		if( !less(_data[child], p) )  | 
| 153 | 150 | 
		goto ok;  | 
| 154 | 151 | 
		move(_data[child], hole);  | 
| 155 | 152 | 
		hole = child;  | 
| 156 | 
		child =  | 
|
| 153 | 
		child = secondChild(hole);  | 
|
| 157 | 154 | 
		}  | 
| 158 | 155 | 
		child--;  | 
| 159 | 156 | 
		      if( child<length && less(_data[child], p) ) {
	 | 
| 160 | 157 | 
		move(_data[child], hole);  | 
| 161 | 158 | 
		hole=child;  | 
| 162 | 159 | 
		}  | 
| ... | ... | 
		@@ -168,152 +165,154 @@  | 
| 168 | 165 | 
		    void move(const Pair &p, int i) {
	 | 
| 169 | 166 | 
		_data[i] = p;  | 
| 170 | 167 | 
		_iim.set(p.first, i);  | 
| 171 | 168 | 
		}  | 
| 172 | 169 | 
		 | 
| 173 | 170 | 
		public:  | 
| 171 | 
		 | 
|
| 174 | 172 | 
		/// \brief Insert a pair of item and priority into the heap.  | 
| 175 | 173 | 
		///  | 
| 176 | 
		///  | 
|
| 174 | 
		/// This function inserts \c p.first to the heap with priority  | 
|
| 175 | 
		/// \c p.second.  | 
|
| 177 | 176 | 
		/// \param p The pair to insert.  | 
| 177 | 
		/// \pre \c p.first must not be stored in the heap.  | 
|
| 178 | 178 | 
		    void push(const Pair &p) {
	 | 
| 179 | 179 | 
		int n = _data.size();  | 
| 180 | 180 | 
		_data.resize(n+1);  | 
| 181 | 
		
  | 
|
| 181 | 
		bubbleUp(n, p);  | 
|
| 182 | 182 | 
		}  | 
| 183 | 183 | 
		 | 
| 184 | 
		/// \brief Insert an item into the heap with the given  | 
|
| 184 | 
		/// \brief Insert an item into the heap with the given priority.  | 
|
| 185 | 185 | 
		///  | 
| 186 | 
		///  | 
|
| 186 | 
		/// This function inserts the given item into the heap with the  | 
|
| 187 | 
		/// given priority.  | 
|
| 187 | 188 | 
		/// \param i The item to insert.  | 
| 188 | 189 | 
		/// \param p The priority of the item.  | 
| 190 | 
		/// \pre \e i must not be stored in the heap.  | 
|
| 189 | 191 | 
		    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
	 | 
| 190 | 192 | 
		 | 
| 191 | 
		/// \brief  | 
|
| 193 | 
		/// \brief Return the item having minimum priority.  | 
|
| 192 | 194 | 
		///  | 
| 193 | 
		/// This method returns the item with minimum priority relative to \c  | 
|
| 194 | 
		/// Compare.  | 
|
| 195 | 
		///  | 
|
| 195 | 
		/// This function returns the item having minimum priority.  | 
|
| 196 | 
		/// \pre The heap must be non-empty.  | 
|
| 196 | 197 | 
		    Item top() const {
	 | 
| 197 | 198 | 
		return _data[0].first;  | 
| 198 | 199 | 
		}  | 
| 199 | 200 | 
		 | 
| 200 | 
		/// \brief  | 
|
| 201 | 
		/// \brief The minimum priority.  | 
|
| 201 | 202 | 
		///  | 
| 202 | 
		/// It returns the minimum priority relative to \c Compare.  | 
|
| 203 | 
		/// \pre The heap must be nonempty.  | 
|
| 203 | 
		/// This function returns the minimum priority.  | 
|
| 204 | 
		/// \pre The heap must be non-empty.  | 
|
| 204 | 205 | 
		    Prio prio() const {
	 | 
| 205 | 206 | 
		return _data[0].second;  | 
| 206 | 207 | 
		}  | 
| 207 | 208 | 
		 | 
| 208 | 
		/// \brief  | 
|
| 209 | 
		/// \brief Remove the item having minimum priority.  | 
|
| 209 | 210 | 
		///  | 
| 210 | 
		/// This method deletes the item with minimum priority relative to \c  | 
|
| 211 | 
		/// Compare from the heap.  | 
|
| 211 | 
		/// This function removes the item having minimum priority.  | 
|
| 212 | 212 | 
		/// \pre The heap must be non-empty.  | 
| 213 | 213 | 
		    void pop() {
	 | 
| 214 | 214 | 
		int n = _data.size()-1;  | 
| 215 | 215 | 
		_iim.set(_data[0].first, POST_HEAP);  | 
| 216 | 216 | 
		      if (n > 0) {
	 | 
| 217 | 
		
  | 
|
| 217 | 
		bubbleDown(0, _data[n], n);  | 
|
| 218 | 218 | 
		}  | 
| 219 | 219 | 
		_data.pop_back();  | 
| 220 | 220 | 
		}  | 
| 221 | 221 | 
		 | 
| 222 | 
		/// \brief  | 
|
| 222 | 
		/// \brief Remove the given item from the heap.  | 
|
| 223 | 223 | 
		///  | 
| 224 | 
		/// This method deletes item \c i from the heap.  | 
|
| 225 | 
		/// \param i The item to erase.  | 
|
| 226 | 
		///  | 
|
| 224 | 
		/// This function removes the given item from the heap if it is  | 
|
| 225 | 
		/// already stored.  | 
|
| 226 | 
		/// \param i The item to delete.  | 
|
| 227 | 
		/// \pre \e i must be in the heap.  | 
|
| 227 | 228 | 
		    void erase(const Item &i) {
	 | 
| 228 | 229 | 
		int h = _iim[i];  | 
| 229 | 230 | 
		int n = _data.size()-1;  | 
| 230 | 231 | 
		_iim.set(_data[h].first, POST_HEAP);  | 
| 231 | 232 | 
		      if( h < n ) {
	 | 
| 232 | 
		        if ( bubble_up(h, _data[n]) == h) {
	 | 
|
| 233 | 
		bubble_down(h, _data[n], n);  | 
|
| 233 | 
		        if ( bubbleUp(h, _data[n]) == h) {
	 | 
|
| 234 | 
		bubbleDown(h, _data[n], n);  | 
|
| 234 | 235 | 
		}  | 
| 235 | 236 | 
		}  | 
| 236 | 237 | 
		_data.pop_back();  | 
| 237 | 238 | 
		}  | 
| 238 | 239 | 
		 | 
| 239 | 
		 | 
|
| 240 | 
		/// \brief Returns the priority of \c i.  | 
|
| 240 | 
		/// \brief The priority of the given item.  | 
|
| 241 | 241 | 
		///  | 
| 242 | 
		/// This function returns the priority of  | 
|
| 242 | 
		/// This function returns the priority of the given item.  | 
|
| 243 | 243 | 
		/// \param i The item.  | 
| 244 | 
		/// \pre \  | 
|
| 244 | 
		/// \pre \e i must be in the heap.  | 
|
| 245 | 245 | 
		    Prio operator[](const Item &i) const {
	 | 
| 246 | 246 | 
		int idx = _iim[i];  | 
| 247 | 247 | 
		return _data[idx].second;  | 
| 248 | 248 | 
		}  | 
| 249 | 249 | 
		 | 
| 250 | 
		/// \brief \c i gets to the heap with priority \c p independently  | 
|
| 251 | 
		/// if \c i was already there.  | 
|
| 250 | 
		/// \brief Set the priority of an item or insert it, if it is  | 
|
| 251 | 
		/// not stored in the heap.  | 
|
| 252 | 252 | 
		///  | 
| 253 | 
		/// This method calls \ref push(\c i, \c p) if \c i is not stored  | 
|
| 254 | 
		/// in the heap and sets the priority of \c i to \c p otherwise.  | 
|
| 253 | 
		/// This method sets the priority of the given item if it is  | 
|
| 254 | 
		/// already stored in the heap. Otherwise it inserts the given  | 
|
| 255 | 
		/// item into the heap with the given priority.  | 
|
| 255 | 256 | 
		/// \param i The item.  | 
| 256 | 257 | 
		/// \param p The priority.  | 
| 257 | 258 | 
		    void set(const Item &i, const Prio &p) {
	 | 
| 258 | 259 | 
		int idx = _iim[i];  | 
| 259 | 260 | 
		      if( idx < 0 ) {
	 | 
| 260 | 261 | 
		push(i,p);  | 
| 261 | 262 | 
		}  | 
| 262 | 263 | 
		      else if( _comp(p, _data[idx].second) ) {
	 | 
| 263 | 
		
  | 
|
| 264 | 
		bubbleUp(idx, Pair(i,p));  | 
|
| 264 | 265 | 
		}  | 
| 265 | 266 | 
		      else {
	 | 
| 266 | 
		
  | 
|
| 267 | 
		bubbleDown(idx, Pair(i,p), _data.size());  | 
|
| 267 | 268 | 
		}  | 
| 268 | 269 | 
		}  | 
| 269 | 270 | 
		 | 
| 270 | 
		/// \brief  | 
|
| 271 | 
		/// \brief Decrease the priority of an item to the given value.  | 
|
| 271 | 272 | 
		///  | 
| 272 | 
		/// This  | 
|
| 273 | 
		/// This function decreases the priority of an item to the given value.  | 
|
| 273 | 274 | 
		/// \param i The item.  | 
| 274 | 275 | 
		/// \param p The priority.  | 
| 275 | 
		/// \pre \c i must be stored in the heap with priority at least \c  | 
|
| 276 | 
		/// p relative to \c Compare.  | 
|
| 276 | 
		/// \pre \e i must be stored in the heap with priority at least \e p.  | 
|
| 277 | 277 | 
		    void decrease(const Item &i, const Prio &p) {
	 | 
| 278 | 278 | 
		int idx = _iim[i];  | 
| 279 | 
		
  | 
|
| 279 | 
		bubbleUp(idx, Pair(i,p));  | 
|
| 280 | 280 | 
		}  | 
| 281 | 281 | 
		 | 
| 282 | 
		/// \brief  | 
|
| 282 | 
		/// \brief Increase the priority of an item to the given value.  | 
|
| 283 | 283 | 
		///  | 
| 284 | 
		/// This  | 
|
| 284 | 
		/// This function increases the priority of an item to the given value.  | 
|
| 285 | 285 | 
		/// \param i The item.  | 
| 286 | 286 | 
		/// \param p The priority.  | 
| 287 | 
		/// \pre \c i must be stored in the heap with priority at most \c  | 
|
| 288 | 
		/// p relative to \c Compare.  | 
|
| 287 | 
		/// \pre \e i must be stored in the heap with priority at most \e p.  | 
|
| 289 | 288 | 
		    void increase(const Item &i, const Prio &p) {
	 | 
| 290 | 289 | 
		int idx = _iim[i];  | 
| 291 | 
		
  | 
|
| 290 | 
		bubbleDown(idx, Pair(i,p), _data.size());  | 
|
| 292 | 291 | 
		}  | 
| 293 | 292 | 
		 | 
| 294 | 
		/// \brief Returns if \c item is in, has already been in, or has  | 
|
| 295 | 
		/// never been in the heap.  | 
|
| 293 | 
		/// \brief Return the state of an item.  | 
|
| 296 | 294 | 
		///  | 
| 297 | 
		/// This method returns PRE_HEAP if \c item has never been in the  | 
|
| 298 | 
		/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP  | 
|
| 299 | 
		/// otherwise. In the latter case it is possible that \c item will  | 
|
| 300 | 
		/// get back to the heap again.  | 
|
| 295 | 
		/// This method returns \c PRE_HEAP if the given item has never  | 
|
| 296 | 
		/// been in the heap, \c IN_HEAP if it is in the heap at the moment,  | 
|
| 297 | 
		/// and \c POST_HEAP otherwise.  | 
|
| 298 | 
		/// In the latter case it is possible that the item will get back  | 
|
| 299 | 
		/// to the heap again.  | 
|
| 301 | 300 | 
		/// \param i The item.  | 
| 302 | 301 | 
		    State state(const Item &i) const {
	 | 
| 303 | 302 | 
		int s = _iim[i];  | 
| 304 | 303 | 
		if( s>=0 )  | 
| 305 | 304 | 
		s=0;  | 
| 306 | 305 | 
		return State(s);  | 
| 307 | 306 | 
		}  | 
| 308 | 307 | 
		 | 
| 309 | 
		/// \brief  | 
|
| 308 | 
		/// \brief Set the state of an item in the heap.  | 
|
| 310 | 309 | 
		///  | 
| 311 | 
		/// Sets the state of the \c item in the heap. It can be used to  | 
|
| 312 | 
		/// manually clear the heap when it is important to achive the  | 
|
| 313 | 
		///  | 
|
| 310 | 
		/// This function sets the state of the given item in the heap.  | 
|
| 311 | 
		/// It can be used to manually clear the heap when it is important  | 
|
| 312 | 
		/// to achive better time complexity.  | 
|
| 314 | 313 | 
		/// \param i The item.  | 
| 315 | 314 | 
		/// \param st The state. It should not be \c IN_HEAP.  | 
| 316 | 315 | 
		    void state(const Item& i, State st) {
	 | 
| 317 | 316 | 
		      switch (st) {
	 | 
| 318 | 317 | 
		case POST_HEAP:  | 
| 319 | 318 | 
		case PRE_HEAP:  | 
| ... | ... | 
		@@ -324,18 +323,19 @@  | 
| 324 | 323 | 
		break;  | 
| 325 | 324 | 
		case IN_HEAP:  | 
| 326 | 325 | 
		break;  | 
| 327 | 326 | 
		}  | 
| 328 | 327 | 
		}  | 
| 329 | 328 | 
		 | 
| 330 | 
		/// \brief  | 
|
| 329 | 
		/// \brief Replace an item in the heap.  | 
|
| 331 | 330 | 
		///  | 
| 332 | 
		/// The \c i item is replaced with \c j item. The \c i item should  | 
|
| 333 | 
		/// be in the heap, while the \c j should be out of the heap. The  | 
|
| 334 | 
		/// \c i item will out of the heap and \c j will be in the heap  | 
|
| 335 | 
		/// with the same prioriority as prevoiusly the \c i item.  | 
|
| 331 | 
		/// This function replaces item \c i with item \c j.  | 
|
| 332 | 
		/// Item \c i must be in the heap, while \c j must be out of the heap.  | 
|
| 333 | 
		/// After calling this method, item \c i will be out of the  | 
|
| 334 | 
		/// heap and \c j will be in the heap with the same prioriority  | 
|
| 335 | 
		/// as item \c i had before.  | 
|
| 336 | 336 | 
		    void replace(const Item& i, const Item& j) {
	 | 
| 337 | 337 | 
		int idx = _iim[i];  | 
| 338 | 338 | 
		_iim.set(i, _iim[j]);  | 
| 339 | 339 | 
		_iim.set(j, idx);  | 
| 340 | 340 | 
		_data[idx].first = j;  | 
| 341 | 341 | 
		}  | 
| ... | ... | 
		@@ -46,12 +46,14 @@  | 
| 46 | 46 | 
		 | 
| 47 | 47 | 
		typedef typename Parent::Key Key;  | 
| 48 | 48 | 
		typedef typename Parent::Value Value;  | 
| 49 | 49 | 
		typedef typename Parent::Reference Reference;  | 
| 50 | 50 | 
		typedef typename Parent::ConstReference ConstReference;  | 
| 51 | 51 | 
		 | 
| 52 | 
		typedef typename Parent::ReferenceMapTag ReferenceMapTag;  | 
|
| 53 | 
		 | 
|
| 52 | 54 | 
		class MapIt;  | 
| 53 | 55 | 
		class ConstMapIt;  | 
| 54 | 56 | 
		 | 
| 55 | 57 | 
		friend class MapIt;  | 
| 56 | 58 | 
		friend class ConstMapIt;  | 
| 57 | 59 | 
		 | 
| ... | ... | 
		@@ -188,12 +190,14 @@  | 
| 188 | 190 | 
		 | 
| 189 | 191 | 
		typedef typename Parent::Key Key;  | 
| 190 | 192 | 
		typedef typename Parent::Value Value;  | 
| 191 | 193 | 
		typedef typename Parent::Reference Reference;  | 
| 192 | 194 | 
		typedef typename Parent::ConstReference ConstReference;  | 
| 193 | 195 | 
		 | 
| 196 | 
		typedef typename Parent::ReferenceMapTag ReferenceMapTag;  | 
|
| 197 | 
		 | 
|
| 194 | 198 | 
		class MapIt;  | 
| 195 | 199 | 
		class ConstMapIt;  | 
| 196 | 200 | 
		 | 
| 197 | 201 | 
		friend class MapIt;  | 
| 198 | 202 | 
		friend class ConstMapIt;  | 
| 199 | 203 | 
| ... | ... | 
		@@ -16,15 +16,15 @@  | 
| 16 | 16 | 
		*  | 
| 17 | 17 | 
		*/  | 
| 18 | 18 | 
		 | 
| 19 | 19 | 
		#ifndef LEMON_BUCKET_HEAP_H  | 
| 20 | 20 | 
		#define LEMON_BUCKET_HEAP_H  | 
| 21 | 21 | 
		 | 
| 22 | 
		///\ingroup  | 
|
| 22 | 
		///\ingroup heaps  | 
|
| 23 | 23 | 
		///\file  | 
| 24 | 
		///\brief Bucket  | 
|
| 24 | 
		///\brief Bucket heap implementation.  | 
|
| 25 | 25 | 
		 | 
| 26 | 26 | 
		#include <vector>  | 
| 27 | 27 | 
		#include <utility>  | 
| 28 | 28 | 
		#include <functional>  | 
| 29 | 29 | 
		 | 
| 30 | 30 | 
		namespace lemon {
	 | 
| ... | ... | 
		@@ -50,94 +50,102 @@  | 
| 50 | 50 | 
		--value;  | 
| 51 | 51 | 
		}  | 
| 52 | 52 | 
		};  | 
| 53 | 53 | 
		 | 
| 54 | 54 | 
		}  | 
| 55 | 55 | 
		 | 
| 56 | 
		/// \ingroup  | 
|
| 56 | 
		/// \ingroup heaps  | 
|
| 57 | 57 | 
		///  | 
| 58 | 
		/// \brief  | 
|
| 58 | 
		/// \brief Bucket heap data structure.  | 
|
| 59 | 59 | 
		///  | 
| 60 | 
		/// This class implements the \e bucket \e heap data structure. A \e heap  | 
|
| 61 | 
		/// is a data structure for storing items with specified values called \e  | 
|
| 62 | 
		/// priorities in such a way that finding the item with minimum priority is  | 
|
| 63 | 
		/// efficient. The bucket heap is very simple implementation, it can store  | 
|
| 64 | 
		/// only integer priorities and it stores for each priority in the  | 
|
| 65 | 
		/// \f$ [0..C) \f$ range a list of items. So it should be used only when  | 
|
| 66 | 
		/// the  | 
|
| 60 | 
		/// This class implements the \e bucket \e heap data structure.  | 
|
| 61 | 
		/// It practically conforms to the \ref concepts::Heap "heap concept",  | 
|
| 62 | 
		/// but it has some limitations.  | 
|
| 67 | 63 | 
		///  | 
| 68 | 
		/// \param IM A read and write Item int map, used internally  | 
|
| 69 | 
		/// to handle the cross references.  | 
|
| 70 | 
		/// \param MIN If the given parameter is false then instead of the  | 
|
| 71 | 
		/// minimum value the maximum can be retrivied with the top() and  | 
|
| 72 | 
		///  | 
|
| 64 | 
		/// The bucket heap is a very simple structure. It can store only  | 
|
| 65 | 
		/// \c int priorities and it maintains a list of items for each priority  | 
|
| 66 | 
		/// in the range <tt>[0..C)</tt>. So it should only be used when the  | 
|
| 67 | 
		/// priorities are small. It is not intended to use as a Dijkstra heap.  | 
|
| 68 | 
		///  | 
|
| 69 | 
		/// \tparam IM A read-writable item map with \c int values, used  | 
|
| 70 | 
		/// internally to handle the cross references.  | 
|
| 71 | 
		/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.  | 
|
| 72 | 
		/// The default is \e min-heap. If this parameter is set to \c false,  | 
|
| 73 | 
		/// then the comparison is reversed, so the top(), prio() and pop()  | 
|
| 74 | 
		/// functions deal with the item having maximum priority instead of the  | 
|
| 75 | 
		/// minimum.  | 
|
| 76 | 
		///  | 
|
| 77 | 
		/// \sa SimpleBucketHeap  | 
|
| 73 | 78 | 
		template <typename IM, bool MIN = true>  | 
| 74 | 79 | 
		  class BucketHeap {
	 | 
| 75 | 80 | 
		 | 
| 76 | 81 | 
		public:  | 
| 77 | 
		/// \e  | 
|
| 78 | 
		typedef typename IM::Key Item;  | 
|
| 79 | 
		
  | 
|
| 82 | 
		 | 
|
| 83 | 
		/// Type of the item-int map.  | 
|
| 84 | 
		typedef IM ItemIntMap;  | 
|
| 85 | 
		/// Type of the priorities.  | 
|
| 80 | 86 | 
		typedef int Prio;  | 
| 81 | 
		/// \e  | 
|
| 82 | 
		typedef std::pair<Item, Prio> Pair;  | 
|
| 83 | 
		/// \e  | 
|
| 84 | 
		typedef IM ItemIntMap;  | 
|
| 87 | 
		/// Type of the items stored in the heap.  | 
|
| 88 | 
		typedef typename ItemIntMap::Key Item;  | 
|
| 89 | 
		/// Type of the item-priority pairs.  | 
|
| 90 | 
		typedef std::pair<Item,Prio> Pair;  | 
|
| 85 | 91 | 
		 | 
| 86 | 92 | 
		private:  | 
| 87 | 93 | 
		 | 
| 88 | 94 | 
		typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;  | 
| 89 | 95 | 
		 | 
| 90 | 96 | 
		public:  | 
| 91 | 97 | 
		 | 
| 92 | 
		/// \brief Type to represent the  | 
|
| 98 | 
		/// \brief Type to represent the states of the items.  | 
|
| 93 | 99 | 
		///  | 
| 94 | 
		/// Each Item element have a state associated to it. It may be "in heap",  | 
|
| 95 | 
		/// "pre heap" or "post heap". The latter two are indifferent from the  | 
|
| 100 | 
		/// Each item has a state associated to it. It can be "in heap",  | 
|
| 101 | 
		/// "pre-heap" or "post-heap". The latter two are indifferent from the  | 
|
| 96 | 102 | 
		/// heap's point of view, but may be useful to the user.  | 
| 97 | 103 | 
		///  | 
| 98 | 104 | 
		/// The item-int map must be initialized in such way that it assigns  | 
| 99 | 105 | 
		/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.  | 
| 100 | 106 | 
		    enum State {
	 | 
| 101 | 107 | 
		IN_HEAP = 0, ///< = 0.  | 
| 102 | 108 | 
		PRE_HEAP = -1, ///< = -1.  | 
| 103 | 109 | 
		POST_HEAP = -2 ///< = -2.  | 
| 104 | 110 | 
		};  | 
| 105 | 111 | 
		 | 
| 106 | 112 | 
		public:  | 
| 107 | 
		
  | 
|
| 113 | 
		 | 
|
| 114 | 
		/// \brief Constructor.  | 
|
| 108 | 115 | 
		///  | 
| 109 | 
		/// The constructor.  | 
|
| 110 | 
		/// \param map should be given to the constructor, since it is used  | 
|
| 111 | 
		/// internally to handle the cross references. The value of the map  | 
|
| 112 | 
		/// should be PRE_HEAP (-1) for each element.  | 
|
| 116 | 
		/// Constructor.  | 
|
| 117 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 118 | 
		/// It is used internally to handle the cross references.  | 
|
| 119 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 113 | 120 | 
		    explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
	 | 
| 114 | 121 | 
		 | 
| 115 | 
		/// The number of items stored in the heap.  | 
|
| 122 | 
		/// \brief The number of items stored in the heap.  | 
|
| 116 | 123 | 
		///  | 
| 117 | 
		///  | 
|
| 124 | 
		/// This function returns the number of items stored in the heap.  | 
|
| 118 | 125 | 
		    int size() const { return _data.size(); }
	 | 
| 119 | 126 | 
		 | 
| 120 | 
		/// \brief  | 
|
| 127 | 
		/// \brief Check if the heap is empty.  | 
|
| 121 | 128 | 
		///  | 
| 122 | 
		///  | 
|
| 129 | 
		/// This function returns \c true if the heap is empty.  | 
|
| 123 | 130 | 
		    bool empty() const { return _data.empty(); }
	 | 
| 124 | 131 | 
		 | 
| 125 | 
		/// \brief Make  | 
|
| 132 | 
		/// \brief Make the heap empty.  | 
|
| 126 | 133 | 
		///  | 
| 127 | 
		/// Make empty this heap. It does not change the cross reference  | 
|
| 128 | 
		/// map. If you want to reuse a heap what is not surely empty you  | 
|
| 129 | 
		/// should first clear the heap and after that you should set the  | 
|
| 130 | 
		/// cross reference map for each item to \c PRE_HEAP.  | 
|
| 134 | 
		/// This functon makes the heap empty.  | 
|
| 135 | 
		/// It does not change the cross reference map. If you want to reuse  | 
|
| 136 | 
		/// a heap that is not surely empty, you should first clear it and  | 
|
| 137 | 
		/// then you should set the cross reference map to \c PRE_HEAP  | 
|
| 138 | 
		/// for each item.  | 
|
| 131 | 139 | 
		    void clear() {
	 | 
| 132 | 140 | 
		_data.clear(); _first.clear(); _minimum = 0;  | 
| 133 | 141 | 
		}  | 
| 134 | 142 | 
		 | 
| 135 | 143 | 
		private:  | 
| 136 | 144 | 
		 | 
| 137 | 
		void  | 
|
| 145 | 
		    void relocateLast(int idx) {
	 | 
|
| 138 | 146 | 
		      if (idx + 1 < int(_data.size())) {
	 | 
| 139 | 147 | 
		_data[idx] = _data.back();  | 
| 140 | 148 | 
		        if (_data[idx].prev != -1) {
	 | 
| 141 | 149 | 
		_data[_data[idx].prev].next = idx;  | 
| 142 | 150 | 
		        } else {
	 | 
| 143 | 151 | 
		_first[_data[idx].value] = idx;  | 
| ... | ... | 
		@@ -171,99 +179,105 @@  | 
| 171 | 179 | 
		}  | 
| 172 | 180 | 
		_first[_data[idx].value] = idx;  | 
| 173 | 181 | 
		_data[idx].prev = -1;  | 
| 174 | 182 | 
		}  | 
| 175 | 183 | 
		 | 
| 176 | 184 | 
		public:  | 
| 185 | 
		 | 
|
| 177 | 186 | 
		/// \brief Insert a pair of item and priority into the heap.  | 
| 178 | 187 | 
		///  | 
| 179 | 
		///  | 
|
| 188 | 
		/// This function inserts \c p.first to the heap with priority  | 
|
| 189 | 
		/// \c p.second.  | 
|
| 180 | 190 | 
		/// \param p The pair to insert.  | 
| 191 | 
		/// \pre \c p.first must not be stored in the heap.  | 
|
| 181 | 192 | 
		    void push(const Pair& p) {
	 | 
| 182 | 193 | 
		push(p.first, p.second);  | 
| 183 | 194 | 
		}  | 
| 184 | 195 | 
		 | 
| 185 | 196 | 
		/// \brief Insert an item into the heap with the given priority.  | 
| 186 | 197 | 
		///  | 
| 187 | 
		///  | 
|
| 198 | 
		/// This function inserts the given item into the heap with the  | 
|
| 199 | 
		/// given priority.  | 
|
| 188 | 200 | 
		/// \param i The item to insert.  | 
| 189 | 201 | 
		/// \param p The priority of the item.  | 
| 202 | 
		/// \pre \e i must not be stored in the heap.  | 
|
| 190 | 203 | 
		    void push(const Item &i, const Prio &p) {
	 | 
| 191 | 204 | 
		int idx = _data.size();  | 
| 192 | 205 | 
		_iim[i] = idx;  | 
| 193 | 206 | 
		_data.push_back(BucketItem(i, p));  | 
| 194 | 207 | 
		lace(idx);  | 
| 195 | 208 | 
		      if (Direction::less(p, _minimum)) {
	 | 
| 196 | 209 | 
		_minimum = p;  | 
| 197 | 210 | 
		}  | 
| 198 | 211 | 
		}  | 
| 199 | 212 | 
		 | 
| 200 | 
		/// \brief  | 
|
| 213 | 
		/// \brief Return the item having minimum priority.  | 
|
| 201 | 214 | 
		///  | 
| 202 | 
		/// This method returns the item with minimum priority.  | 
|
| 203 | 
		/// \pre The heap must be nonempty.  | 
|
| 215 | 
		/// This function returns the item having minimum priority.  | 
|
| 216 | 
		/// \pre The heap must be non-empty.  | 
|
| 204 | 217 | 
		    Item top() const {
	 | 
| 205 | 218 | 
		      while (_first[_minimum] == -1) {
	 | 
| 206 | 219 | 
		Direction::increase(_minimum);  | 
| 207 | 220 | 
		}  | 
| 208 | 221 | 
		return _data[_first[_minimum]].item;  | 
| 209 | 222 | 
		}  | 
| 210 | 223 | 
		 | 
| 211 | 
		/// \brief  | 
|
| 224 | 
		/// \brief The minimum priority.  | 
|
| 212 | 225 | 
		///  | 
| 213 | 
		/// It returns the minimum priority.  | 
|
| 214 | 
		/// \pre The heap must be nonempty.  | 
|
| 226 | 
		/// This function returns the minimum priority.  | 
|
| 227 | 
		/// \pre The heap must be non-empty.  | 
|
| 215 | 228 | 
		    Prio prio() const {
	 | 
| 216 | 229 | 
		      while (_first[_minimum] == -1) {
	 | 
| 217 | 230 | 
		Direction::increase(_minimum);  | 
| 218 | 231 | 
		}  | 
| 219 | 232 | 
		return _minimum;  | 
| 220 | 233 | 
		}  | 
| 221 | 234 | 
		 | 
| 222 | 
		/// \brief  | 
|
| 235 | 
		/// \brief Remove the item having minimum priority.  | 
|
| 223 | 236 | 
		///  | 
| 224 | 
		/// This  | 
|
| 237 | 
		/// This function removes the item having minimum priority.  | 
|
| 225 | 238 | 
		/// \pre The heap must be non-empty.  | 
| 226 | 239 | 
		    void pop() {
	 | 
| 227 | 240 | 
		      while (_first[_minimum] == -1) {
	 | 
| 228 | 241 | 
		Direction::increase(_minimum);  | 
| 229 | 242 | 
		}  | 
| 230 | 243 | 
		int idx = _first[_minimum];  | 
| 231 | 244 | 
		_iim[_data[idx].item] = -2;  | 
| 232 | 245 | 
		unlace(idx);  | 
| 233 | 
		
  | 
|
| 246 | 
		relocateLast(idx);  | 
|
| 234 | 247 | 
		}  | 
| 235 | 248 | 
		 | 
| 236 | 
		/// \brief  | 
|
| 249 | 
		/// \brief Remove the given item from the heap.  | 
|
| 237 | 250 | 
		///  | 
| 238 | 
		/// This method deletes item \c i from the heap, if \c i was  | 
|
| 239 | 
		/// already stored in the heap.  | 
|
| 240 | 
		///  | 
|
| 251 | 
		/// This function removes the given item from the heap if it is  | 
|
| 252 | 
		/// already stored.  | 
|
| 253 | 
		/// \param i The item to delete.  | 
|
| 254 | 
		/// \pre \e i must be in the heap.  | 
|
| 241 | 255 | 
		    void erase(const Item &i) {
	 | 
| 242 | 256 | 
		int idx = _iim[i];  | 
| 243 | 257 | 
		_iim[_data[idx].item] = -2;  | 
| 244 | 258 | 
		unlace(idx);  | 
| 245 | 
		
  | 
|
| 259 | 
		relocateLast(idx);  | 
|
| 246 | 260 | 
		}  | 
| 247 | 261 | 
		 | 
| 248 | 
		 | 
|
| 249 | 
		/// \brief Returns the priority of \c i.  | 
|
| 262 | 
		/// \brief The priority of the given item.  | 
|
| 250 | 263 | 
		///  | 
| 251 | 
		/// This function returns the priority of item \c i.  | 
|
| 252 | 
		/// \pre \c i must be in the heap.  | 
|
| 264 | 
		/// This function returns the priority of the given item.  | 
|
| 253 | 265 | 
		/// \param i The item.  | 
| 266 | 
		/// \pre \e i must be in the heap.  | 
|
| 254 | 267 | 
		    Prio operator[](const Item &i) const {
	 | 
| 255 | 268 | 
		int idx = _iim[i];  | 
| 256 | 269 | 
		return _data[idx].value;  | 
| 257 | 270 | 
		}  | 
| 258 | 271 | 
		 | 
| 259 | 
		/// \brief \c i gets to the heap with priority \c p independently  | 
|
| 260 | 
		/// if \c i was already there.  | 
|
| 272 | 
		/// \brief Set the priority of an item or insert it, if it is  | 
|
| 273 | 
		/// not stored in the heap.  | 
|
| 261 | 274 | 
		///  | 
| 262 | 
		/// This method calls \ref push(\c i, \c p) if \c i is not stored  | 
|
| 263 | 
		/// in the heap and sets the priority of \c i to \c p otherwise.  | 
|
| 275 | 
		/// This method sets the priority of the given item if it is  | 
|
| 276 | 
		/// already stored in the heap. Otherwise it inserts the given  | 
|
| 277 | 
		/// item into the heap with the given priority.  | 
|
| 264 | 278 | 
		/// \param i The item.  | 
| 265 | 279 | 
		/// \param p The priority.  | 
| 266 | 280 | 
		    void set(const Item &i, const Prio &p) {
	 | 
| 267 | 281 | 
		int idx = _iim[i];  | 
| 268 | 282 | 
		      if (idx < 0) {
	 | 
| 269 | 283 | 
		push(i, p);  | 
| ... | ... | 
		@@ -271,62 +285,60 @@  | 
| 271 | 285 | 
		decrease(i, p);  | 
| 272 | 286 | 
		      } else {
	 | 
| 273 | 287 | 
		increase(i, p);  | 
| 274 | 288 | 
		}  | 
| 275 | 289 | 
		}  | 
| 276 | 290 | 
		 | 
| 277 | 
		/// \brief  | 
|
| 291 | 
		/// \brief Decrease the priority of an item to the given value.  | 
|
| 278 | 292 | 
		///  | 
| 279 | 
		/// This method decreases the priority of item \c i to \c p.  | 
|
| 280 | 
		/// \pre \c i must be stored in the heap with priority at least \c  | 
|
| 281 | 
		///  | 
|
| 293 | 
		/// This function decreases the priority of an item to the given value.  | 
|
| 282 | 294 | 
		/// \param i The item.  | 
| 283 | 295 | 
		/// \param p The priority.  | 
| 296 | 
		/// \pre \e i must be stored in the heap with priority at least \e p.  | 
|
| 284 | 297 | 
		    void decrease(const Item &i, const Prio &p) {
	 | 
| 285 | 298 | 
		int idx = _iim[i];  | 
| 286 | 299 | 
		unlace(idx);  | 
| 287 | 300 | 
		_data[idx].value = p;  | 
| 288 | 301 | 
		      if (Direction::less(p, _minimum)) {
	 | 
| 289 | 302 | 
		_minimum = p;  | 
| 290 | 303 | 
		}  | 
| 291 | 304 | 
		lace(idx);  | 
| 292 | 305 | 
		}  | 
| 293 | 306 | 
		 | 
| 294 | 
		/// \brief  | 
|
| 307 | 
		/// \brief Increase the priority of an item to the given value.  | 
|
| 295 | 308 | 
		///  | 
| 296 | 
		/// This method sets the priority of item \c i to \c p.  | 
|
| 297 | 
		/// \pre \c i must be stored in the heap with priority at most \c  | 
|
| 298 | 
		///  | 
|
| 309 | 
		/// This function increases the priority of an item to the given value.  | 
|
| 299 | 310 | 
		/// \param i The item.  | 
| 300 | 311 | 
		/// \param p The priority.  | 
| 312 | 
		/// \pre \e i must be stored in the heap with priority at most \e p.  | 
|
| 301 | 313 | 
		    void increase(const Item &i, const Prio &p) {
	 | 
| 302 | 314 | 
		int idx = _iim[i];  | 
| 303 | 315 | 
		unlace(idx);  | 
| 304 | 316 | 
		_data[idx].value = p;  | 
| 305 | 317 | 
		lace(idx);  | 
| 306 | 318 | 
		}  | 
| 307 | 319 | 
		 | 
| 308 | 
		/// \brief Returns if \c item is in, has already been in, or has  | 
|
| 309 | 
		/// never been in the heap.  | 
|
| 320 | 
		/// \brief Return the state of an item.  | 
|
| 310 | 321 | 
		///  | 
| 311 | 
		/// This method returns PRE_HEAP if \c item has never been in the  | 
|
| 312 | 
		/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP  | 
|
| 313 | 
		/// otherwise. In the latter case it is possible that \c item will  | 
|
| 314 | 
		/// get back to the heap again.  | 
|
| 322 | 
		/// This method returns \c PRE_HEAP if the given item has never  | 
|
| 323 | 
		/// been in the heap, \c IN_HEAP if it is in the heap at the moment,  | 
|
| 324 | 
		/// and \c POST_HEAP otherwise.  | 
|
| 325 | 
		/// In the latter case it is possible that the item will get back  | 
|
| 326 | 
		/// to the heap again.  | 
|
| 315 | 327 | 
		/// \param i The item.  | 
| 316 | 328 | 
		    State state(const Item &i) const {
	 | 
| 317 | 329 | 
		int idx = _iim[i];  | 
| 318 | 330 | 
		if (idx >= 0) idx = 0;  | 
| 319 | 331 | 
		return State(idx);  | 
| 320 | 332 | 
		}  | 
| 321 | 333 | 
		 | 
| 322 | 
		/// \brief  | 
|
| 334 | 
		/// \brief Set the state of an item in the heap.  | 
|
| 323 | 335 | 
		///  | 
| 324 | 
		/// Sets the state of the \c item in the heap. It can be used to  | 
|
| 325 | 
		/// manually clear the heap when it is important to achive the  | 
|
| 326 | 
		///  | 
|
| 336 | 
		/// This function sets the state of the given item in the heap.  | 
|
| 337 | 
		/// It can be used to manually clear the heap when it is important  | 
|
| 338 | 
		/// to achive better time complexity.  | 
|
| 327 | 339 | 
		/// \param i The item.  | 
| 328 | 340 | 
		/// \param st The state. It should not be \c IN_HEAP.  | 
| 329 | 341 | 
		    void state(const Item& i, State st) {
	 | 
| 330 | 342 | 
		      switch (st) {
	 | 
| 331 | 343 | 
		case POST_HEAP:  | 
| 332 | 344 | 
		case PRE_HEAP:  | 
| ... | ... | 
		@@ -356,104 +368,120 @@  | 
| 356 | 368 | 
		std::vector<int> _first;  | 
| 357 | 369 | 
		std::vector<BucketItem> _data;  | 
| 358 | 370 | 
		mutable int _minimum;  | 
| 359 | 371 | 
		 | 
| 360 | 372 | 
		}; // class BucketHeap  | 
| 361 | 373 | 
		 | 
| 362 | 
		/// \ingroup  | 
|
| 374 | 
		/// \ingroup heaps  | 
|
| 363 | 375 | 
		///  | 
| 364 | 
		/// \brief  | 
|
| 376 | 
		/// \brief Simplified bucket heap data structure.  | 
|
| 365 | 377 | 
		///  | 
| 366 | 378 | 
		/// This class implements a simplified \e bucket \e heap data  | 
| 367 | 
		/// structure. It does not provide some functionality but it faster  | 
|
| 368 | 
		/// and simplier data structure than the BucketHeap. The main  | 
|
| 369 | 
		/// difference is that the BucketHeap stores for every key a double  | 
|
| 370 | 
		/// linked list while this class stores just simple lists. In the  | 
|
| 371 | 
		/// other way it does not support erasing each elements just the  | 
|
| 372 | 
		/// minimal and it does not supports key increasing, decreasing.  | 
|
| 379 | 
		/// structure. It does not provide some functionality, but it is  | 
|
| 380 | 
		/// faster and simpler than BucketHeap. The main difference is  | 
|
| 381 | 
		/// that BucketHeap stores a doubly-linked list for each key while  | 
|
| 382 | 
		/// this class stores only simply-linked lists. It supports erasing  | 
|
| 383 | 
		/// only for the item having minimum priority and it does not support  | 
|
| 384 | 
		/// key increasing and decreasing.  | 
|
| 373 | 385 | 
		///  | 
| 374 | 
		/// \param IM A read and write Item int map, used internally  | 
|
| 375 | 
		/// to handle the cross references.  | 
|
| 376 | 
		/// \param MIN If the given parameter is false then instead of the  | 
|
| 377 | 
		/// minimum value the maximum can be retrivied with the top() and  | 
|
| 378 | 
		///  | 
|
| 386 | 
		/// Note that this implementation does not conform to the  | 
|
| 387 | 
		/// \ref concepts::Heap "heap concept" due to the lack of some  | 
|
| 388 | 
		/// functionality.  | 
|
| 389 | 
		///  | 
|
| 390 | 
		/// \tparam IM A read-writable item map with \c int values, used  | 
|
| 391 | 
		/// internally to handle the cross references.  | 
|
| 392 | 
		/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.  | 
|
| 393 | 
		/// The default is \e min-heap. If this parameter is set to \c false,  | 
|
| 394 | 
		/// then the comparison is reversed, so the top(), prio() and pop()  | 
|
| 395 | 
		/// functions deal with the item having maximum priority instead of the  | 
|
| 396 | 
		/// minimum.  | 
|
| 379 | 397 | 
		///  | 
| 380 | 398 | 
		/// \sa BucketHeap  | 
| 381 | 399 | 
		template <typename IM, bool MIN = true >  | 
| 382 | 400 | 
		  class SimpleBucketHeap {
	 | 
| 383 | 401 | 
		 | 
| 384 | 402 | 
		public:  | 
| 385 | 
		
  | 
|
| 403 | 
		 | 
|
| 404 | 
		/// Type of the item-int map.  | 
|
| 405 | 
		typedef IM ItemIntMap;  | 
|
| 406 | 
		/// Type of the priorities.  | 
|
| 386 | 407 | 
		typedef int Prio;  | 
| 387 | 
		typedef std::pair<Item, Prio> Pair;  | 
|
| 388 | 
		typedef IM ItemIntMap;  | 
|
| 408 | 
		/// Type of the items stored in the heap.  | 
|
| 409 | 
		typedef typename ItemIntMap::Key Item;  | 
|
| 410 | 
		/// Type of the item-priority pairs.  | 
|
| 411 | 
		typedef std::pair<Item,Prio> Pair;  | 
|
| 389 | 412 | 
		 | 
| 390 | 413 | 
		private:  | 
| 391 | 414 | 
		 | 
| 392 | 415 | 
		typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;  | 
| 393 | 416 | 
		 | 
| 394 | 417 | 
		public:  | 
| 395 | 418 | 
		 | 
| 396 | 
		/// \brief Type to represent the  | 
|
| 419 | 
		/// \brief Type to represent the states of the items.  | 
|
| 397 | 420 | 
		///  | 
| 398 | 
		/// Each Item element have a state associated to it. It may be "in heap",  | 
|
| 399 | 
		/// "pre heap" or "post heap". The latter two are indifferent from the  | 
|
| 421 | 
		/// Each item has a state associated to it. It can be "in heap",  | 
|
| 422 | 
		/// "pre-heap" or "post-heap". The latter two are indifferent from the  | 
|
| 400 | 423 | 
		/// heap's point of view, but may be useful to the user.  | 
| 401 | 424 | 
		///  | 
| 402 | 425 | 
		/// The item-int map must be initialized in such way that it assigns  | 
| 403 | 426 | 
		/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.  | 
| 404 | 427 | 
		    enum State {
	 | 
| 405 | 428 | 
		IN_HEAP = 0, ///< = 0.  | 
| 406 | 429 | 
		PRE_HEAP = -1, ///< = -1.  | 
| 407 | 430 | 
		POST_HEAP = -2 ///< = -2.  | 
| 408 | 431 | 
		};  | 
| 409 | 432 | 
		 | 
| 410 | 433 | 
		public:  | 
| 411 | 434 | 
		 | 
| 412 | 
		/// \brief  | 
|
| 435 | 
		/// \brief Constructor.  | 
|
| 413 | 436 | 
		///  | 
| 414 | 
		/// The constructor.  | 
|
| 415 | 
		/// \param map should be given to the constructor, since it is used  | 
|
| 416 | 
		/// internally to handle the cross references. The value of the map  | 
|
| 417 | 
		/// should be PRE_HEAP (-1) for each element.  | 
|
| 437 | 
		/// Constructor.  | 
|
| 438 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 439 | 
		/// It is used internally to handle the cross references.  | 
|
| 440 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 418 | 441 | 
		explicit SimpleBucketHeap(ItemIntMap &map)  | 
| 419 | 442 | 
		      : _iim(map), _free(-1), _num(0), _minimum(0) {}
	 | 
| 420 | 443 | 
		 | 
| 421 | 
		/// \brief  | 
|
| 444 | 
		/// \brief The number of items stored in the heap.  | 
|
| 422 | 445 | 
		///  | 
| 423 | 
		///  | 
|
| 446 | 
		/// This function returns the number of items stored in the heap.  | 
|
| 424 | 447 | 
		    int size() const { return _num; }
	 | 
| 425 | 448 | 
		 | 
| 426 | 
		/// \brief  | 
|
| 449 | 
		/// \brief Check if the heap is empty.  | 
|
| 427 | 450 | 
		///  | 
| 428 | 
		///  | 
|
| 451 | 
		/// This function returns \c true if the heap is empty.  | 
|
| 429 | 452 | 
		    bool empty() const { return _num == 0; }
	 | 
| 430 | 453 | 
		 | 
| 431 | 
		/// \brief Make  | 
|
| 454 | 
		/// \brief Make the heap empty.  | 
|
| 432 | 455 | 
		///  | 
| 433 | 
		/// Make empty this heap. It does not change the cross reference  | 
|
| 434 | 
		/// map. If you want to reuse a heap what is not surely empty you  | 
|
| 435 | 
		/// should first clear the heap and after that you should set the  | 
|
| 436 | 
		/// cross reference map for each item to \c PRE_HEAP.  | 
|
| 456 | 
		/// This functon makes the heap empty.  | 
|
| 457 | 
		/// It does not change the cross reference map. If you want to reuse  | 
|
| 458 | 
		/// a heap that is not surely empty, you should first clear it and  | 
|
| 459 | 
		/// then you should set the cross reference map to \c PRE_HEAP  | 
|
| 460 | 
		/// for each item.  | 
|
| 437 | 461 | 
		    void clear() {
	 | 
| 438 | 462 | 
		_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0;  | 
| 439 | 463 | 
		}  | 
| 440 | 464 | 
		 | 
| 441 | 465 | 
		/// \brief Insert a pair of item and priority into the heap.  | 
| 442 | 466 | 
		///  | 
| 443 | 
		///  | 
|
| 467 | 
		/// This function inserts \c p.first to the heap with priority  | 
|
| 468 | 
		/// \c p.second.  | 
|
| 444 | 469 | 
		/// \param p The pair to insert.  | 
| 470 | 
		/// \pre \c p.first must not be stored in the heap.  | 
|
| 445 | 471 | 
		    void push(const Pair& p) {
	 | 
| 446 | 472 | 
		push(p.first, p.second);  | 
| 447 | 473 | 
		}  | 
| 448 | 474 | 
		 | 
| 449 | 475 | 
		/// \brief Insert an item into the heap with the given priority.  | 
| 450 | 476 | 
		///  | 
| 451 | 
		///  | 
|
| 477 | 
		/// This function inserts the given item into the heap with the  | 
|
| 478 | 
		/// given priority.  | 
|
| 452 | 479 | 
		/// \param i The item to insert.  | 
| 453 | 480 | 
		/// \param p The priority of the item.  | 
| 481 | 
		/// \pre \e i must not be stored in the heap.  | 
|
| 454 | 482 | 
		    void push(const Item &i, const Prio &p) {
	 | 
| 455 | 483 | 
		int idx;  | 
| 456 | 484 | 
		      if (_free == -1) {
	 | 
| 457 | 485 | 
		idx = _data.size();  | 
| 458 | 486 | 
		_data.push_back(BucketItem(i));  | 
| 459 | 487 | 
		      } else {
	 | 
| ... | ... | 
		@@ -468,37 +496,37 @@  | 
| 468 | 496 | 
		      if (Direction::less(p, _minimum)) {
	 | 
| 469 | 497 | 
		_minimum = p;  | 
| 470 | 498 | 
		}  | 
| 471 | 499 | 
		++_num;  | 
| 472 | 500 | 
		}  | 
| 473 | 501 | 
		 | 
| 474 | 
		/// \brief  | 
|
| 502 | 
		/// \brief Return the item having minimum priority.  | 
|
| 475 | 503 | 
		///  | 
| 476 | 
		/// This method returns the item with minimum priority.  | 
|
| 477 | 
		/// \pre The heap must be nonempty.  | 
|
| 504 | 
		/// This function returns the item having minimum priority.  | 
|
| 505 | 
		/// \pre The heap must be non-empty.  | 
|
| 478 | 506 | 
		    Item top() const {
	 | 
| 479 | 507 | 
		      while (_first[_minimum] == -1) {
	 | 
| 480 | 508 | 
		Direction::increase(_minimum);  | 
| 481 | 509 | 
		}  | 
| 482 | 510 | 
		return _data[_first[_minimum]].item;  | 
| 483 | 511 | 
		}  | 
| 484 | 512 | 
		 | 
| 485 | 
		/// \brief  | 
|
| 513 | 
		/// \brief The minimum priority.  | 
|
| 486 | 514 | 
		///  | 
| 487 | 
		/// It returns the minimum priority.  | 
|
| 488 | 
		/// \pre The heap must be nonempty.  | 
|
| 515 | 
		/// This function returns the minimum priority.  | 
|
| 516 | 
		/// \pre The heap must be non-empty.  | 
|
| 489 | 517 | 
		    Prio prio() const {
	 | 
| 490 | 518 | 
		      while (_first[_minimum] == -1) {
	 | 
| 491 | 519 | 
		Direction::increase(_minimum);  | 
| 492 | 520 | 
		}  | 
| 493 | 521 | 
		return _minimum;  | 
| 494 | 522 | 
		}  | 
| 495 | 523 | 
		 | 
| 496 | 
		/// \brief  | 
|
| 524 | 
		/// \brief Remove the item having minimum priority.  | 
|
| 497 | 525 | 
		///  | 
| 498 | 
		/// This  | 
|
| 526 | 
		/// This function removes the item having minimum priority.  | 
|
| 499 | 527 | 
		/// \pre The heap must be non-empty.  | 
| 500 | 528 | 
		    void pop() {
	 | 
| 501 | 529 | 
		      while (_first[_minimum] == -1) {
	 | 
| 502 | 530 | 
		Direction::increase(_minimum);  | 
| 503 | 531 | 
		}  | 
| 504 | 532 | 
		int idx = _first[_minimum];  | 
| ... | ... | 
		@@ -506,40 +534,39 @@  | 
| 506 | 534 | 
		_first[_minimum] = _data[idx].next;  | 
| 507 | 535 | 
		_data[idx].next = _free;  | 
| 508 | 536 | 
		_free = idx;  | 
| 509 | 537 | 
		--_num;  | 
| 510 | 538 | 
		}  | 
| 511 | 539 | 
		 | 
| 512 | 
		/// \brief  | 
|
| 540 | 
		/// \brief The priority of the given item.  | 
|
| 513 | 541 | 
		///  | 
| 514 | 
		/// This function returns the priority of item \c i.  | 
|
| 515 | 
		/// \warning This operator is not a constant time function  | 
|
| 516 | 
		/// because it scans the whole data structure to find the proper  | 
|
| 517 | 
		/// value.  | 
|
| 518 | 
		///  | 
|
| 542 | 
		/// This function returns the priority of the given item.  | 
|
| 519 | 543 | 
		/// \param i The item.  | 
| 544 | 
		/// \pre \e i must be in the heap.  | 
|
| 545 | 
		/// \warning This operator is not a constant time function because  | 
|
| 546 | 
		/// it scans the whole data structure to find the proper value.  | 
|
| 520 | 547 | 
		    Prio operator[](const Item &i) const {
	 | 
| 521 | 
		      for (int k = 0; k < _first.size(); ++k) {
	 | 
|
| 548 | 
		      for (int k = 0; k < int(_first.size()); ++k) {
	 | 
|
| 522 | 549 | 
		int idx = _first[k];  | 
| 523 | 550 | 
		        while (idx != -1) {
	 | 
| 524 | 551 | 
		          if (_data[idx].item == i) {
	 | 
| 525 | 552 | 
		return k;  | 
| 526 | 553 | 
		}  | 
| 527 | 554 | 
		idx = _data[idx].next;  | 
| 528 | 555 | 
		}  | 
| 529 | 556 | 
		}  | 
| 530 | 557 | 
		return -1;  | 
| 531 | 558 | 
		}  | 
| 532 | 559 | 
		 | 
| 533 | 
		/// \brief Returns if \c item is in, has already been in, or has  | 
|
| 534 | 
		/// never been in the heap.  | 
|
| 560 | 
		/// \brief Return the state of an item.  | 
|
| 535 | 561 | 
		///  | 
| 536 | 
		/// This method returns PRE_HEAP if \c item has never been in the  | 
|
| 537 | 
		/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP  | 
|
| 538 | 
		/// otherwise. In the latter case it is possible that \c item will  | 
|
| 539 | 
		/// get back to the heap again.  | 
|
| 562 | 
		/// This method returns \c PRE_HEAP if the given item has never  | 
|
| 563 | 
		/// been in the heap, \c IN_HEAP if it is in the heap at the moment,  | 
|
| 564 | 
		/// and \c POST_HEAP otherwise.  | 
|
| 565 | 
		/// In the latter case it is possible that the item will get back  | 
|
| 566 | 
		/// to the heap again.  | 
|
| 540 | 567 | 
		/// \param i The item.  | 
| 541 | 568 | 
		    State state(const Item &i) const {
	 | 
| 542 | 569 | 
		int idx = _iim[i];  | 
| 543 | 570 | 
		if (idx >= 0) idx = 0;  | 
| 544 | 571 | 
		return State(idx);  | 
| 545 | 572 | 
		}  | 
| ... | ... | 
		@@ -69,13 +69,17 @@  | 
| 69 | 69 | 
		 | 
| 70 | 70 | 
		/// \brief The type of the map that stores the flow values.  | 
| 71 | 71 | 
		///  | 
| 72 | 72 | 
		/// The type of the map that stores the flow values.  | 
| 73 | 73 | 
		/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap"  | 
| 74 | 74 | 
		/// concept.  | 
| 75 | 
		#ifdef DOXYGEN  | 
|
| 76 | 
		typedef GR::ArcMap<Value> FlowMap;  | 
|
| 77 | 
		#else  | 
|
| 75 | 78 | 
		typedef typename Digraph::template ArcMap<Value> FlowMap;  | 
| 79 | 
		#endif  | 
|
| 76 | 80 | 
		 | 
| 77 | 81 | 
		/// \brief Instantiates a FlowMap.  | 
| 78 | 82 | 
		///  | 
| 79 | 83 | 
		/// This function instantiates a \ref FlowMap.  | 
| 80 | 84 | 
		/// \param digraph The digraph for which we would like to define  | 
| 81 | 85 | 
		/// the flow map.  | 
| ... | ... | 
		@@ -84,15 +88,18 @@  | 
| 84 | 88 | 
		}  | 
| 85 | 89 | 
		 | 
| 86 | 90 | 
		/// \brief The elevator type used by the algorithm.  | 
| 87 | 91 | 
		///  | 
| 88 | 92 | 
		/// The elevator type used by the algorithm.  | 
| 89 | 93 | 
		///  | 
| 90 | 
		/// \sa Elevator  | 
|
| 91 | 
		/// \sa LinkedElevator  | 
|
| 94 | 
		/// \sa Elevator, LinkedElevator  | 
|
| 95 | 
		#ifdef DOXYGEN  | 
|
| 96 | 
		typedef lemon::Elevator<GR, GR::Node> Elevator;  | 
|
| 97 | 
		#else  | 
|
| 92 | 98 | 
		typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;  | 
| 99 | 
		#endif  | 
|
| 93 | 100 | 
		 | 
| 94 | 101 | 
		/// \brief Instantiates an Elevator.  | 
| 95 | 102 | 
		///  | 
| 96 | 103 | 
		/// This function instantiates an \ref Elevator.  | 
| 97 | 104 | 
		/// \param digraph The digraph for which we would like to define  | 
| 98 | 105 | 
		/// the elevator.  | 
| ... | ... | 
		@@ -447,31 +454,33 @@  | 
| 447 | 454 | 
		/// \pre Either \ref run() or \ref init() must be called before  | 
| 448 | 455 | 
		/// using this function.  | 
| 449 | 456 | 
		    const Elevator& elevator() const {
	 | 
| 450 | 457 | 
		return *_level;  | 
| 451 | 458 | 
		}  | 
| 452 | 459 | 
		 | 
| 453 | 
		/// \brief Sets the tolerance used by algorithm.  | 
|
| 460 | 
		/// \brief Sets the tolerance used by the algorithm.  | 
|
| 454 | 461 | 
		///  | 
| 455 | 
		/// Sets the tolerance used by algorithm.  | 
|
| 456 | 
		    Circulation& tolerance(const Tolerance& tolerance) const {
	 | 
|
| 462 | 
		/// Sets the tolerance object used by the algorithm.  | 
|
| 463 | 
		/// \return <tt>(*this)</tt>  | 
|
| 464 | 
		    Circulation& tolerance(const Tolerance& tolerance) {
	 | 
|
| 457 | 465 | 
		_tol = tolerance;  | 
| 458 | 466 | 
		return *this;  | 
| 459 | 467 | 
		}  | 
| 460 | 468 | 
		 | 
| 461 | 469 | 
		/// \brief Returns a const reference to the tolerance.  | 
| 462 | 470 | 
		///  | 
| 463 | 
		/// Returns a const reference to the tolerance  | 
|
| 471 | 
		/// Returns a const reference to the tolerance object used by  | 
|
| 472 | 
		/// the algorithm.  | 
|
| 464 | 473 | 
		    const Tolerance& tolerance() const {
	 | 
| 465 | 
		return  | 
|
| 474 | 
		return _tol;  | 
|
| 466 | 475 | 
		}  | 
| 467 | 476 | 
		 | 
| 468 | 477 | 
		/// \name Execution Control  | 
| 469 | 478 | 
		/// The simplest way to execute the algorithm is to call \ref run().\n  | 
| 470 | 
		/// If you need more control on the initial solution or the execution,  | 
|
| 471 | 
		/// first you have to call one of the \ref init() functions, then  | 
|
| 479 | 
		/// If you need better control on the initial solution or the execution,  | 
|
| 480 | 
		/// you have to call one of the \ref init() functions first, then  | 
|
| 472 | 481 | 
		/// the \ref start() function.  | 
| 473 | 482 | 
		 | 
| 474 | 483 | 
		    ///@{
	 | 
| 475 | 484 | 
		 | 
| 476 | 485 | 
		/// Initializes the internal data structures.  | 
| 477 | 486 | 
| ... | ... | 
		@@ -13,46 +13,52 @@  | 
| 13 | 13 | 
		* This software is provided "AS IS" with no warranty of any kind,  | 
| 14 | 14 | 
		* express or implied, and with no claim as to its suitability for any  | 
| 15 | 15 | 
		* purpose.  | 
| 16 | 16 | 
		*  | 
| 17 | 17 | 
		*/  | 
| 18 | 18 | 
		 | 
| 19 | 
		#ifndef LEMON_CONCEPTS_HEAP_H  | 
|
| 20 | 
		#define LEMON_CONCEPTS_HEAP_H  | 
|
| 21 | 
		 | 
|
| 19 | 22 | 
		///\ingroup concept  | 
| 20 | 23 | 
		///\file  | 
| 21 | 24 | 
		///\brief The concept of heaps.  | 
| 22 | 25 | 
		 | 
| 23 | 
		#ifndef LEMON_CONCEPTS_HEAP_H  | 
|
| 24 | 
		#define LEMON_CONCEPTS_HEAP_H  | 
|
| 25 | 
		 | 
|
| 26 | 26 | 
		#include <lemon/core.h>  | 
| 27 | 27 | 
		#include <lemon/concept_check.h>  | 
| 28 | 28 | 
		 | 
| 29 | 29 | 
		namespace lemon {
	 | 
| 30 | 30 | 
		 | 
| 31 | 31 | 
		  namespace concepts {
	 | 
| 32 | 32 | 
		 | 
| 33 | 33 | 
		/// \addtogroup concept  | 
| 34 | 34 | 
		    /// @{
	 | 
| 35 | 35 | 
		 | 
| 36 | 36 | 
		/// \brief The heap concept.  | 
| 37 | 37 | 
		///  | 
| 38 | 
		/// Concept class describing the main interface of heaps. A \e heap  | 
|
| 39 | 
		/// is a data structure for storing items with specified values called  | 
|
| 40 | 
		/// \e priorities in such a way that finding the item with minimum  | 
|
| 41 | 
		/// priority is efficient. In a heap one can change the priority of an  | 
|
| 42 | 
		///  | 
|
| 38 | 
		/// This concept class describes the main interface of heaps.  | 
|
| 39 | 
		/// The various \ref heaps "heap structures" are efficient  | 
|
| 40 | 
		/// implementations of the abstract data type \e priority \e queue.  | 
|
| 41 | 
		/// They store items with specified values called \e priorities  | 
|
| 42 | 
		/// in such a way that finding and removing the item with minimum  | 
|
| 43 | 
		/// priority are efficient. The basic operations are adding and  | 
|
| 44 | 
		/// erasing items, changing the priority of an item, etc.  | 
|
| 43 | 45 | 
		///  | 
| 44 | 
		/// \tparam PR Type of the priority of the items.  | 
|
| 45 | 
		/// \tparam IM A read and writable item map with int values, used  | 
|
| 46 | 
		/// Heaps are crucial in several algorithms, such as Dijkstra and Prim.  | 
|
| 47 | 
		/// Any class that conforms to this concept can be used easily in such  | 
|
| 48 | 
		/// algorithms.  | 
|
| 49 | 
		///  | 
|
| 50 | 
		/// \tparam PR Type of the priorities of the items.  | 
|
| 51 | 
		/// \tparam IM A read-writable item map with \c int values, used  | 
|
| 46 | 52 | 
		/// internally to handle the cross references.  | 
| 47 | 
		/// \tparam  | 
|
| 53 | 
		/// \tparam CMP A functor class for comparing the priorities.  | 
|
| 48 | 54 | 
		/// The default is \c std::less<PR>.  | 
| 49 | 55 | 
		#ifdef DOXYGEN  | 
| 50 | 
		template <typename PR, typename IM, typename  | 
|
| 56 | 
		template <typename PR, typename IM, typename CMP>  | 
|
| 51 | 57 | 
		#else  | 
| 52 | 
		template <typename PR, typename IM>  | 
|
| 58 | 
		template <typename PR, typename IM, typename CMP = std::less<PR> >  | 
|
| 53 | 59 | 
		#endif  | 
| 54 | 60 | 
		    class Heap {
	 | 
| 55 | 61 | 
		public:  | 
| 56 | 62 | 
		 | 
| 57 | 63 | 
		/// Type of the item-int map.  | 
| 58 | 64 | 
		typedef IM ItemIntMap;  | 
| ... | ... | 
		@@ -61,129 +67,145 @@  | 
| 61 | 67 | 
		/// Type of the items stored in the heap.  | 
| 62 | 68 | 
		typedef typename ItemIntMap::Key Item;  | 
| 63 | 69 | 
		 | 
| 64 | 70 | 
		/// \brief Type to represent the states of the items.  | 
| 65 | 71 | 
		///  | 
| 66 | 72 | 
		/// Each item has a state associated to it. It can be "in heap",  | 
| 67 | 
		/// "pre heap" or "post heap". The later two are indifferent  | 
|
| 68 | 
		/// from the point of view of the heap, but may be useful for  | 
|
| 69 | 
		///  | 
|
| 73 | 
		/// "pre-heap" or "post-heap". The latter two are indifferent from the  | 
|
| 74 | 
		/// heap's point of view, but may be useful to the user.  | 
|
| 70 | 75 | 
		///  | 
| 71 | 76 | 
		/// The item-int map must be initialized in such way that it assigns  | 
| 72 | 77 | 
		/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.  | 
| 73 | 78 | 
		      enum State {
	 | 
| 74 | 79 | 
		IN_HEAP = 0, ///< = 0. The "in heap" state constant.  | 
| 75 | 
		PRE_HEAP = -1, ///< = -1. The "pre heap" state constant.  | 
|
| 76 | 
		POST_HEAP = -2 ///< = -2. The "post heap" state constant.  | 
|
| 80 | 
		PRE_HEAP = -1, ///< = -1. The "pre-heap" state constant.  | 
|
| 81 | 
		POST_HEAP = -2 ///< = -2. The "post-heap" state constant.  | 
|
| 77 | 82 | 
		};  | 
| 78 | 83 | 
		 | 
| 79 | 
		/// \brief  | 
|
| 84 | 
		/// \brief Constructor.  | 
|
| 80 | 85 | 
		///  | 
| 81 | 
		///  | 
|
| 86 | 
		/// Constructor.  | 
|
| 82 | 87 | 
		/// \param map A map that assigns \c int values to keys of type  | 
| 83 | 88 | 
		/// \c Item. It is used internally by the heap implementations to  | 
| 84 | 89 | 
		/// handle the cross references. The assigned value must be  | 
| 85 | 
		/// \c PRE_HEAP (<tt>-1</tt>) for  | 
|
| 90 | 
		/// \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 86 | 91 | 
		      explicit Heap(ItemIntMap &map) {}
	 | 
| 87 | 92 | 
		 | 
| 93 | 
		/// \brief Constructor.  | 
|
| 94 | 
		///  | 
|
| 95 | 
		/// Constructor.  | 
|
| 96 | 
		/// \param map A map that assigns \c int values to keys of type  | 
|
| 97 | 
		/// \c Item. It is used internally by the heap implementations to  | 
|
| 98 | 
		/// handle the cross references. The assigned value must be  | 
|
| 99 | 
		/// \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 100 | 
		/// \param comp The function object used for comparing the priorities.  | 
|
| 101 | 
		      explicit Heap(ItemIntMap &map, const CMP &comp) {}
	 | 
|
| 102 | 
		 | 
|
| 88 | 103 | 
		/// \brief The number of items stored in the heap.  | 
| 89 | 104 | 
		///  | 
| 90 | 
		///  | 
|
| 105 | 
		/// This function returns the number of items stored in the heap.  | 
|
| 91 | 106 | 
		      int size() const { return 0; }
	 | 
| 92 | 107 | 
		 | 
| 93 | 
		/// \brief  | 
|
| 108 | 
		/// \brief Check if the heap is empty.  | 
|
| 94 | 109 | 
		///  | 
| 95 | 
		///  | 
|
| 110 | 
		/// This function returns \c true if the heap is empty.  | 
|
| 96 | 111 | 
		      bool empty() const { return false; }
	 | 
| 97 | 112 | 
		 | 
| 98 | 
		/// \brief  | 
|
| 113 | 
		/// \brief Make the heap empty.  | 
|
| 99 | 114 | 
		///  | 
| 100 | 
		/// Makes the heap empty.  | 
|
| 101 | 
		void clear();  | 
|
| 115 | 
		/// This functon makes the heap empty.  | 
|
| 116 | 
		/// It does not change the cross reference map. If you want to reuse  | 
|
| 117 | 
		/// a heap that is not surely empty, you should first clear it and  | 
|
| 118 | 
		/// then you should set the cross reference map to \c PRE_HEAP  | 
|
| 119 | 
		/// for each item.  | 
|
| 120 | 
		      void clear() {}
	 | 
|
| 102 | 121 | 
		 | 
| 103 | 
		/// \brief  | 
|
| 122 | 
		/// \brief Insert an item into the heap with the given priority.  | 
|
| 104 | 123 | 
		///  | 
| 105 | 
		///  | 
|
| 124 | 
		/// This function inserts the given item into the heap with the  | 
|
| 125 | 
		/// given priority.  | 
|
| 106 | 126 | 
		/// \param i The item to insert.  | 
| 107 | 127 | 
		/// \param p The priority of the item.  | 
| 128 | 
		/// \pre \e i must not be stored in the heap.  | 
|
| 108 | 129 | 
		      void push(const Item &i, const Prio &p) {}
	 | 
| 109 | 130 | 
		 | 
| 110 | 
		/// \brief  | 
|
| 131 | 
		/// \brief Return the item having minimum priority.  | 
|
| 111 | 132 | 
		///  | 
| 112 | 
		///  | 
|
| 133 | 
		/// This function returns the item having minimum priority.  | 
|
| 113 | 134 | 
		/// \pre The heap must be non-empty.  | 
| 114 | 135 | 
		      Item top() const {}
	 | 
| 115 | 136 | 
		 | 
| 116 | 137 | 
		/// \brief The minimum priority.  | 
| 117 | 138 | 
		///  | 
| 118 | 
		///  | 
|
| 139 | 
		/// This function returns the minimum priority.  | 
|
| 119 | 140 | 
		/// \pre The heap must be non-empty.  | 
| 120 | 141 | 
		      Prio prio() const {}
	 | 
| 121 | 142 | 
		 | 
| 122 | 
		/// \brief  | 
|
| 143 | 
		/// \brief Remove the item having minimum priority.  | 
|
| 123 | 144 | 
		///  | 
| 124 | 
		///  | 
|
| 145 | 
		/// This function removes the item having minimum priority.  | 
|
| 125 | 146 | 
		/// \pre The heap must be non-empty.  | 
| 126 | 147 | 
		      void pop() {}
	 | 
| 127 | 148 | 
		 | 
| 128 | 
		/// \brief  | 
|
| 149 | 
		/// \brief Remove the given item from the heap.  | 
|
| 129 | 150 | 
		///  | 
| 130 | 
		///  | 
|
| 151 | 
		/// This function removes the given item from the heap if it is  | 
|
| 152 | 
		/// already stored.  | 
|
| 131 | 153 | 
		/// \param i The item to delete.  | 
| 154 | 
		/// \pre \e i must be in the heap.  | 
|
| 132 | 155 | 
		      void erase(const Item &i) {}
	 | 
| 133 | 156 | 
		 | 
| 134 | 
		/// \brief The priority of  | 
|
| 157 | 
		/// \brief The priority of the given item.  | 
|
| 135 | 158 | 
		///  | 
| 136 | 
		///  | 
|
| 159 | 
		/// This function returns the priority of the given item.  | 
|
| 137 | 160 | 
		/// \param i The item.  | 
| 138 | 
		/// \pre \  | 
|
| 161 | 
		/// \pre \e i must be in the heap.  | 
|
| 139 | 162 | 
		      Prio operator[](const Item &i) const {}
	 | 
| 140 | 163 | 
		 | 
| 141 | 
		/// \brief  | 
|
| 164 | 
		/// \brief Set the priority of an item or insert it, if it is  | 
|
| 142 | 165 | 
		/// not stored in the heap.  | 
| 143 | 166 | 
		///  | 
| 144 | 167 | 
		/// This method sets the priority of the given item if it is  | 
| 145 | 
		/// already stored in the heap.  | 
|
| 146 | 
		/// Otherwise it inserts the given item with the given priority.  | 
|
| 168 | 
		/// already stored in the heap. Otherwise it inserts the given  | 
|
| 169 | 
		/// item into the heap with the given priority.  | 
|
| 147 | 170 | 
		///  | 
| 148 | 171 | 
		/// \param i The item.  | 
| 149 | 172 | 
		/// \param p The priority.  | 
| 150 | 173 | 
		      void set(const Item &i, const Prio &p) {}
	 | 
| 151 | 174 | 
		 | 
| 152 | 
		/// \brief  | 
|
| 175 | 
		/// \brief Decrease the priority of an item to the given value.  | 
|
| 153 | 176 | 
		///  | 
| 154 | 
		///  | 
|
| 177 | 
		/// This function decreases the priority of an item to the given value.  | 
|
| 155 | 178 | 
		/// \param i The item.  | 
| 156 | 179 | 
		/// \param p The priority.  | 
| 157 | 
		/// \pre \  | 
|
| 180 | 
		/// \pre \e i must be stored in the heap with priority at least \e p.  | 
|
| 158 | 181 | 
		      void decrease(const Item &i, const Prio &p) {}
	 | 
| 159 | 182 | 
		 | 
| 160 | 
		/// \brief  | 
|
| 183 | 
		/// \brief Increase the priority of an item to the given value.  | 
|
| 161 | 184 | 
		///  | 
| 162 | 
		///  | 
|
| 185 | 
		/// This function increases the priority of an item to the given value.  | 
|
| 163 | 186 | 
		/// \param i The item.  | 
| 164 | 187 | 
		/// \param p The priority.  | 
| 165 | 
		/// \pre \  | 
|
| 188 | 
		/// \pre \e i must be stored in the heap with priority at most \e p.  | 
|
| 166 | 189 | 
		      void increase(const Item &i, const Prio &p) {}
	 | 
| 167 | 190 | 
		 | 
| 168 | 
		/// \brief Returns if an item is in, has already been in, or has  | 
|
| 169 | 
		/// never been in the heap.  | 
|
| 191 | 
		/// \brief Return the state of an item.  | 
|
| 170 | 192 | 
		///  | 
| 171 | 193 | 
		/// This method returns \c PRE_HEAP if the given item has never  | 
| 172 | 194 | 
		/// been in the heap, \c IN_HEAP if it is in the heap at the moment,  | 
| 173 | 195 | 
		/// and \c POST_HEAP otherwise.  | 
| 174 | 196 | 
		/// In the latter case it is possible that the item will get back  | 
| 175 | 197 | 
		/// to the heap again.  | 
| 176 | 198 | 
		/// \param i The item.  | 
| 177 | 199 | 
		      State state(const Item &i) const {}
	 | 
| 178 | 200 | 
		 | 
| 179 | 
		/// \brief  | 
|
| 201 | 
		/// \brief Set the state of an item in the heap.  | 
|
| 180 | 202 | 
		///  | 
| 181 | 
		/// Sets the state of the given item in the heap. It can be used  | 
|
| 182 | 
		/// to manually clear the heap when it is important to achive the  | 
|
| 183 | 
		///  | 
|
| 203 | 
		/// This function sets the state of the given item in the heap.  | 
|
| 204 | 
		/// It can be used to manually clear the heap when it is important  | 
|
| 205 | 
		/// to achive better time complexity.  | 
|
| 184 | 206 | 
		/// \param i The item.  | 
| 185 | 207 | 
		/// \param st The state. It should not be \c IN_HEAP.  | 
| 186 | 208 | 
		      void state(const Item& i, State st) {}
	 | 
| 187 | 209 | 
		 | 
| 188 | 210 | 
		 | 
| 189 | 211 | 
		template <typename _Heap>  | 
| ... | ... | 
		@@ -179,13 +179,14 @@  | 
| 179 | 179 | 
		 | 
| 180 | 180 | 
		/// Sets the value associated with the given key.  | 
| 181 | 181 | 
		      void set(const Key &k,const Value &t) { operator[](k)=t; }
	 | 
| 182 | 182 | 
		 | 
| 183 | 183 | 
		template<typename _ReferenceMap>  | 
| 184 | 184 | 
		      struct Constraints {
	 | 
| 185 | 
		
  | 
|
| 185 | 
		typename enable_if<typename _ReferenceMap::ReferenceMapTag, void>::type  | 
|
| 186 | 
		        constraints() {
	 | 
|
| 186 | 187 | 
		checkConcept<ReadWriteMap<K, T>, _ReferenceMap >();  | 
| 187 | 188 | 
		ref = m[key];  | 
| 188 | 189 | 
		m[key] = val;  | 
| 189 | 190 | 
		m[key] = ref;  | 
| 190 | 191 | 
		m[key] = cref;  | 
| 191 | 192 | 
		own_ref = m[own_key];  | 
| ... | ... | 
		@@ -44,13 +44,13 @@  | 
| 44 | 44 | 
		 | 
| 45 | 45 | 
		///\brief The type of the map that stores the predecessor  | 
| 46 | 46 | 
		///arcs of the %DFS paths.  | 
| 47 | 47 | 
		///  | 
| 48 | 48 | 
		///The type of the map that stores the predecessor  | 
| 49 | 49 | 
		///arcs of the %DFS paths.  | 
| 50 | 
		///It must  | 
|
| 50 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 51 | 51 | 
		typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;  | 
| 52 | 52 | 
		///Instantiates a \c PredMap.  | 
| 53 | 53 | 
		 | 
| 54 | 54 | 
		///This function instantiates a \ref PredMap.  | 
| 55 | 55 | 
		///\param g is the digraph, to which we would like to define the  | 
| 56 | 56 | 
		///\ref PredMap.  | 
| ... | ... | 
		@@ -59,13 +59,14 @@  | 
| 59 | 59 | 
		return new PredMap(g);  | 
| 60 | 60 | 
		}  | 
| 61 | 61 | 
		 | 
| 62 | 62 | 
		///The type of the map that indicates which nodes are processed.  | 
| 63 | 63 | 
		 | 
| 64 | 64 | 
		///The type of the map that indicates which nodes are processed.  | 
| 65 | 
		///It must  | 
|
| 65 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 66 | 
		///By default it is a NullMap.  | 
|
| 66 | 67 | 
		typedef NullMap<typename Digraph::Node,bool> ProcessedMap;  | 
| 67 | 68 | 
		///Instantiates a \c ProcessedMap.  | 
| 68 | 69 | 
		 | 
| 69 | 70 | 
		///This function instantiates a \ref ProcessedMap.  | 
| 70 | 71 | 
		///\param g is the digraph, to which  | 
| 71 | 72 | 
		///we would like to define the \ref ProcessedMap.  | 
| ... | ... | 
		@@ -78,13 +79,13 @@  | 
| 78 | 79 | 
		return new ProcessedMap();  | 
| 79 | 80 | 
		}  | 
| 80 | 81 | 
		 | 
| 81 | 82 | 
		///The type of the map that indicates which nodes are reached.  | 
| 82 | 83 | 
		 | 
| 83 | 84 | 
		///The type of the map that indicates which nodes are reached.  | 
| 84 | 
		///It must  | 
|
| 85 | 
		///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.  | 
|
| 85 | 86 | 
		typedef typename Digraph::template NodeMap<bool> ReachedMap;  | 
| 86 | 87 | 
		///Instantiates a \c ReachedMap.  | 
| 87 | 88 | 
		 | 
| 88 | 89 | 
		///This function instantiates a \ref ReachedMap.  | 
| 89 | 90 | 
		///\param g is the digraph, to which  | 
| 90 | 91 | 
		///we would like to define the \ref ReachedMap.  | 
| ... | ... | 
		@@ -93,13 +94,13 @@  | 
| 93 | 94 | 
		return new ReachedMap(g);  | 
| 94 | 95 | 
		}  | 
| 95 | 96 | 
		 | 
| 96 | 97 | 
		///The type of the map that stores the distances of the nodes.  | 
| 97 | 98 | 
		 | 
| 98 | 99 | 
		///The type of the map that stores the distances of the nodes.  | 
| 99 | 
		///It must  | 
|
| 100 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 100 | 101 | 
		typedef typename Digraph::template NodeMap<int> DistMap;  | 
| 101 | 102 | 
		///Instantiates a \c DistMap.  | 
| 102 | 103 | 
		 | 
| 103 | 104 | 
		///This function instantiates a \ref DistMap.  | 
| 104 | 105 | 
		///\param g is the digraph, to which we would like to define the  | 
| 105 | 106 | 
		///\ref DistMap.  | 
| ... | ... | 
		@@ -221,13 +222,13 @@  | 
| 221 | 222 | 
		};  | 
| 222 | 223 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
| 223 | 224 | 
		///\c PredMap type.  | 
| 224 | 225 | 
		///  | 
| 225 | 226 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 226 | 227 | 
		///\c PredMap type.  | 
| 227 | 
		///It must  | 
|
| 228 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 228 | 229 | 
		template <class T>  | 
| 229 | 230 | 
		    struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
	 | 
| 230 | 231 | 
		typedef Dfs<Digraph, SetPredMapTraits<T> > Create;  | 
| 231 | 232 | 
		};  | 
| 232 | 233 | 
		 | 
| 233 | 234 | 
		template <class T>  | 
| ... | ... | 
		@@ -241,13 +242,13 @@  | 
| 241 | 242 | 
		};  | 
| 242 | 243 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
| 243 | 244 | 
		///\c DistMap type.  | 
| 244 | 245 | 
		///  | 
| 245 | 246 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 246 | 247 | 
		///\c DistMap type.  | 
| 247 | 
		///It must  | 
|
| 248 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 248 | 249 | 
		template <class T>  | 
| 249 | 250 | 
		    struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
	 | 
| 250 | 251 | 
		typedef Dfs<Digraph, SetDistMapTraits<T> > Create;  | 
| 251 | 252 | 
		};  | 
| 252 | 253 | 
		 | 
| 253 | 254 | 
		template <class T>  | 
| ... | ... | 
		@@ -261,13 +262,13 @@  | 
| 261 | 262 | 
		};  | 
| 262 | 263 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
| 263 | 264 | 
		///\c ReachedMap type.  | 
| 264 | 265 | 
		///  | 
| 265 | 266 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 266 | 267 | 
		///\c ReachedMap type.  | 
| 267 | 
		///It must  | 
|
| 268 | 
		///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.  | 
|
| 268 | 269 | 
		template <class T>  | 
| 269 | 270 | 
		    struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
	 | 
| 270 | 271 | 
		typedef Dfs< Digraph, SetReachedMapTraits<T> > Create;  | 
| 271 | 272 | 
		};  | 
| 272 | 273 | 
		 | 
| 273 | 274 | 
		template <class T>  | 
| ... | ... | 
		@@ -281,13 +282,13 @@  | 
| 281 | 282 | 
		};  | 
| 282 | 283 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
| 283 | 284 | 
		///\c ProcessedMap type.  | 
| 284 | 285 | 
		///  | 
| 285 | 286 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 286 | 287 | 
		///\c ProcessedMap type.  | 
| 287 | 
		///It must  | 
|
| 288 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 288 | 289 | 
		template <class T>  | 
| 289 | 290 | 
		    struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
	 | 
| 290 | 291 | 
		typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create;  | 
| 291 | 292 | 
		};  | 
| 292 | 293 | 
		 | 
| 293 | 294 | 
		    struct SetStandardProcessedMapTraits : public Traits {
	 | 
| ... | ... | 
		@@ -408,14 +409,14 @@  | 
| 408 | 409 | 
		 | 
| 409 | 410 | 
		public:  | 
| 410 | 411 | 
		 | 
| 411 | 412 | 
		///\name Execution Control  | 
| 412 | 413 | 
		///The simplest way to execute the DFS algorithm is to use one of the  | 
| 413 | 414 | 
		///member functions called \ref run(Node) "run()".\n  | 
| 414 | 
		///If you need more control on the execution, first you have to call  | 
|
| 415 | 
		///\ref init(), then you can add a source node with \ref addSource()  | 
|
| 415 | 
		///If you need better control on the execution, you have to call  | 
|
| 416 | 
		///\ref init() first, then you can add a source node with \ref addSource()  | 
|
| 416 | 417 | 
		///and perform the actual computation with \ref start().  | 
| 417 | 418 | 
		///This procedure can be repeated if there are nodes that have not  | 
| 418 | 419 | 
		///been reached.  | 
| 419 | 420 | 
		 | 
| 420 | 421 | 
		    ///@{
	 | 
| 421 | 422 | 
		 | 
| ... | ... | 
		@@ -666,56 +667,56 @@  | 
| 666 | 667 | 
		///functions.\n  | 
| 667 | 668 | 
		///Either \ref run(Node) "run()" or \ref start() should be called  | 
| 668 | 669 | 
		///before using them.  | 
| 669 | 670 | 
		 | 
| 670 | 671 | 
		    ///@{
	 | 
| 671 | 672 | 
		 | 
| 672 | 
		///The DFS path to  | 
|
| 673 | 
		///The DFS path to the given node.  | 
|
| 673 | 674 | 
		 | 
| 674 | 
		///Returns the DFS path to  | 
|
| 675 | 
		///Returns the DFS path to the given node from the root(s).  | 
|
| 675 | 676 | 
		///  | 
| 676 | 677 | 
		///\warning \c t should be reached from the root(s).  | 
| 677 | 678 | 
		///  | 
| 678 | 679 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 679 | 680 | 
		///must be called before using this function.  | 
| 680 | 681 | 
		    Path path(Node t) const { return Path(*G, *_pred, t); }
	 | 
| 681 | 682 | 
		 | 
| 682 | 
		///The distance of  | 
|
| 683 | 
		///The distance of the given node from the root(s).  | 
|
| 683 | 684 | 
		 | 
| 684 | 
		///Returns the distance of  | 
|
| 685 | 
		///Returns the distance of the given node from the root(s).  | 
|
| 685 | 686 | 
		///  | 
| 686 | 687 | 
		///\warning If node \c v is not reached from the root(s), then  | 
| 687 | 688 | 
		///the return value of this function is undefined.  | 
| 688 | 689 | 
		///  | 
| 689 | 690 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 690 | 691 | 
		///must be called before using this function.  | 
| 691 | 692 | 
		    int dist(Node v) const { return (*_dist)[v]; }
	 | 
| 692 | 693 | 
		 | 
| 693 | 
		///Returns the 'previous arc' of the %DFS tree for  | 
|
| 694 | 
		///Returns the 'previous arc' of the %DFS tree for the given node.  | 
|
| 694 | 695 | 
		 | 
| 695 | 696 | 
		///This function returns the 'previous arc' of the %DFS tree for the  | 
| 696 | 697 | 
		///node \c v, i.e. it returns the last arc of a %DFS path from a  | 
| 697 | 698 | 
		///root to \c v. It is \c INVALID if \c v is not reached from the  | 
| 698 | 699 | 
		///root(s) or if \c v is a root.  | 
| 699 | 700 | 
		///  | 
| 700 | 701 | 
		///The %DFS tree used here is equal to the %DFS tree used in  | 
| 701 | 
		///\ref predNode().  | 
|
| 702 | 
		///\ref predNode() and \ref predMap().  | 
|
| 702 | 703 | 
		///  | 
| 703 | 704 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 704 | 705 | 
		///must be called before using this function.  | 
| 705 | 706 | 
		    Arc predArc(Node v) const { return (*_pred)[v];}
	 | 
| 706 | 707 | 
		 | 
| 707 | 
		///Returns the 'previous node' of the %DFS tree.  | 
|
| 708 | 
		///Returns the 'previous node' of the %DFS tree for the given node.  | 
|
| 708 | 709 | 
		 | 
| 709 | 710 | 
		///This function returns the 'previous node' of the %DFS  | 
| 710 | 711 | 
		///tree for the node \c v, i.e. it returns the last but one node  | 
| 711 | 
		///  | 
|
| 712 | 
		///of a %DFS path from a root to \c v. It is \c INVALID  | 
|
| 712 | 713 | 
		///if \c v is not reached from the root(s) or if \c v is a root.  | 
| 713 | 714 | 
		///  | 
| 714 | 715 | 
		///The %DFS tree used here is equal to the %DFS tree used in  | 
| 715 | 
		///\ref predArc().  | 
|
| 716 | 
		///\ref predArc() and \ref predMap().  | 
|
| 716 | 717 | 
		///  | 
| 717 | 718 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 718 | 719 | 
		///must be called before using this function.  | 
| 719 | 720 | 
		    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
	 | 
| 720 | 721 | 
		G->source((*_pred)[v]); }  | 
| 721 | 722 | 
		 | 
| ... | ... | 
		@@ -730,19 +731,19 @@  | 
| 730 | 731 | 
		    const DistMap &distMap() const { return *_dist;}
	 | 
| 731 | 732 | 
		 | 
| 732 | 733 | 
		///\brief Returns a const reference to the node map that stores the  | 
| 733 | 734 | 
		///predecessor arcs.  | 
| 734 | 735 | 
		///  | 
| 735 | 736 | 
		///Returns a const reference to the node map that stores the predecessor  | 
| 736 | 
		///arcs, which form the DFS tree.  | 
|
| 737 | 
		///arcs, which form the DFS tree (forest).  | 
|
| 737 | 738 | 
		///  | 
| 738 | 739 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 739 | 740 | 
		///must be called before using this function.  | 
| 740 | 741 | 
		    const PredMap &predMap() const { return *_pred;}
	 | 
| 741 | 742 | 
		 | 
| 742 | 
		///Checks if  | 
|
| 743 | 
		///Checks if the given node. node is reached from the root(s).  | 
|
| 743 | 744 | 
		 | 
| 744 | 745 | 
		///Returns \c true if \c v is reached from the root(s).  | 
| 745 | 746 | 
		///  | 
| 746 | 747 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 747 | 748 | 
		///must be called before using this function.  | 
| 748 | 749 | 
		    bool reached(Node v) const { return (*_reached)[v]; }
	 | 
| ... | ... | 
		@@ -762,13 +763,13 @@  | 
| 762 | 763 | 
		 | 
| 763 | 764 | 
		///\brief The type of the map that stores the predecessor  | 
| 764 | 765 | 
		///arcs of the %DFS paths.  | 
| 765 | 766 | 
		///  | 
| 766 | 767 | 
		///The type of the map that stores the predecessor  | 
| 767 | 768 | 
		///arcs of the %DFS paths.  | 
| 768 | 
		///It must  | 
|
| 769 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 769 | 770 | 
		typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;  | 
| 770 | 771 | 
		///Instantiates a PredMap.  | 
| 771 | 772 | 
		 | 
| 772 | 773 | 
		///This function instantiates a PredMap.  | 
| 773 | 774 | 
		///\param g is the digraph, to which we would like to define the  | 
| 774 | 775 | 
		///PredMap.  | 
| ... | ... | 
		@@ -777,13 +778,13 @@  | 
| 777 | 778 | 
		return new PredMap(g);  | 
| 778 | 779 | 
		}  | 
| 779 | 780 | 
		 | 
| 780 | 781 | 
		///The type of the map that indicates which nodes are processed.  | 
| 781 | 782 | 
		 | 
| 782 | 783 | 
		///The type of the map that indicates which nodes are processed.  | 
| 783 | 
		///It must  | 
|
| 784 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 784 | 785 | 
		///By default it is a NullMap.  | 
| 785 | 786 | 
		typedef NullMap<typename Digraph::Node,bool> ProcessedMap;  | 
| 786 | 787 | 
		///Instantiates a ProcessedMap.  | 
| 787 | 788 | 
		 | 
| 788 | 789 | 
		///This function instantiates a ProcessedMap.  | 
| 789 | 790 | 
		///\param g is the digraph, to which  | 
| ... | ... | 
		@@ -797,13 +798,13 @@  | 
| 797 | 798 | 
		return new ProcessedMap();  | 
| 798 | 799 | 
		}  | 
| 799 | 800 | 
		 | 
| 800 | 801 | 
		///The type of the map that indicates which nodes are reached.  | 
| 801 | 802 | 
		 | 
| 802 | 803 | 
		///The type of the map that indicates which nodes are reached.  | 
| 803 | 
		///It must  | 
|
| 804 | 
		///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.  | 
|
| 804 | 805 | 
		typedef typename Digraph::template NodeMap<bool> ReachedMap;  | 
| 805 | 806 | 
		///Instantiates a ReachedMap.  | 
| 806 | 807 | 
		 | 
| 807 | 808 | 
		///This function instantiates a ReachedMap.  | 
| 808 | 809 | 
		///\param g is the digraph, to which  | 
| 809 | 810 | 
		///we would like to define the ReachedMap.  | 
| ... | ... | 
		@@ -812,13 +813,13 @@  | 
| 812 | 813 | 
		return new ReachedMap(g);  | 
| 813 | 814 | 
		}  | 
| 814 | 815 | 
		 | 
| 815 | 816 | 
		///The type of the map that stores the distances of the nodes.  | 
| 816 | 817 | 
		 | 
| 817 | 818 | 
		///The type of the map that stores the distances of the nodes.  | 
| 818 | 
		///It must  | 
|
| 819 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 819 | 820 | 
		typedef typename Digraph::template NodeMap<int> DistMap;  | 
| 820 | 821 | 
		///Instantiates a DistMap.  | 
| 821 | 822 | 
		 | 
| 822 | 823 | 
		///This function instantiates a DistMap.  | 
| 823 | 824 | 
		///\param g is the digraph, to which we would like to define  | 
| 824 | 825 | 
		///the DistMap  | 
| ... | ... | 
		@@ -827,24 +828,20 @@  | 
| 827 | 828 | 
		return new DistMap(g);  | 
| 828 | 829 | 
		}  | 
| 829 | 830 | 
		 | 
| 830 | 831 | 
		///The type of the DFS paths.  | 
| 831 | 832 | 
		 | 
| 832 | 833 | 
		///The type of the DFS paths.  | 
| 833 | 
		///It must  | 
|
| 834 | 
		///It must conform to the \ref concepts::Path "Path" concept.  | 
|
| 834 | 835 | 
		typedef lemon::Path<Digraph> Path;  | 
| 835 | 836 | 
		};  | 
| 836 | 837 | 
		 | 
| 837 | 838 | 
		/// Default traits class used by DfsWizard  | 
| 838 | 839 | 
		 | 
| 839 | 
		/// To make it easier to use Dfs algorithm  | 
|
| 840 | 
		/// we have created a wizard class.  | 
|
| 841 | 
		/// This \ref DfsWizard class needs default traits,  | 
|
| 842 | 
		/// as well as the \ref Dfs class.  | 
|
| 843 | 
		/// The \ref DfsWizardBase is a class to be the default traits of the  | 
|
| 844 | 
		/// \ref DfsWizard class.  | 
|
| 840 | 
		/// Default traits class used by DfsWizard.  | 
|
| 841 | 
		/// \tparam GR The type of the digraph.  | 
|
| 845 | 842 | 
		template<class GR>  | 
| 846 | 843 | 
		class DfsWizardBase : public DfsWizardDefaultTraits<GR>  | 
| 847 | 844 | 
		  {
	 | 
| 848 | 845 | 
		 | 
| 849 | 846 | 
		typedef DfsWizardDefaultTraits<GR> Base;  | 
| 850 | 847 | 
		protected:  | 
| ... | ... | 
		@@ -866,13 +863,13 @@  | 
| 866 | 863 | 
		//Pointer to the distance of the target node.  | 
| 867 | 864 | 
		int *_di;  | 
| 868 | 865 | 
		 | 
| 869 | 866 | 
		public:  | 
| 870 | 867 | 
		/// Constructor.  | 
| 871 | 868 | 
		 | 
| 872 | 
		/// This constructor does not require parameters,  | 
|
| 869 | 
		/// This constructor does not require parameters, it initiates  | 
|
| 873 | 870 | 
		/// all of the attributes to \c 0.  | 
| 874 | 871 | 
		DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),  | 
| 875 | 872 | 
		                      _dist(0), _path(0), _di(0) {}
	 | 
| 876 | 873 | 
		 | 
| 877 | 874 | 
		/// Constructor.  | 
| 878 | 875 | 
		 | 
| ... | ... | 
		@@ -896,30 +893,23 @@  | 
| 896 | 893 | 
		/// which makes it easier to use the algorithm.  | 
| 897 | 894 | 
		template<class TR>  | 
| 898 | 895 | 
		class DfsWizard : public TR  | 
| 899 | 896 | 
		  {
	 | 
| 900 | 897 | 
		typedef TR Base;  | 
| 901 | 898 | 
		 | 
| 902 | 
		///The type of the digraph the algorithm runs on.  | 
|
| 903 | 899 | 
		typedef typename TR::Digraph Digraph;  | 
| 904 | 900 | 
		 | 
| 905 | 901 | 
		typedef typename Digraph::Node Node;  | 
| 906 | 902 | 
		typedef typename Digraph::NodeIt NodeIt;  | 
| 907 | 903 | 
		typedef typename Digraph::Arc Arc;  | 
| 908 | 904 | 
		typedef typename Digraph::OutArcIt OutArcIt;  | 
| 909 | 905 | 
		 | 
| 910 | 
		///\brief The type of the map that stores the predecessor  | 
|
| 911 | 
		///arcs of the DFS paths.  | 
|
| 912 | 906 | 
		typedef typename TR::PredMap PredMap;  | 
| 913 | 
		///\brief The type of the map that stores the distances of the nodes.  | 
|
| 914 | 907 | 
		typedef typename TR::DistMap DistMap;  | 
| 915 | 
		///\brief The type of the map that indicates which nodes are reached.  | 
|
| 916 | 908 | 
		typedef typename TR::ReachedMap ReachedMap;  | 
| 917 | 
		///\brief The type of the map that indicates which nodes are processed.  | 
|
| 918 | 909 | 
		typedef typename TR::ProcessedMap ProcessedMap;  | 
| 919 | 
		///The type of the DFS paths  | 
|
| 920 | 910 | 
		typedef typename TR::Path Path;  | 
| 921 | 911 | 
		 | 
| 922 | 912 | 
		public:  | 
| 923 | 913 | 
		 | 
| 924 | 914 | 
		/// Constructor.  | 
| 925 | 915 | 
		    DfsWizard() : TR() {}
	 | 
| ... | ... | 
		@@ -996,17 +986,18 @@  | 
| 996 | 986 | 
		template<class T>  | 
| 997 | 987 | 
		    struct SetPredMapBase : public Base {
	 | 
| 998 | 988 | 
		typedef T PredMap;  | 
| 999 | 989 | 
		      static PredMap *createPredMap(const Digraph &) { return 0; };
	 | 
| 1000 | 990 | 
		      SetPredMapBase(const TR &b) : TR(b) {}
	 | 
| 1001 | 991 | 
		};  | 
| 1002 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1003 | 
		///for setting PredMap object.  | 
|
| 992 | 
		 | 
|
| 993 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
|
| 994 | 
		///the predecessor map.  | 
|
| 1004 | 995 | 
		///  | 
| 1005 | 
		///\ref named-func-param "Named parameter"  | 
|
| 1006 | 
		///for setting PredMap object.  | 
|
| 996 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 997 | 
		///the map that stores the predecessor arcs of the nodes.  | 
|
| 1007 | 998 | 
		template<class T>  | 
| 1008 | 999 | 
		DfsWizard<SetPredMapBase<T> > predMap(const T &t)  | 
| 1009 | 1000 | 
		    {
	 | 
| 1010 | 1001 | 
		Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
| 1011 | 1002 | 
		return DfsWizard<SetPredMapBase<T> >(*this);  | 
| 1012 | 1003 | 
		}  | 
| ... | ... | 
		@@ -1014,17 +1005,18 @@  | 
| 1014 | 1005 | 
		template<class T>  | 
| 1015 | 1006 | 
		    struct SetReachedMapBase : public Base {
	 | 
| 1016 | 1007 | 
		typedef T ReachedMap;  | 
| 1017 | 1008 | 
		      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
	 | 
| 1018 | 1009 | 
		      SetReachedMapBase(const TR &b) : TR(b) {}
	 | 
| 1019 | 1010 | 
		};  | 
| 1020 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1021 | 
		///for setting ReachedMap object.  | 
|
| 1011 | 
		 | 
|
| 1012 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
|
| 1013 | 
		///the reached map.  | 
|
| 1022 | 1014 | 
		///  | 
| 1023 | 
		/// \ref named-func-param "Named parameter"  | 
|
| 1024 | 
		///for setting ReachedMap object.  | 
|
| 1015 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 1016 | 
		///the map that indicates which nodes are reached.  | 
|
| 1025 | 1017 | 
		template<class T>  | 
| 1026 | 1018 | 
		DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)  | 
| 1027 | 1019 | 
		    {
	 | 
| 1028 | 1020 | 
		Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
| 1029 | 1021 | 
		return DfsWizard<SetReachedMapBase<T> >(*this);  | 
| 1030 | 1022 | 
		}  | 
| ... | ... | 
		@@ -1032,17 +1024,19 @@  | 
| 1032 | 1024 | 
		template<class T>  | 
| 1033 | 1025 | 
		    struct SetDistMapBase : public Base {
	 | 
| 1034 | 1026 | 
		typedef T DistMap;  | 
| 1035 | 1027 | 
		      static DistMap *createDistMap(const Digraph &) { return 0; };
	 | 
| 1036 | 1028 | 
		      SetDistMapBase(const TR &b) : TR(b) {}
	 | 
| 1037 | 1029 | 
		};  | 
| 1038 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1039 | 
		///for setting DistMap object.  | 
|
| 1030 | 
		 | 
|
| 1031 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
|
| 1032 | 
		///the distance map.  | 
|
| 1040 | 1033 | 
		///  | 
| 1041 | 
		/// \ref named-func-param "Named parameter"  | 
|
| 1042 | 
		///for setting DistMap object.  | 
|
| 1034 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 1035 | 
		///the map that stores the distances of the nodes calculated  | 
|
| 1036 | 
		///by the algorithm.  | 
|
| 1043 | 1037 | 
		template<class T>  | 
| 1044 | 1038 | 
		DfsWizard<SetDistMapBase<T> > distMap(const T &t)  | 
| 1045 | 1039 | 
		    {
	 | 
| 1046 | 1040 | 
		Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
| 1047 | 1041 | 
		return DfsWizard<SetDistMapBase<T> >(*this);  | 
| 1048 | 1042 | 
		}  | 
| ... | ... | 
		@@ -1050,17 +1044,18 @@  | 
| 1050 | 1044 | 
		template<class T>  | 
| 1051 | 1045 | 
		    struct SetProcessedMapBase : public Base {
	 | 
| 1052 | 1046 | 
		typedef T ProcessedMap;  | 
| 1053 | 1047 | 
		      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
	 | 
| 1054 | 1048 | 
		      SetProcessedMapBase(const TR &b) : TR(b) {}
	 | 
| 1055 | 1049 | 
		};  | 
| 1056 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1057 | 
		///for setting ProcessedMap object.  | 
|
| 1050 | 
		 | 
|
| 1051 | 
		///\brief \ref named-func-param "Named parameter" for setting  | 
|
| 1052 | 
		///the processed map.  | 
|
| 1058 | 1053 | 
		///  | 
| 1059 | 
		/// \ref named-func-param "Named parameter"  | 
|
| 1060 | 
		///for setting ProcessedMap object.  | 
|
| 1054 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 1055 | 
		///the map that indicates which nodes are processed.  | 
|
| 1061 | 1056 | 
		template<class T>  | 
| 1062 | 1057 | 
		DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)  | 
| 1063 | 1058 | 
		    {
	 | 
| 1064 | 1059 | 
		Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
| 1065 | 1060 | 
		return DfsWizard<SetProcessedMapBase<T> >(*this);  | 
| 1066 | 1061 | 
		}  | 
| ... | ... | 
		@@ -1205,13 +1200,13 @@  | 
| 1205 | 1200 | 
		/// \brief The type of the digraph the algorithm runs on.  | 
| 1206 | 1201 | 
		typedef GR Digraph;  | 
| 1207 | 1202 | 
		 | 
| 1208 | 1203 | 
		/// \brief The type of the map that indicates which nodes are reached.  | 
| 1209 | 1204 | 
		///  | 
| 1210 | 1205 | 
		/// The type of the map that indicates which nodes are reached.  | 
| 1211 | 
		/// It must  | 
|
| 1206 | 
		/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.  | 
|
| 1212 | 1207 | 
		typedef typename Digraph::template NodeMap<bool> ReachedMap;  | 
| 1213 | 1208 | 
		 | 
| 1214 | 1209 | 
		/// \brief Instantiates a ReachedMap.  | 
| 1215 | 1210 | 
		///  | 
| 1216 | 1211 | 
		/// This function instantiates a ReachedMap.  | 
| 1217 | 1212 | 
		/// \param digraph is the digraph, to which  | 
| ... | ... | 
		@@ -1366,14 +1361,14 @@  | 
| 1366 | 1361 | 
		 | 
| 1367 | 1362 | 
		public:  | 
| 1368 | 1363 | 
		 | 
| 1369 | 1364 | 
		/// \name Execution Control  | 
| 1370 | 1365 | 
		/// The simplest way to execute the DFS algorithm is to use one of the  | 
| 1371 | 1366 | 
		/// member functions called \ref run(Node) "run()".\n  | 
| 1372 | 
		/// If you need more control on the execution, first you have to call  | 
|
| 1373 | 
		/// \ref init(), then you can add a source node with \ref addSource()  | 
|
| 1367 | 
		/// If you need better control on the execution, you have to call  | 
|
| 1368 | 
		/// \ref init() first, then you can add a source node with \ref addSource()  | 
|
| 1374 | 1369 | 
		/// and perform the actual computation with \ref start().  | 
| 1375 | 1370 | 
		/// This procedure can be repeated if there are nodes that have not  | 
| 1376 | 1371 | 
		/// been reached.  | 
| 1377 | 1372 | 
		 | 
| 1378 | 1373 | 
		    /// @{
	 | 
| 1379 | 1374 | 
		 | 
| ... | ... | 
		@@ -1617,13 +1612,13 @@  | 
| 1617 | 1612 | 
		/// functions.\n  | 
| 1618 | 1613 | 
		/// Either \ref run(Node) "run()" or \ref start() should be called  | 
| 1619 | 1614 | 
		/// before using them.  | 
| 1620 | 1615 | 
		 | 
| 1621 | 1616 | 
		    ///@{
	 | 
| 1622 | 1617 | 
		 | 
| 1623 | 
		/// \brief Checks if  | 
|
| 1618 | 
		/// \brief Checks if the given node is reached from the root(s).  | 
|
| 1624 | 1619 | 
		///  | 
| 1625 | 1620 | 
		/// Returns \c true if \c v is reached from the root(s).  | 
| 1626 | 1621 | 
		///  | 
| 1627 | 1622 | 
		/// \pre Either \ref run(Node) "run()" or \ref init()  | 
| 1628 | 1623 | 
		/// must be called before using this function.  | 
| 1629 | 1624 | 
		    bool reached(Node v) const { return (*_reached)[v]; }
	 | 
| ... | ... | 
		@@ -67,15 +67,15 @@  | 
| 67 | 67 | 
		///The type of the digraph the algorithm runs on.  | 
| 68 | 68 | 
		typedef GR Digraph;  | 
| 69 | 69 | 
		 | 
| 70 | 70 | 
		///The type of the map that stores the arc lengths.  | 
| 71 | 71 | 
		 | 
| 72 | 72 | 
		///The type of the map that stores the arc lengths.  | 
| 73 | 
		///It must  | 
|
| 73 | 
		///It must conform to the \ref concepts::ReadMap "ReadMap" concept.  | 
|
| 74 | 74 | 
		typedef LEN LengthMap;  | 
| 75 | 
		///The type of the  | 
|
| 75 | 
		///The type of the arc lengths.  | 
|
| 76 | 76 | 
		typedef typename LEN::Value Value;  | 
| 77 | 77 | 
		 | 
| 78 | 78 | 
		/// Operation traits for %Dijkstra algorithm.  | 
| 79 | 79 | 
		 | 
| 80 | 80 | 
		/// This class defines the operations that are used in the algorithm.  | 
| 81 | 81 | 
		/// \see DijkstraDefaultOperationTraits  | 
| ... | ... | 
		@@ -113,13 +113,13 @@  | 
| 113 | 113 | 
		 | 
| 114 | 114 | 
		///\brief The type of the map that stores the predecessor  | 
| 115 | 115 | 
		///arcs of the shortest paths.  | 
| 116 | 116 | 
		///  | 
| 117 | 117 | 
		///The type of the map that stores the predecessor  | 
| 118 | 118 | 
		///arcs of the shortest paths.  | 
| 119 | 
		///It must  | 
|
| 119 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 120 | 120 | 
		typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;  | 
| 121 | 121 | 
		///Instantiates a \c PredMap.  | 
| 122 | 122 | 
		 | 
| 123 | 123 | 
		///This function instantiates a \ref PredMap.  | 
| 124 | 124 | 
		///\param g is the digraph, to which we would like to define the  | 
| 125 | 125 | 
		///\ref PredMap.  | 
| ... | ... | 
		@@ -128,13 +128,13 @@  | 
| 128 | 128 | 
		return new PredMap(g);  | 
| 129 | 129 | 
		}  | 
| 130 | 130 | 
		 | 
| 131 | 131 | 
		///The type of the map that indicates which nodes are processed.  | 
| 132 | 132 | 
		 | 
| 133 | 133 | 
		///The type of the map that indicates which nodes are processed.  | 
| 134 | 
		///It must  | 
|
| 134 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 135 | 135 | 
		///By default it is a NullMap.  | 
| 136 | 136 | 
		typedef NullMap<typename Digraph::Node,bool> ProcessedMap;  | 
| 137 | 137 | 
		///Instantiates a \c ProcessedMap.  | 
| 138 | 138 | 
		 | 
| 139 | 139 | 
		///This function instantiates a \ref ProcessedMap.  | 
| 140 | 140 | 
		///\param g is the digraph, to which  | 
| ... | ... | 
		@@ -148,13 +148,13 @@  | 
| 148 | 148 | 
		return new ProcessedMap();  | 
| 149 | 149 | 
		}  | 
| 150 | 150 | 
		 | 
| 151 | 151 | 
		///The type of the map that stores the distances of the nodes.  | 
| 152 | 152 | 
		 | 
| 153 | 153 | 
		///The type of the map that stores the distances of the nodes.  | 
| 154 | 
		///It must  | 
|
| 154 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 155 | 155 | 
		typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;  | 
| 156 | 156 | 
		///Instantiates a \c DistMap.  | 
| 157 | 157 | 
		 | 
| 158 | 158 | 
		///This function instantiates a \ref DistMap.  | 
| 159 | 159 | 
		///\param g is the digraph, to which we would like to define  | 
| 160 | 160 | 
		///the \ref DistMap.  | 
| ... | ... | 
		@@ -166,12 +166,16 @@  | 
| 166 | 166 | 
		 | 
| 167 | 167 | 
		///%Dijkstra algorithm class.  | 
| 168 | 168 | 
		 | 
| 169 | 169 | 
		/// \ingroup shortest_path  | 
| 170 | 170 | 
		///This class provides an efficient implementation of the %Dijkstra algorithm.  | 
| 171 | 171 | 
		///  | 
| 172 | 
		///The %Dijkstra algorithm solves the single-source shortest path problem  | 
|
| 173 | 
		///when all arc lengths are non-negative. If there are negative lengths,  | 
|
| 174 | 
		///the BellmanFord algorithm should be used instead.  | 
|
| 175 | 
		///  | 
|
| 172 | 176 | 
		///The arc lengths are passed to the algorithm using a  | 
| 173 | 177 | 
		///\ref concepts::ReadMap "ReadMap",  | 
| 174 | 178 | 
		///so it is easy to change it to any kind of length.  | 
| 175 | 179 | 
		///The type of the length is determined by the  | 
| 176 | 180 | 
		///\ref concepts::ReadMap::Value "Value" of the length map.  | 
| 177 | 181 | 
		///It is also possible to change the underlying priority heap.  | 
| ... | ... | 
		@@ -198,13 +202,13 @@  | 
| 198 | 202 | 
		  class Dijkstra {
	 | 
| 199 | 203 | 
		public:  | 
| 200 | 204 | 
		 | 
| 201 | 205 | 
		///The type of the digraph the algorithm runs on.  | 
| 202 | 206 | 
		typedef typename TR::Digraph Digraph;  | 
| 203 | 207 | 
		 | 
| 204 | 
		///The type of the  | 
|
| 208 | 
		///The type of the arc lengths.  | 
|
| 205 | 209 | 
		typedef typename TR::LengthMap::Value Value;  | 
| 206 | 210 | 
		///The type of the map that stores the arc lengths.  | 
| 207 | 211 | 
		typedef typename TR::LengthMap LengthMap;  | 
| 208 | 212 | 
		///\brief The type of the map that stores the predecessor arcs of the  | 
| 209 | 213 | 
		///shortest paths.  | 
| 210 | 214 | 
		typedef typename TR::PredMap PredMap;  | 
| ... | ... | 
		@@ -301,13 +305,13 @@  | 
| 301 | 305 | 
		};  | 
| 302 | 306 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
| 303 | 307 | 
		///\c PredMap type.  | 
| 304 | 308 | 
		///  | 
| 305 | 309 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 306 | 310 | 
		///\c PredMap type.  | 
| 307 | 
		///It must  | 
|
| 311 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 308 | 312 | 
		template <class T>  | 
| 309 | 313 | 
		struct SetPredMap  | 
| 310 | 314 | 
		      : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
	 | 
| 311 | 315 | 
		typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;  | 
| 312 | 316 | 
		};  | 
| 313 | 317 | 
		 | 
| ... | ... | 
		@@ -322,13 +326,13 @@  | 
| 322 | 326 | 
		};  | 
| 323 | 327 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
| 324 | 328 | 
		///\c DistMap type.  | 
| 325 | 329 | 
		///  | 
| 326 | 330 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 327 | 331 | 
		///\c DistMap type.  | 
| 328 | 
		///It must  | 
|
| 332 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 329 | 333 | 
		template <class T>  | 
| 330 | 334 | 
		struct SetDistMap  | 
| 331 | 335 | 
		      : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
	 | 
| 332 | 336 | 
		typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;  | 
| 333 | 337 | 
		};  | 
| 334 | 338 | 
		 | 
| ... | ... | 
		@@ -343,13 +347,13 @@  | 
| 343 | 347 | 
		};  | 
| 344 | 348 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
| 345 | 349 | 
		///\c ProcessedMap type.  | 
| 346 | 350 | 
		///  | 
| 347 | 351 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 348 | 352 | 
		///\c ProcessedMap type.  | 
| 349 | 
		///It must  | 
|
| 353 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 350 | 354 | 
		template <class T>  | 
| 351 | 355 | 
		struct SetProcessedMap  | 
| 352 | 356 | 
		      : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
	 | 
| 353 | 357 | 
		typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;  | 
| 354 | 358 | 
		};  | 
| 355 | 359 | 
		 | 
| ... | ... | 
		@@ -440,12 +444,13 @@  | 
| 440 | 444 | 
		 | 
| 441 | 445 | 
		/// \brief \ref named-templ-param "Named parameter" for setting  | 
| 442 | 446 | 
		///\c OperationTraits type  | 
| 443 | 447 | 
		///  | 
| 444 | 448 | 
		///\ref named-templ-param "Named parameter" for setting  | 
| 445 | 449 | 
		///\c OperationTraits type.  | 
| 450 | 
		/// For more information see \ref DijkstraDefaultOperationTraits.  | 
|
| 446 | 451 | 
		template <class T>  | 
| 447 | 452 | 
		struct SetOperationTraits  | 
| 448 | 453 | 
		      : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
	 | 
| 449 | 454 | 
		typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >  | 
| 450 | 455 | 
		Create;  | 
| 451 | 456 | 
		};  | 
| ... | ... | 
		@@ -581,14 +586,14 @@  | 
| 581 | 586 | 
		 | 
| 582 | 587 | 
		public:  | 
| 583 | 588 | 
		 | 
| 584 | 589 | 
		///\name Execution Control  | 
| 585 | 590 | 
		///The simplest way to execute the %Dijkstra algorithm is to use  | 
| 586 | 591 | 
		///one of the member functions called \ref run(Node) "run()".\n  | 
| 587 | 
		///If you need more control on the execution, first you have to call  | 
|
| 588 | 
		///\ref init(), then you can add several source nodes with  | 
|
| 592 | 
		///If you need better control on the execution, you have to call  | 
|
| 593 | 
		///\ref init() first, then you can add several source nodes with  | 
|
| 589 | 594 | 
		///\ref addSource(). Finally the actual path computation can be  | 
| 590 | 595 | 
		///performed with one of the \ref start() functions.  | 
| 591 | 596 | 
		 | 
| 592 | 597 | 
		    ///@{
	 | 
| 593 | 598 | 
		 | 
| 594 | 599 | 
		///\brief Initializes the internal data structures.  | 
| ... | ... | 
		@@ -798,61 +803,63 @@  | 
| 798 | 803 | 
		 | 
| 799 | 804 | 
		///@}  | 
| 800 | 805 | 
		 | 
| 801 | 806 | 
		///\name Query Functions  | 
| 802 | 807 | 
		///The results of the %Dijkstra algorithm can be obtained using these  | 
| 803 | 808 | 
		///functions.\n  | 
| 804 | 
		///Either \ref run(Node) "run()" or \ref  | 
|
| 809 | 
		///Either \ref run(Node) "run()" or \ref init() should be called  | 
|
| 805 | 810 | 
		///before using them.  | 
| 806 | 811 | 
		 | 
| 807 | 812 | 
		    ///@{
	 | 
| 808 | 813 | 
		 | 
| 809 | 
		///The shortest path to  | 
|
| 814 | 
		///The shortest path to the given node.  | 
|
| 810 | 815 | 
		 | 
| 811 | 
		///Returns the shortest path to  | 
|
| 816 | 
		///Returns the shortest path to the given node from the root(s).  | 
|
| 812 | 817 | 
		///  | 
| 813 | 818 | 
		///\warning \c t should be reached from the root(s).  | 
| 814 | 819 | 
		///  | 
| 815 | 820 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 816 | 821 | 
		///must be called before using this function.  | 
| 817 | 822 | 
		    Path path(Node t) const { return Path(*G, *_pred, t); }
	 | 
| 818 | 823 | 
		 | 
| 819 | 
		///The distance of  | 
|
| 824 | 
		///The distance of the given node from the root(s).  | 
|
| 820 | 825 | 
		 | 
| 821 | 
		///Returns the distance of  | 
|
| 826 | 
		///Returns the distance of the given node from the root(s).  | 
|
| 822 | 827 | 
		///  | 
| 823 | 828 | 
		///\warning If node \c v is not reached from the root(s), then  | 
| 824 | 829 | 
		///the return value of this function is undefined.  | 
| 825 | 830 | 
		///  | 
| 826 | 831 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 827 | 832 | 
		///must be called before using this function.  | 
| 828 | 833 | 
		    Value dist(Node v) const { return (*_dist)[v]; }
	 | 
| 829 | 834 | 
		 | 
| 830 | 
		///Returns the 'previous arc' of the shortest path tree for a node.  | 
|
| 831 | 
		 | 
|
| 835 | 
		///\brief Returns the 'previous arc' of the shortest path tree for  | 
|
| 836 | 
		///the given node.  | 
|
| 837 | 
		///  | 
|
| 832 | 838 | 
		///This function returns the 'previous arc' of the shortest path  | 
| 833 | 839 | 
		///tree for the node \c v, i.e. it returns the last arc of a  | 
| 834 | 840 | 
		///shortest path from a root to \c v. It is \c INVALID if \c v  | 
| 835 | 841 | 
		///is not reached from the root(s) or if \c v is a root.  | 
| 836 | 842 | 
		///  | 
| 837 | 843 | 
		///The shortest path tree used here is equal to the shortest path  | 
| 838 | 
		///tree used in \ref predNode().  | 
|
| 844 | 
		///tree used in \ref predNode() and \ref predMap().  | 
|
| 839 | 845 | 
		///  | 
| 840 | 846 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 841 | 847 | 
		///must be called before using this function.  | 
| 842 | 848 | 
		    Arc predArc(Node v) const { return (*_pred)[v]; }
	 | 
| 843 | 849 | 
		 | 
| 844 | 
		///Returns the 'previous node' of the shortest path tree for a node.  | 
|
| 845 | 
		 | 
|
| 850 | 
		///\brief Returns the 'previous node' of the shortest path tree for  | 
|
| 851 | 
		///the given node.  | 
|
| 852 | 
		///  | 
|
| 846 | 853 | 
		///This function returns the 'previous node' of the shortest path  | 
| 847 | 854 | 
		///tree for the node \c v, i.e. it returns the last but one node  | 
| 848 | 
		///  | 
|
| 855 | 
		///of a shortest path from a root to \c v. It is \c INVALID  | 
|
| 849 | 856 | 
		///if \c v is not reached from the root(s) or if \c v is a root.  | 
| 850 | 857 | 
		///  | 
| 851 | 858 | 
		///The shortest path tree used here is equal to the shortest path  | 
| 852 | 
		///tree used in \ref predArc().  | 
|
| 859 | 
		///tree used in \ref predArc() and \ref predMap().  | 
|
| 853 | 860 | 
		///  | 
| 854 | 861 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 855 | 862 | 
		///must be called before using this function.  | 
| 856 | 863 | 
		    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
	 | 
| 857 | 864 | 
		G->source((*_pred)[v]); }  | 
| 858 | 865 | 
		 | 
| ... | ... | 
		@@ -867,19 +874,19 @@  | 
| 867 | 874 | 
		    const DistMap &distMap() const { return *_dist;}
	 | 
| 868 | 875 | 
		 | 
| 869 | 876 | 
		///\brief Returns a const reference to the node map that stores the  | 
| 870 | 877 | 
		///predecessor arcs.  | 
| 871 | 878 | 
		///  | 
| 872 | 879 | 
		///Returns a const reference to the node map that stores the predecessor  | 
| 873 | 
		///arcs, which form the shortest path tree.  | 
|
| 880 | 
		///arcs, which form the shortest path tree (forest).  | 
|
| 874 | 881 | 
		///  | 
| 875 | 882 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 876 | 883 | 
		///must be called before using this function.  | 
| 877 | 884 | 
		    const PredMap &predMap() const { return *_pred;}
	 | 
| 878 | 885 | 
		 | 
| 879 | 
		///Checks if  | 
|
| 886 | 
		///Checks if the given node is reached from the root(s).  | 
|
| 880 | 887 | 
		 | 
| 881 | 888 | 
		///Returns \c true if \c v is reached from the root(s).  | 
| 882 | 889 | 
		///  | 
| 883 | 890 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 884 | 891 | 
		///must be called before using this function.  | 
| 885 | 892 | 
		    bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
	 | 
| ... | ... | 
		@@ -892,15 +899,15 @@  | 
| 892 | 899 | 
		///  | 
| 893 | 900 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 894 | 901 | 
		///must be called before using this function.  | 
| 895 | 902 | 
		    bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
	 | 
| 896 | 903 | 
		Heap::POST_HEAP; }  | 
| 897 | 904 | 
		 | 
| 898 | 
		///The current distance of  | 
|
| 905 | 
		///The current distance of the given node from the root(s).  | 
|
| 899 | 906 | 
		 | 
| 900 | 
		///Returns the current distance of  | 
|
| 907 | 
		///Returns the current distance of the given node from the root(s).  | 
|
| 901 | 908 | 
		///It may be decreased in the following processes.  | 
| 902 | 909 | 
		///  | 
| 903 | 910 | 
		///\pre Either \ref run(Node) "run()" or \ref init()  | 
| 904 | 911 | 
		///must be called before using this function and  | 
| 905 | 912 | 
		///node \c v must be reached but not necessarily processed.  | 
| 906 | 913 | 
		    Value currentDist(Node v) const {
	 | 
| ... | ... | 
		@@ -921,15 +928,15 @@  | 
| 921 | 928 | 
		  {
	 | 
| 922 | 929 | 
		///The type of the digraph the algorithm runs on.  | 
| 923 | 930 | 
		typedef GR Digraph;  | 
| 924 | 931 | 
		///The type of the map that stores the arc lengths.  | 
| 925 | 932 | 
		 | 
| 926 | 933 | 
		///The type of the map that stores the arc lengths.  | 
| 927 | 
		///It must  | 
|
| 934 | 
		///It must conform to the \ref concepts::ReadMap "ReadMap" concept.  | 
|
| 928 | 935 | 
		typedef LEN LengthMap;  | 
| 929 | 
		///The type of the  | 
|
| 936 | 
		///The type of the arc lengths.  | 
|
| 930 | 937 | 
		typedef typename LEN::Value Value;  | 
| 931 | 938 | 
		 | 
| 932 | 939 | 
		/// Operation traits for Dijkstra algorithm.  | 
| 933 | 940 | 
		 | 
| 934 | 941 | 
		/// This class defines the operations that are used in the algorithm.  | 
| 935 | 942 | 
		/// \see DijkstraDefaultOperationTraits  | 
| ... | ... | 
		@@ -970,13 +977,13 @@  | 
| 970 | 977 | 
		 | 
| 971 | 978 | 
		///\brief The type of the map that stores the predecessor  | 
| 972 | 979 | 
		///arcs of the shortest paths.  | 
| 973 | 980 | 
		///  | 
| 974 | 981 | 
		///The type of the map that stores the predecessor  | 
| 975 | 982 | 
		///arcs of the shortest paths.  | 
| 976 | 
		///It must  | 
|
| 983 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 977 | 984 | 
		typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;  | 
| 978 | 985 | 
		///Instantiates a PredMap.  | 
| 979 | 986 | 
		 | 
| 980 | 987 | 
		///This function instantiates a PredMap.  | 
| 981 | 988 | 
		///\param g is the digraph, to which we would like to define the  | 
| 982 | 989 | 
		///PredMap.  | 
| ... | ... | 
		@@ -985,13 +992,13 @@  | 
| 985 | 992 | 
		return new PredMap(g);  | 
| 986 | 993 | 
		}  | 
| 987 | 994 | 
		 | 
| 988 | 995 | 
		///The type of the map that indicates which nodes are processed.  | 
| 989 | 996 | 
		 | 
| 990 | 997 | 
		///The type of the map that indicates which nodes are processed.  | 
| 991 | 
		///It must  | 
|
| 998 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 992 | 999 | 
		///By default it is a NullMap.  | 
| 993 | 1000 | 
		typedef NullMap<typename Digraph::Node,bool> ProcessedMap;  | 
| 994 | 1001 | 
		///Instantiates a ProcessedMap.  | 
| 995 | 1002 | 
		 | 
| 996 | 1003 | 
		///This function instantiates a ProcessedMap.  | 
| 997 | 1004 | 
		///\param g is the digraph, to which  | 
| ... | ... | 
		@@ -1005,13 +1012,13 @@  | 
| 1005 | 1012 | 
		return new ProcessedMap();  | 
| 1006 | 1013 | 
		}  | 
| 1007 | 1014 | 
		 | 
| 1008 | 1015 | 
		///The type of the map that stores the distances of the nodes.  | 
| 1009 | 1016 | 
		 | 
| 1010 | 1017 | 
		///The type of the map that stores the distances of the nodes.  | 
| 1011 | 
		///It must  | 
|
| 1018 | 
		///It must conform to the \ref concepts::WriteMap "WriteMap" concept.  | 
|
| 1012 | 1019 | 
		typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;  | 
| 1013 | 1020 | 
		///Instantiates a DistMap.  | 
| 1014 | 1021 | 
		 | 
| 1015 | 1022 | 
		///This function instantiates a DistMap.  | 
| 1016 | 1023 | 
		///\param g is the digraph, to which we would like to define  | 
| 1017 | 1024 | 
		///the DistMap  | 
| ... | ... | 
		@@ -1020,24 +1027,21 @@  | 
| 1020 | 1027 | 
		return new DistMap(g);  | 
| 1021 | 1028 | 
		}  | 
| 1022 | 1029 | 
		 | 
| 1023 | 1030 | 
		///The type of the shortest paths.  | 
| 1024 | 1031 | 
		 | 
| 1025 | 1032 | 
		///The type of the shortest paths.  | 
| 1026 | 
		///It must  | 
|
| 1033 | 
		///It must conform to the \ref concepts::Path "Path" concept.  | 
|
| 1027 | 1034 | 
		typedef lemon::Path<Digraph> Path;  | 
| 1028 | 1035 | 
		};  | 
| 1029 | 1036 | 
		 | 
| 1030 | 1037 | 
		/// Default traits class used by DijkstraWizard  | 
| 1031 | 1038 | 
		 | 
| 1032 | 
		/// To make it easier to use Dijkstra algorithm  | 
|
| 1033 | 
		/// we have created a wizard class.  | 
|
| 1034 | 
		/// This \ref DijkstraWizard class needs default traits,  | 
|
| 1035 | 
		/// as well as the \ref Dijkstra class.  | 
|
| 1036 | 
		/// The \ref DijkstraWizardBase is a class to be the default traits of the  | 
|
| 1037 | 
		/// \ref DijkstraWizard class.  | 
|
| 1039 | 
		/// Default traits class used by DijkstraWizard.  | 
|
| 1040 | 
		/// \tparam GR The type of the digraph.  | 
|
| 1041 | 
		/// \tparam LEN The type of the length map.  | 
|
| 1038 | 1042 | 
		template<typename GR, typename LEN>  | 
| 1039 | 1043 | 
		class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN>  | 
| 1040 | 1044 | 
		  {
	 | 
| 1041 | 1045 | 
		typedef DijkstraWizardDefaultTraits<GR,LEN> Base;  | 
| 1042 | 1046 | 
		protected:  | 
| 1043 | 1047 | 
		//The type of the nodes in the digraph.  | 
| ... | ... | 
		@@ -1090,34 +1094,25 @@  | 
| 1090 | 1094 | 
		/// which makes it easier to use the algorithm.  | 
| 1091 | 1095 | 
		template<class TR>  | 
| 1092 | 1096 | 
		class DijkstraWizard : public TR  | 
| 1093 | 1097 | 
		  {
	 | 
| 1094 | 1098 | 
		typedef TR Base;  | 
| 1095 | 1099 | 
		 | 
| 1096 | 
		///The type of the digraph the algorithm runs on.  | 
|
| 1097 | 1100 | 
		typedef typename TR::Digraph Digraph;  | 
| 1098 | 1101 | 
		 | 
| 1099 | 1102 | 
		typedef typename Digraph::Node Node;  | 
| 1100 | 1103 | 
		typedef typename Digraph::NodeIt NodeIt;  | 
| 1101 | 1104 | 
		typedef typename Digraph::Arc Arc;  | 
| 1102 | 1105 | 
		typedef typename Digraph::OutArcIt OutArcIt;  | 
| 1103 | 1106 | 
		 | 
| 1104 | 
		///The type of the map that stores the arc lengths.  | 
|
| 1105 | 1107 | 
		typedef typename TR::LengthMap LengthMap;  | 
| 1106 | 
		///The type of the length of the arcs.  | 
|
| 1107 | 1108 | 
		typedef typename LengthMap::Value Value;  | 
| 1108 | 
		///\brief The type of the map that stores the predecessor  | 
|
| 1109 | 
		///arcs of the shortest paths.  | 
|
| 1110 | 1109 | 
		typedef typename TR::PredMap PredMap;  | 
| 1111 | 
		///The type of the map that stores the distances of the nodes.  | 
|
| 1112 | 1110 | 
		typedef typename TR::DistMap DistMap;  | 
| 1113 | 
		///The type of the map that indicates which nodes are processed.  | 
|
| 1114 | 1111 | 
		typedef typename TR::ProcessedMap ProcessedMap;  | 
| 1115 | 
		///The type of the shortest paths  | 
|
| 1116 | 1112 | 
		typedef typename TR::Path Path;  | 
| 1117 | 
		///The heap type used by the dijkstra algorithm.  | 
|
| 1118 | 1113 | 
		typedef typename TR::Heap Heap;  | 
| 1119 | 1114 | 
		 | 
| 1120 | 1115 | 
		public:  | 
| 1121 | 1116 | 
		 | 
| 1122 | 1117 | 
		/// Constructor.  | 
| 1123 | 1118 | 
		    DijkstraWizard() : TR() {}
	 | 
| ... | ... | 
		@@ -1183,17 +1178,18 @@  | 
| 1183 | 1178 | 
		template<class T>  | 
| 1184 | 1179 | 
		    struct SetPredMapBase : public Base {
	 | 
| 1185 | 1180 | 
		typedef T PredMap;  | 
| 1186 | 1181 | 
		      static PredMap *createPredMap(const Digraph &) { return 0; };
	 | 
| 1187 | 1182 | 
		      SetPredMapBase(const TR &b) : TR(b) {}
	 | 
| 1188 | 1183 | 
		};  | 
| 1189 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1190 | 
		///for setting PredMap object.  | 
|
| 1184 | 
		 | 
|
| 1185 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
|
| 1186 | 
		///the predecessor map.  | 
|
| 1191 | 1187 | 
		///  | 
| 1192 | 
		///\ref named-func-param "Named parameter"  | 
|
| 1193 | 
		///for setting PredMap object.  | 
|
| 1188 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 1189 | 
		///the map that stores the predecessor arcs of the nodes.  | 
|
| 1194 | 1190 | 
		template<class T>  | 
| 1195 | 1191 | 
		DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)  | 
| 1196 | 1192 | 
		    {
	 | 
| 1197 | 1193 | 
		Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
| 1198 | 1194 | 
		return DijkstraWizard<SetPredMapBase<T> >(*this);  | 
| 1199 | 1195 | 
		}  | 
| ... | ... | 
		@@ -1201,17 +1197,19 @@  | 
| 1201 | 1197 | 
		template<class T>  | 
| 1202 | 1198 | 
		    struct SetDistMapBase : public Base {
	 | 
| 1203 | 1199 | 
		typedef T DistMap;  | 
| 1204 | 1200 | 
		      static DistMap *createDistMap(const Digraph &) { return 0; };
	 | 
| 1205 | 1201 | 
		      SetDistMapBase(const TR &b) : TR(b) {}
	 | 
| 1206 | 1202 | 
		};  | 
| 1207 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1208 | 
		///for setting DistMap object.  | 
|
| 1203 | 
		 | 
|
| 1204 | 
		///\brief \ref named-templ-param "Named parameter" for setting  | 
|
| 1205 | 
		///the distance map.  | 
|
| 1209 | 1206 | 
		///  | 
| 1210 | 
		///\ref named-func-param "Named parameter"  | 
|
| 1211 | 
		///for setting DistMap object.  | 
|
| 1207 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 1208 | 
		///the map that stores the distances of the nodes calculated  | 
|
| 1209 | 
		///by the algorithm.  | 
|
| 1212 | 1210 | 
		template<class T>  | 
| 1213 | 1211 | 
		DijkstraWizard<SetDistMapBase<T> > distMap(const T &t)  | 
| 1214 | 1212 | 
		    {
	 | 
| 1215 | 1213 | 
		Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
| 1216 | 1214 | 
		return DijkstraWizard<SetDistMapBase<T> >(*this);  | 
| 1217 | 1215 | 
		}  | 
| ... | ... | 
		@@ -1219,29 +1217,31 @@  | 
| 1219 | 1217 | 
		template<class T>  | 
| 1220 | 1218 | 
		    struct SetProcessedMapBase : public Base {
	 | 
| 1221 | 1219 | 
		typedef T ProcessedMap;  | 
| 1222 | 1220 | 
		      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
	 | 
| 1223 | 1221 | 
		      SetProcessedMapBase(const TR &b) : TR(b) {}
	 | 
| 1224 | 1222 | 
		};  | 
| 1225 | 
		///\brief \ref named-func-param "Named parameter"  | 
|
| 1226 | 
		///for setting ProcessedMap object.  | 
|
| 1223 | 
		 | 
|
| 1224 | 
		///\brief \ref named-func-param "Named parameter" for setting  | 
|
| 1225 | 
		///the processed map.  | 
|
| 1227 | 1226 | 
		///  | 
| 1228 | 
		/// \ref named-func-param "Named parameter"  | 
|
| 1229 | 
		///for setting ProcessedMap object.  | 
|
| 1227 | 
		///\ref named-templ-param "Named parameter" function for setting  | 
|
| 1228 | 
		///the map that indicates which nodes are processed.  | 
|
| 1230 | 1229 | 
		template<class T>  | 
| 1231 | 1230 | 
		DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t)  | 
| 1232 | 1231 | 
		    {
	 | 
| 1233 | 1232 | 
		Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));  | 
| 1234 | 1233 | 
		return DijkstraWizard<SetProcessedMapBase<T> >(*this);  | 
| 1235 | 1234 | 
		}  | 
| 1236 | 1235 | 
		 | 
| 1237 | 1236 | 
		template<class T>  | 
| 1238 | 1237 | 
		    struct SetPathBase : public Base {
	 | 
| 1239 | 1238 | 
		typedef T Path;  | 
| 1240 | 1239 | 
		      SetPathBase(const TR &b) : TR(b) {}
	 | 
| 1241 | 1240 | 
		};  | 
| 1241 | 
		 | 
|
| 1242 | 1242 | 
		///\brief \ref named-func-param "Named parameter"  | 
| 1243 | 1243 | 
		///for getting the shortest path to the target node.  | 
| 1244 | 1244 | 
		///  | 
| 1245 | 1245 | 
		///\ref named-func-param "Named parameter"  | 
| 1246 | 1246 | 
		///for getting the shortest path to the target node.  | 
| 1247 | 1247 | 
		template<class T>  | 
| ... | ... | 
		@@ -18,32 +18,25 @@  | 
| 18 | 18 | 
		 | 
| 19 | 19 | 
		#ifndef LEMON_DIM2_H  | 
| 20 | 20 | 
		#define LEMON_DIM2_H  | 
| 21 | 21 | 
		 | 
| 22 | 22 | 
		#include <iostream>  | 
| 23 | 23 | 
		 | 
| 24 | 
		///\ingroup  | 
|
| 24 | 
		///\ingroup geomdat  | 
|
| 25 | 25 | 
		///\file  | 
| 26 | 26 | 
		///\brief A simple two dimensional vector and a bounding box implementation  | 
| 27 | 
		///  | 
|
| 28 | 
		/// The class \ref lemon::dim2::Point "dim2::Point" implements  | 
|
| 29 | 
		/// a two dimensional vector with the usual operations.  | 
|
| 30 | 
		///  | 
|
| 31 | 
		/// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine  | 
|
| 32 | 
		/// the rectangular bounding box of a set of  | 
|
| 33 | 
		/// \ref lemon::dim2::Point "dim2::Point"'s.  | 
|
| 34 | 27 | 
		 | 
| 35 | 28 | 
		namespace lemon {
	 | 
| 36 | 29 | 
		 | 
| 37 | 30 | 
		///Tools for handling two dimensional coordinates  | 
| 38 | 31 | 
		 | 
| 39 | 32 | 
		///This namespace is a storage of several  | 
| 40 | 33 | 
		///tools for handling two dimensional coordinates  | 
| 41 | 34 | 
		  namespace dim2 {
	 | 
| 42 | 35 | 
		 | 
| 43 | 
		/// \addtogroup  | 
|
| 36 | 
		/// \addtogroup geomdat  | 
|
| 44 | 37 | 
		  /// @{
	 | 
| 45 | 38 | 
		 | 
| 46 | 39 | 
		/// Two dimensional vector (plain vector)  | 
| 47 | 40 | 
		 | 
| 48 | 41 | 
		/// A simple two dimensional vector (plain vector) implementation  | 
| 49 | 42 | 
		/// with the usual vector operations.  | 
| ... | ... | 
		@@ -17,59 +17,55 @@  | 
| 17 | 17 | 
		*/  | 
| 18 | 18 | 
		 | 
| 19 | 19 | 
		#ifndef LEMON_FIB_HEAP_H  | 
| 20 | 20 | 
		#define LEMON_FIB_HEAP_H  | 
| 21 | 21 | 
		 | 
| 22 | 22 | 
		///\file  | 
| 23 | 
		///\ingroup auxdat  | 
|
| 24 | 
		///\brief Fibonacci Heap implementation.  | 
|
| 23 | 
		///\ingroup heaps  | 
|
| 24 | 
		///\brief Fibonacci heap implementation.  | 
|
| 25 | 25 | 
		 | 
| 26 | 26 | 
		#include <vector>  | 
| 27 | 
		#include <utility>  | 
|
| 27 | 28 | 
		#include <functional>  | 
| 28 | 29 | 
		#include <lemon/math.h>  | 
| 29 | 30 | 
		 | 
| 30 | 31 | 
		namespace lemon {
	 | 
| 31 | 32 | 
		 | 
| 32 | 
		/// \ingroup  | 
|
| 33 | 
		/// \ingroup heaps  | 
|
| 33 | 34 | 
		///  | 
| 34 | 
		///\brief Fibonacci  | 
|
| 35 | 
		/// \brief Fibonacci heap data structure.  | 
|
| 35 | 36 | 
		///  | 
| 36 | 
		///This class implements the \e Fibonacci \e heap data structure. A \e heap  | 
|
| 37 | 
		///is a data structure for storing items with specified values called \e  | 
|
| 38 | 
		///priorities in such a way that finding the item with minimum priority is  | 
|
| 39 | 
		///efficient. \c CMP specifies the ordering of the priorities. In a heap  | 
|
| 40 | 
		///  | 
|
| 37 | 
		/// This class implements the \e Fibonacci \e heap data structure.  | 
|
| 38 | 
		/// It fully conforms to the \ref concepts::Heap "heap concept".  | 
|
| 41 | 39 | 
		///  | 
| 42 | 
		///The methods \ref increase and \ref erase are not efficient in a Fibonacci  | 
|
| 43 | 
		///heap. In case of many calls to these operations, it is better to use a  | 
|
| 44 | 
		///\ref  | 
|
| 40 | 
		/// The methods \ref increase() and \ref erase() are not efficient in a  | 
|
| 41 | 
		/// Fibonacci heap. In case of many calls of these operations, it is  | 
|
| 42 | 
		/// better to use other heap structure, e.g. \ref BinHeap "binary heap".  | 
|
| 45 | 43 | 
		///  | 
| 46 | 
		///\param PRIO Type of the priority of the items.  | 
|
| 47 | 
		///\param IM A read and writable Item int map, used internally  | 
|
| 48 | 
		///to handle the cross references.  | 
|
| 49 | 
		///\param CMP A class for the ordering of the priorities. The  | 
|
| 50 | 
		///default is \c std::less<PRIO>.  | 
|
| 51 | 
		///  | 
|
| 52 | 
		///\sa BinHeap  | 
|
| 53 | 
		///\sa Dijkstra  | 
|
| 44 | 
		/// \tparam PR Type of the priorities of the items.  | 
|
| 45 | 
		/// \tparam IM A read-writable item map with \c int values, used  | 
|
| 46 | 
		/// internally to handle the cross references.  | 
|
| 47 | 
		/// \tparam CMP A functor class for comparing the priorities.  | 
|
| 48 | 
		/// The default is \c std::less<PR>.  | 
|
| 54 | 49 | 
		#ifdef DOXYGEN  | 
| 55 | 
		template <typename  | 
|
| 50 | 
		template <typename PR, typename IM, typename CMP>  | 
|
| 56 | 51 | 
		#else  | 
| 57 | 
		template <typename  | 
|
| 52 | 
		template <typename PR, typename IM, typename CMP = std::less<PR> >  | 
|
| 58 | 53 | 
		#endif  | 
| 59 | 54 | 
		  class FibHeap {
	 | 
| 60 | 55 | 
		public:  | 
| 61 | 
		
  | 
|
| 56 | 
		 | 
|
| 57 | 
		/// Type of the item-int map.  | 
|
| 62 | 58 | 
		typedef IM ItemIntMap;  | 
| 63 | 
		///\e  | 
|
| 64 | 
		typedef PRIO Prio;  | 
|
| 65 | 
		///  | 
|
| 59 | 
		/// Type of the priorities.  | 
|
| 60 | 
		typedef PR Prio;  | 
|
| 61 | 
		/// Type of the items stored in the heap.  | 
|
| 66 | 62 | 
		typedef typename ItemIntMap::Key Item;  | 
| 67 | 
		///  | 
|
| 63 | 
		/// Type of the item-priority pairs.  | 
|
| 68 | 64 | 
		typedef std::pair<Item,Prio> Pair;  | 
| 69 | 
		///  | 
|
| 65 | 
		/// Functor type for comparing the priorities.  | 
|
| 70 | 66 | 
		typedef CMP Compare;  | 
| 71 | 67 | 
		 | 
| 72 | 68 | 
		private:  | 
| 73 | 69 | 
		class Store;  | 
| 74 | 70 | 
		 | 
| 75 | 71 | 
		std::vector<Store> _data;  | 
| ... | ... | 
		@@ -77,80 +73,74 @@  | 
| 77 | 73 | 
		ItemIntMap &_iim;  | 
| 78 | 74 | 
		Compare _comp;  | 
| 79 | 75 | 
		int _num;  | 
| 80 | 76 | 
		 | 
| 81 | 77 | 
		public:  | 
| 82 | 78 | 
		 | 
| 83 | 
		/// \brief Type to represent the  | 
|
| 79 | 
		/// \brief Type to represent the states of the items.  | 
|
| 84 | 80 | 
		///  | 
| 85 | 
		/// Each Item element have a state associated to it. It may be "in heap",  | 
|
| 86 | 
		/// "pre heap" or "post heap". The latter two are indifferent from the  | 
|
| 81 | 
		/// Each item has a state associated to it. It can be "in heap",  | 
|
| 82 | 
		/// "pre-heap" or "post-heap". The latter two are indifferent from the  | 
|
| 87 | 83 | 
		/// heap's point of view, but may be useful to the user.  | 
| 88 | 84 | 
		///  | 
| 89 | 85 | 
		/// The item-int map must be initialized in such way that it assigns  | 
| 90 | 86 | 
		/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.  | 
| 91 | 87 | 
		    enum State {
	 | 
| 92 | 88 | 
		IN_HEAP = 0, ///< = 0.  | 
| 93 | 89 | 
		PRE_HEAP = -1, ///< = -1.  | 
| 94 | 90 | 
		POST_HEAP = -2 ///< = -2.  | 
| 95 | 91 | 
		};  | 
| 96 | 92 | 
		 | 
| 97 | 
		/// \brief  | 
|
| 93 | 
		/// \brief Constructor.  | 
|
| 98 | 94 | 
		///  | 
| 99 | 
		/// \c map should be given to the constructor, since it is  | 
|
| 100 | 
		/// used internally to handle the cross references.  | 
|
| 95 | 
		/// Constructor.  | 
|
| 96 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 97 | 
		/// It is used internally to handle the cross references.  | 
|
| 98 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 101 | 99 | 
		explicit FibHeap(ItemIntMap &map)  | 
| 102 | 100 | 
		      : _minimum(0), _iim(map), _num() {}
	 | 
| 103 | 101 | 
		 | 
| 104 | 
		/// \brief  | 
|
| 102 | 
		/// \brief Constructor.  | 
|
| 105 | 103 | 
		///  | 
| 106 | 
		/// \c map should be given to the constructor, since it is used  | 
|
| 107 | 
		/// internally to handle the cross references. \c comp is an  | 
|
| 108 | 
		///  | 
|
| 104 | 
		/// Constructor.  | 
|
| 105 | 
		/// \param map A map that assigns \c int values to the items.  | 
|
| 106 | 
		/// It is used internally to handle the cross references.  | 
|
| 107 | 
		/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.  | 
|
| 108 | 
		/// \param comp The function object used for comparing the priorities.  | 
|
| 109 | 109 | 
		FibHeap(ItemIntMap &map, const Compare &comp)  | 
| 110 | 110 | 
		      : _minimum(0), _iim(map), _comp(comp), _num() {}
	 | 
| 111 | 111 | 
		 | 
| 112 | 112 | 
		/// \brief The number of items stored in the heap.  | 
| 113 | 113 | 
		///  | 
| 114 | 
		///  | 
|
| 114 | 
		/// This function returns the number of items stored in the heap.  | 
|
| 115 | 115 | 
		    int size() const { return _num; }
	 | 
| 116 | 116 | 
		 | 
| 117 | 
		/// \brief  | 
|
| 117 | 
		/// \brief Check if the heap is empty.  | 
|
| 118 | 118 | 
		///  | 
| 119 | 
		///  | 
|
| 119 | 
		/// This function returns \c true if the heap is empty.  | 
|
| 120 | 120 | 
		    bool empty() const { return _num==0; }
	 | 
| 121 | 121 | 
		 | 
| 122 | 
		/// \brief Make  | 
|
| 122 | 
		/// \brief Make the heap empty.  | 
|
| 123 | 123 | 
		///  | 
| 124 | 
		/// Make empty this heap. It does not change the cross reference  | 
|
| 125 | 
		/// map. If you want to reuse a heap what is not surely empty you  | 
|
| 126 | 
		/// should first clear the heap and after that you should set the  | 
|
| 127 | 
		/// cross reference map for each item to \c PRE_HEAP.  | 
|
| 124 | 
		/// This functon makes the heap empty.  | 
|
| 125 | 
		/// It does not change the cross reference map. If you want to reuse  | 
|
| 126 | 
		/// a heap that is not surely empty, you should first clear it and  | 
|
| 127 | 
		/// then you should set the cross reference map to \c PRE_HEAP  | 
|
| 128 | 
		/// for each item.  | 
|
| 128 | 129 | 
		    void clear() {
	 | 
| 129 | 130 | 
		_data.clear(); _minimum = 0; _num = 0;  | 
| 130 | 131 | 
		}  | 
| 131 | 132 | 
		 | 
| 132 | 
		/// \brief \c item gets to the heap with priority \c value independently  | 
|
| 133 | 
		/// if \c item was already there.  | 
|
| 133 | 
		/// \brief Insert an item into the heap with the given priority.  | 
|
| 134 | 134 | 
		///  | 
| 135 | 
		/// This method calls \ref push(\c item, \c value) if \c item is not  | 
|
| 136 | 
		/// stored in the heap and it calls \ref decrease(\c item, \c value) or  | 
|
| 137 | 
		/// \ref increase(\c item, \c value) otherwise.  | 
|
| 138 | 
		    void set (const Item& item, const Prio& value) {
	 | 
|
| 139 | 
		int i=_iim[item];  | 
|
| 140 | 
		      if ( i >= 0 && _data[i].in ) {
	 | 
|
| 141 | 
		if ( _comp(value, _data[i].prio) ) decrease(item, value);  | 
|
| 142 | 
		if ( _comp(_data[i].prio, value) ) increase(item, value);  | 
|
| 143 | 
		} else push(item, value);  | 
|
| 144 | 
		}  | 
|
| 145 | 
		 | 
|
| 146 | 
		/// \brief Adds \c item to the heap with priority \c value.  | 
|
| 147 | 
		///  | 
|
| 148 | 
		/// Adds \c item to the heap with priority \c value.  | 
|
| 149 | 
		/// \pre \c item must not be stored in the heap.  | 
|
| 150 | 
		    void push (const Item& item, const Prio& value) {
	 | 
|
| 135 | 
		/// This function inserts the given item into the heap with the  | 
|
| 136 | 
		/// given priority.  | 
|
| 137 | 
		/// \param item The item to insert.  | 
|
| 138 | 
		/// \param prio The priority of the item.  | 
|
| 139 | 
		/// \pre \e item must not be stored in the heap.  | 
|
| 140 | 
		    void push (const Item& item, const Prio& prio) {
	 | 
|
| 151 | 141 | 
		int i=_iim[item];  | 
| 152 | 142 | 
		      if ( i < 0 ) {
	 | 
| 153 | 143 | 
		int s=_data.size();  | 
| 154 | 144 | 
		_iim.set( item, s );  | 
| 155 | 145 | 
		Store st;  | 
| 156 | 146 | 
		st.name=item;  | 
| ... | ... | 
		@@ -165,82 +155,74 @@  | 
| 165 | 155 | 
		 | 
| 166 | 156 | 
		      if ( _num ) {
	 | 
| 167 | 157 | 
		_data[_data[_minimum].right_neighbor].left_neighbor=i;  | 
| 168 | 158 | 
		_data[i].right_neighbor=_data[_minimum].right_neighbor;  | 
| 169 | 159 | 
		_data[_minimum].right_neighbor=i;  | 
| 170 | 160 | 
		_data[i].left_neighbor=_minimum;  | 
| 171 | 
		if ( _comp(  | 
|
| 161 | 
		if ( _comp( prio, _data[_minimum].prio) ) _minimum=i;  | 
|
| 172 | 162 | 
		      } else {
	 | 
| 173 | 163 | 
		_data[i].right_neighbor=_data[i].left_neighbor=i;  | 
| 174 | 164 | 
		_minimum=i;  | 
| 175 | 165 | 
		}  | 
| 176 | 
		_data[i].prio=  | 
|
| 166 | 
		_data[i].prio=prio;  | 
|
| 177 | 167 | 
		++_num;  | 
| 178 | 168 | 
		}  | 
| 179 | 169 | 
		 | 
| 180 | 
		/// \brief  | 
|
| 170 | 
		/// \brief Return the item having minimum priority.  | 
|
| 181 | 171 | 
		///  | 
| 182 | 
		/// This method returns the item with minimum priority relative to \c  | 
|
| 183 | 
		/// Compare.  | 
|
| 184 | 
		///  | 
|
| 172 | 
		/// This function returns the item having minimum priority.  | 
|
| 173 | 
		/// \pre The heap must be non-empty.  | 
|
| 185 | 174 | 
		    Item top() const { return _data[_minimum].name; }
	 | 
| 186 | 175 | 
		 | 
| 187 | 
		/// \brief  | 
|
| 176 | 
		/// \brief The minimum priority.  | 
|
| 188 | 177 | 
		///  | 
| 189 | 
		/// It returns the minimum priority relative to \c Compare.  | 
|
| 190 | 
		/// \pre The heap must be nonempty.  | 
|
| 191 | 
		
  | 
|
| 178 | 
		/// This function returns the minimum priority.  | 
|
| 179 | 
		/// \pre The heap must be non-empty.  | 
|
| 180 | 
		    Prio prio() const { return _data[_minimum].prio; }
	 | 
|
| 192 | 181 | 
		 | 
| 193 | 
		/// \brief  | 
|
| 182 | 
		/// \brief Remove the item having minimum priority.  | 
|
| 194 | 183 | 
		///  | 
| 195 | 
		/// It returns the priority of \c item.  | 
|
| 196 | 
		/// \pre \c item must be in the heap.  | 
|
| 197 | 
		    const Prio& operator[](const Item& item) const {
	 | 
|
| 198 | 
		return _data[_iim[item]].prio;  | 
|
| 199 | 
		}  | 
|
| 200 | 
		 | 
|
| 201 | 
		/// \brief Deletes the item with minimum priority relative to \c Compare.  | 
|
| 202 | 
		///  | 
|
| 203 | 
		/// This method deletes the item with minimum priority relative to \c  | 
|
| 204 | 
		/// Compare from the heap.  | 
|
| 184 | 
		/// This function removes the item having minimum priority.  | 
|
| 205 | 185 | 
		/// \pre The heap must be non-empty.  | 
| 206 | 186 | 
		    void pop() {
	 | 
| 207 | 187 | 
		/*The first case is that there are only one root.*/  | 
| 208 | 188 | 
		      if ( _data[_minimum].left_neighbor==_minimum ) {
	 | 
| 209 | 189 | 
		_data[_minimum].in=false;  | 
| 210 | 190 | 
		        if ( _data[_minimum].degree!=0 ) {
	 | 
| 211 | 
		
  | 
|
| 191 | 
		makeRoot(_data[_minimum].child);  | 
|
| 212 | 192 | 
		_minimum=_data[_minimum].child;  | 
| 213 | 193 | 
		balance();  | 
| 214 | 194 | 
		}  | 
| 215 | 195 | 
		      } else {
	 | 
| 216 | 196 | 
		int right=_data[_minimum].right_neighbor;  | 
| 217 | 197 | 
		unlace(_minimum);  | 
| 218 | 198 | 
		_data[_minimum].in=false;  | 
| 219 | 199 | 
		        if ( _data[_minimum].degree > 0 ) {
	 | 
| 220 | 200 | 
		int left=_data[_minimum].left_neighbor;  | 
| 221 | 201 | 
		int child=_data[_minimum].child;  | 
| 222 | 202 | 
		int last_child=_data[child].left_neighbor;  | 
| 223 | 203 | 
		 | 
| 224 | 
		
  | 
|
| 204 | 
		makeRoot(child);  | 
|
| 225 | 205 | 
		 | 
| 226 | 206 | 
		_data[left].right_neighbor=child;  | 
| 227 | 207 | 
		_data[child].left_neighbor=left;  | 
| 228 | 208 | 
		_data[right].left_neighbor=last_child;  | 
| 229 | 209 | 
		_data[last_child].right_neighbor=right;  | 
| 230 | 210 | 
		}  | 
| 231 | 211 | 
		_minimum=right;  | 
| 232 | 212 | 
		balance();  | 
| 233 | 213 | 
		} // the case where there are more roots  | 
| 234 | 214 | 
		--_num;  | 
| 235 | 215 | 
		}  | 
| 236 | 216 | 
		 | 
| 237 | 
		/// \brief  | 
|
| 217 | 
		/// \brief Remove the given item from the heap.  | 
|
| 238 | 218 | 
		///  | 
| 239 | 
		/// This method deletes \c item from the heap, if \c item was already  | 
|
| 240 | 
		/// stored in the heap. It is quite inefficient in Fibonacci heaps.  | 
|
| 219 | 
		/// This function removes the given item from the heap if it is  | 
|
| 220 | 
		/// already stored.  | 
|
| 221 | 
		/// \param item The item to delete.  | 
|
| 222 | 
		/// \pre \e item must be in the heap.  | 
|
| 241 | 223 | 
		    void erase (const Item& item) {
	 | 
| 242 | 224 | 
		int i=_iim[item];  | 
| 243 | 225 | 
		 | 
| 244 | 226 | 
		      if ( i >= 0 && _data[i].in ) {
	 | 
| 245 | 227 | 
		        if ( _data[i].parent!=-1 ) {
	 | 
| 246 | 228 | 
		int p=_data[i].parent;  | 
| ... | ... | 
		@@ -249,63 +231,88 @@  | 
| 249 | 231 | 
		}  | 
| 250 | 232 | 
		_minimum=i; //As if its prio would be -infinity  | 
| 251 | 233 | 
		pop();  | 
| 252 | 234 | 
		}  | 
| 253 | 235 | 
		}  | 
| 254 | 236 | 
		 | 
| 255 | 
		/// \brief  | 
|
| 237 | 
		/// \brief The priority of the given item.  | 
|
| 256 | 238 | 
		///  | 
| 257 | 
		/// This method decreases the priority of \c item to \c value.  | 
|
| 258 | 
		/// \pre \c item must be stored in the heap with priority at least \c  | 
|
| 259 | 
		/// value relative to \c Compare.  | 
|
| 260 | 
		    void decrease (Item item, const Prio& value) {
	 | 
|
| 239 | 
		/// This function returns the priority of the given item.  | 
|
| 240 | 
		/// \param item The item.  | 
|
| 241 | 
		/// \pre \e item must be in the heap.  | 
|
| 242 | 
		    Prio operator[](const Item& item) const {
	 | 
|
| 243 | 
		return _data[_iim[item]].prio;  | 
|
| 244 | 
		}  | 
|
| 245 | 
		 | 
|
| 246 | 
		/// \brief Set the priority of an item or insert it, if it is  | 
|
| 247 | 
		/// not stored in the heap.  | 
|
| 248 | 
		///  | 
|
| 249 | 
		/// This method sets the priority of the given item if it is  | 
|
| 250 | 
		/// already stored in the heap. Otherwise it inserts the given  | 
|
| 251 | 
		/// item into the heap with the given priority.  | 
|
| 252 | 
		/// \param item The item.  | 
|
| 253 | 
		/// \param prio The priority.  | 
|
| 254 | 
		    void set (const Item& item, const Prio& prio) {
	 | 
|
| 261 | 255 | 
		int i=_iim[item];  | 
| 262 | 
		_data[i].  | 
|
| 256 | 
		      if ( i >= 0 && _data[i].in ) {
	 | 
|
| 257 | 
		if ( _comp(prio, _data[i].prio) ) decrease(item, prio);  | 
|
| 258 | 
		if ( _comp(_data[i].prio, prio) ) increase(item, prio);  | 
|
| 259 | 
		} else push(item, prio);  | 
|
| 260 | 
		}  | 
|
| 261 | 
		 | 
|
| 262 | 
		/// \brief Decrease the priority of an item to the given value.  | 
|
| 263 | 
		///  | 
|
| 264 | 
		/// This function decreases the priority of an item to the given value.  | 
|
| 265 | 
		/// \param item The item.  | 
|
| 266 | 
		/// \param prio The priority.  | 
|
| 267 | 
		/// \pre \e item must be stored in the heap with priority at least \e prio.  | 
|
| 268 | 
		    void decrease (const Item& item, const Prio& prio) {
	 | 
|
| 269 | 
		int i=_iim[item];  | 
|
| 270 | 
		_data[i].prio=prio;  | 
|
| 263 | 271 | 
		int p=_data[i].parent;  | 
| 264 | 272 | 
		 | 
| 265 | 
		if ( p!=-1 && _comp(  | 
|
| 273 | 
		      if ( p!=-1 && _comp(prio, _data[p].prio) ) {
	 | 
|
| 266 | 274 | 
		cut(i,p);  | 
| 267 | 275 | 
		cascade(p);  | 
| 268 | 276 | 
		}  | 
| 269 | 
		if ( _comp(  | 
|
| 277 | 
		if ( _comp(prio, _data[_minimum].prio) ) _minimum=i;  | 
|
| 270 | 278 | 
		}  | 
| 271 | 279 | 
		 | 
| 272 | 
		/// \brief  | 
|
| 280 | 
		/// \brief Increase the priority of an item to the given value.  | 
|
| 273 | 281 | 
		///  | 
| 274 | 
		/// This method sets the priority of \c item to \c value. Though  | 
|
| 275 | 
		/// there is no precondition on the priority of \c item, this  | 
|
| 276 | 
		/// method should be used only if it is indeed necessary to increase  | 
|
| 277 | 
		/// (relative to \c Compare) the priority of \c item, because this  | 
|
| 278 | 
		/// method is inefficient.  | 
|
| 279 | 
		    void increase (Item item, const Prio& value) {
	 | 
|
| 282 | 
		/// This function increases the priority of an item to the given value.  | 
|
| 283 | 
		/// \param item The item.  | 
|
| 284 | 
		/// \param prio The priority.  | 
|
| 285 | 
		/// \pre \e item must be stored in the heap with priority at most \e prio.  | 
|
| 286 | 
		    void increase (const Item& item, const Prio& prio) {
	 | 
|
| 280 | 287 | 
		erase(item);  | 
| 281 | 
		push(item,  | 
|
| 288 | 
		push(item, prio);  | 
|
| 282 | 289 | 
		}  | 
| 283 | 290 | 
		 | 
| 284 | 
		 | 
|
| 285 | 
		/// \brief Returns if \c item is in, has already been in, or has never  | 
|
| 286 | 
		///  | 
|
| 291 | 
		/// \brief Return the state of an item.  | 
|
| 287 | 292 | 
		///  | 
| 288 | 
		/// This method returns PRE_HEAP if \c item has never been in the  | 
|
| 289 | 
		/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP  | 
|
| 290 | 
		/// otherwise. In the latter case it is possible that \c item will  | 
|
| 291 | 
		/// get back to the heap again.  | 
|
| 293 | 
		/// This method returns \c PRE_HEAP if the given item has never  | 
|
| 294 | 
		/// been in the heap, \c IN_HEAP if it is in the heap at the moment,  | 
|
| 295 | 
		/// and \c POST_HEAP otherwise.  | 
|
| 296 | 
		/// In the latter case it is possible that the item will get back  | 
|
| 297 | 
		/// to the heap again.  | 
|
| 298 | 
		/// \param item The item.  | 
|
| 292 | 299 | 
		    State state(const Item &item) const {
	 | 
| 293 | 300 | 
		int i=_iim[item];  | 
| 294 | 301 | 
		      if( i>=0 ) {
	 | 
| 295 | 302 | 
		if ( _data[i].in ) i=0;  | 
| 296 | 303 | 
		else i=-2;  | 
| 297 | 304 | 
		}  | 
| 298 | 305 | 
		return State(i);  | 
| 299 | 306 | 
		}  | 
| 300 | 307 | 
		 | 
| 301 | 
		/// \brief  | 
|
| 308 | 
		/// \brief Set the state of an item in the heap.  | 
|
| 302 | 309 | 
		///  | 
| 303 | 
		/// Sets the state of the \c item in the heap. It can be used to  | 
|
| 304 | 
		/// manually clear the heap when it is important to achive the  | 
|
| 305 | 
		///  | 
|
| 310 | 
		/// This function sets the state of the given item in the heap.  | 
|
| 311 | 
		/// It can be used to manually clear the heap when it is important  | 
|
| 312 | 
		/// to achive better time complexity.  | 
|
| 306 | 313 | 
		/// \param i The item.  | 
| 307 | 314 | 
		/// \param st The state. It should not be \c IN_HEAP.  | 
| 308 | 315 | 
		    void state(const Item& i, State st) {
	 | 
| 309 | 316 | 
		      switch (st) {
	 | 
| 310 | 317 | 
		case POST_HEAP:  | 
| 311 | 318 | 
		case PRE_HEAP:  | 
| ... | ... | 
		@@ -362,13 +369,13 @@  | 
| 362 | 369 | 
		      do {
	 | 
| 363 | 370 | 
		if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;  | 
| 364 | 371 | 
		s=_data[s].right_neighbor;  | 
| 365 | 372 | 
		} while ( s != m );  | 
| 366 | 373 | 
		}  | 
| 367 | 374 | 
		 | 
| 368 | 
		void  | 
|
| 375 | 
		    void makeRoot(int c) {
	 | 
|
| 369 | 376 | 
		int s=c;  | 
| 370 | 377 | 
		      do {
	 | 
| 371 | 378 | 
		_data[s].parent=-1;  | 
| 372 | 379 | 
		s=_data[s].right_neighbor;  | 
| 373 | 380 | 
		} while ( s != c );  | 
| 374 | 381 | 
		}  | 
| ... | ... | 
		@@ -356,16 +356,16 @@  | 
| 356 | 356 | 
		/// GomoryHu. Before using it, you must allocate a GomoryHu class  | 
| 357 | 357 | 
		/// and call its \ref GomoryHu::run() "run()" method.  | 
| 358 | 358 | 
		///  | 
| 359 | 359 | 
		/// This example counts the nodes in the minimum cut separating \c s from  | 
| 360 | 360 | 
		/// \c t.  | 
| 361 | 361 | 
		/// \code  | 
| 362 | 
		///  | 
|
| 362 | 
		/// GomoryHu<Graph> gom(g, capacities);  | 
|
| 363 | 363 | 
		/// gom.run();  | 
| 364 | 364 | 
		/// int cnt=0;  | 
| 365 | 
		/// for(  | 
|
| 365 | 
		/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt;  | 
|
| 366 | 366 | 
		/// \endcode  | 
| 367 | 367 | 
		class MinCutNodeIt  | 
| 368 | 368 | 
		    {
	 | 
| 369 | 369 | 
		bool _side;  | 
| 370 | 370 | 
		typename Graph::NodeIt _node_it;  | 
| 371 | 371 | 
		typename Graph::template NodeMap<bool> _cut;  | 
| ... | ... | 
		@@ -453,16 +453,16 @@  | 
| 453 | 453 | 
		/// GomoryHu. Before using it, you must allocate a GomoryHu class  | 
| 454 | 454 | 
		/// and call its \ref GomoryHu::run() "run()" method.  | 
| 455 | 455 | 
		///  | 
| 456 | 456 | 
		/// This example computes the value of the minimum cut separating \c s from  | 
| 457 | 457 | 
		/// \c t.  | 
| 458 | 458 | 
		/// \code  | 
| 459 | 
		///  | 
|
| 459 | 
		/// GomoryHu<Graph> gom(g, capacities);  | 
|
| 460 | 460 | 
		/// gom.run();  | 
| 461 | 461 | 
		/// int value=0;  | 
| 462 | 
		/// for(  | 
|
| 462 | 
		/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e)  | 
|
| 463 | 463 | 
		/// value+=capacities[e];  | 
| 464 | 464 | 
		/// \endcode  | 
| 465 | 465 | 
		/// The result will be the same as the value returned by  | 
| 466 | 466 | 
		/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)".  | 
| 467 | 467 | 
		class MinCutEdgeIt  | 
| 468 | 468 | 
		    {
	 | 
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)